JP3024367B2 - Method of manufacturing solar cell device - Google Patents

Method of manufacturing solar cell device

Info

Publication number
JP3024367B2
JP3024367B2 JP4178710A JP17871092A JP3024367B2 JP 3024367 B2 JP3024367 B2 JP 3024367B2 JP 4178710 A JP4178710 A JP 4178710A JP 17871092 A JP17871092 A JP 17871092A JP 3024367 B2 JP3024367 B2 JP 3024367B2
Authority
JP
Japan
Prior art keywords
solar cell
electrode layer
solder
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4178710A
Other languages
Japanese (ja)
Other versions
JPH0629564A (en
Inventor
清雄 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4178710A priority Critical patent/JP3024367B2/en
Publication of JPH0629564A publication Critical patent/JPH0629564A/en
Application granted granted Critical
Publication of JP3024367B2 publication Critical patent/JP3024367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アモルファスシリコン
等を主成分とする薄膜半導体を用い、可とう性を持たせ
た太陽電池の複数個を接続してなる太陽電池装置の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a solar cell device comprising a plurality of flexible solar cells connected by using a thin film semiconductor mainly composed of amorphous silicon or the like.

【0002】[0002]

【従来の技術】原料ガスのグロー放電分解や光CVDに
より形成されるアモルファス半導体薄膜は、膜を低温で
形成するため、高分子材料等の可とう性基板上に容易に
形成することができる。このため、住宅建材や自動車の
サンルーフ等の曲面を有する物の上へ設置する太陽電池
の材料として期待されている。こうしたアモルファス太
陽電池で大きな電力を得るには、電気的に複数個接続す
る必要がある。そのために従来は、各太陽電池を同一平
面上に配置し、端部にある電極部相互を導電性テープで
接続していた。図2は導電性テープを用いた太陽電池装
置を示し、透光性を有する高分子材料等の可とう性絶縁
基板1上に、SnO2 やZnO等からなる太陽電池の発電波
長領域に対して透光性と導電性を有する透明電極2を形
成し、その上に光起電力発生部であるアモルファス半導
体薄膜3、次いで金属電極4を順に積層する。このよう
な構造の太陽電池11および12を同一平面上に配置し、隣
接太陽電池を順次直列に接続する。この場合、可とう性
絶縁基板1ははんだの濡れ性が悪く、また融点が低いた
め、はんだ付けによる接続は困難であり、隣接する金属
電極41、42を接着性を有する導電性テープ5により電気
的に接続する。しかし、導電性テープで接着される電極
41、42の部分は等電位となるために発電に寄与せず、装
置の面積当たりの発電効率が低くなる。
2. Description of the Related Art An amorphous semiconductor thin film formed by glow discharge decomposition of a source gas or photo CVD can be easily formed on a flexible substrate made of a polymer material or the like because the film is formed at a low temperature. For this reason, it is expected as a solar cell material to be installed on a curved material such as a house building material or a car sunroof. In order to obtain a large electric power with such an amorphous solar cell, it is necessary to electrically connect a plurality of such cells. Therefore, conventionally, each solar cell was arranged on the same plane, and the electrode portions at the ends were connected to each other with a conductive tape. FIG. 2 shows a solar cell device using a conductive tape, on a flexible insulating substrate 1 made of a translucent polymer material or the like, on a power generation wavelength region of a solar cell made of SnO 2 , ZnO, or the like. A transparent electrode 2 having translucency and conductivity is formed, and an amorphous semiconductor thin film 3 serving as a photovoltaic power generation unit and a metal electrode 4 are sequentially stacked thereon. The solar cells 11 and 12 having such a structure are arranged on the same plane, and adjacent solar cells are sequentially connected in series. In this case, since the flexible insulating substrate 1 has poor solder wettability and low melting point, connection by soldering is difficult, and the adjacent metal electrodes 41 and 42 are electrically connected by the conductive tape 5 having adhesiveness. Connection. However, electrodes that are bonded with conductive tape
Since the portions 41 and 42 have the same potential and do not contribute to power generation, the power generation efficiency per unit area of the device is low.

【0003】特開昭60−123073号公報に記載された図3
に示す太陽電池装置は、端部電極を重ね合わせることに
より発電に対する無効面積を減らしたものである。この
太陽電池装置は、図2について述べたように可とう性基
板1を用いた太陽電池11、12、13、14を一方の端部が前
の太陽電池の他方の端部に重なるようにして順次ガラス
基板10の上に接着剤ではりつけたものである。そして一
つの太陽電池、例えば太陽電池11の基板10に接する端部
電極とその上に重ねられた隣接太陽電池12の端部電極と
を、両太陽電池の可とう性絶縁基板1を通じて明けられ
た穴の位置を合わせ、その穴に導電性接着剤を流しこむ
ことにより電気的接続を行う。そしてその上を保護膜6
によって被覆する。
FIG. 3 described in JP-A-60-123073
The solar cell device shown in (1) has an ineffective area for power generation reduced by overlapping end electrodes. In this solar cell device, as described with reference to FIG. 2, the solar cells 11, 12, 13, and 14 using the flexible substrate 1 are arranged such that one end overlaps the other end of the previous solar cell. These are sequentially glued on a glass substrate 10 with an adhesive. Then, the end electrode of one solar cell, for example, the end electrode in contact with the substrate 10 of the solar cell 11, and the end electrode of the adjacent solar cell 12 overlaid on the end electrode were cut through the flexible insulating substrate 1 of both solar cells. The electrical connection is made by aligning the holes and pouring a conductive adhesive into the holes. Then, a protective film 6 is formed thereon.
To cover.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図3の
ように導電性接着剤を用いて複数の太陽電池を直列接続
する場合、接続部の連結強度が十分でなく、特に高温、
高湿下での接着の信頼性が低いため、可とう性基板のみ
で太陽電池装置を構成することができず、ガラス基板10
を用いて保持しなければならない。従って可とう性基板
を用いながら、曲面を有する物への設置は不可能であ
る。強度が高く、かつ低抵抗で電気的接続のできる連結
を行うのにははんだ付けのようなろう付けを利用できる
ことが望ましい。前記特許公開公報に記載されている表
面に金属電極を有する可とう性基板を180 ℃折り曲げて
端部の裏面側に金属電極を延在させた太陽電池を用いれ
ば、金属電極同志のはんだ付けにより可とう性基板を連
結することが可能であるが、連結部の厚さは基板の3倍
ないし4倍となるため、その部分を曲面に沿って曲げる
ことが困難になる。
However, when a plurality of solar cells are connected in series using a conductive adhesive as shown in FIG. 3, the connection strength of the connection portion is not sufficient, and particularly at high temperatures,
Because the reliability of adhesion under high humidity is low, a solar cell device cannot be composed of only a flexible substrate, and the glass substrate 10
Must be retained using Therefore, it is impossible to install the device on a curved object while using a flexible substrate. It is desirable to be able to use brazing, such as soldering, to make a connection that is high in strength and low resistance and can be electrically connected. If a flexible substrate having a metal electrode on the surface described in the patent publication is bent at 180 ° C. to extend the metal electrode on the back surface of the end, a solar cell is used. Although the flexible substrate can be connected, the thickness of the connecting portion is three to four times the thickness of the substrate, and it is difficult to bend the portion along a curved surface.

【0005】本発明の目的は、上述の問題を解決し、可
とう性絶縁基板を用いて可とう性を有する太陽電池の複
数個を連結し、直列接続した場合になお十分の可とう性
を有する太陽電池装置の製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problem, and to provide a flexible insulating substrate with a plurality of flexible solar cells connected to each other and having sufficient flexibility when connected in series. It is an object of the present invention to provide a method for manufacturing a solar cell device having the same.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の太陽電池装置の製造方法は、1枚の可と
う性絶縁基板表面上に第一電極層、半導体層および第二
電極層を積層してなる太陽電池素子を1個形成してなる
かあるいは複数個形成して第二電極層を隣接素子の第一
電極層と接続することにより直列接続してなる太陽電池
の複数個が直列接続される太陽電池装置の製造方法にお
いて、一つの太陽電池の第一端部の第二電極層上から基
板の端面上を経て裏面上に延びるはんだ層を超音波印加
のもとで被覆し、基板裏面を被覆するはんだ層を別の太
陽電池の第二端部の第二電極層と接触させ、加熱しては
んだと接触する第二電極層に融着させるものとする。あ
るいは、一つの太陽電池の第一端部の第二電極層上から
基板の端面上を経て裏面上に延びるはんだ層を超音波印
加のもとで被覆し、基板裏面を被覆するはんだ層を別の
太陽電池の第二端部の少なくとも第二電極層を被覆する
はんだ層と接触させ、基板裏面を被覆するはんだ層を別
の太陽電池の第二端部の少なくとも第二電極層を被覆す
るはんだ層と接触させ、加熱して両はんだ層を融着させ
るものとする。あるいはまた、一つの太陽電池の第一端
部の第二電極層上から基板の端面上を経て裏面上に延び
るはんだ層を超音波印加のもとで被覆し、基板裏面を被
覆するはんだ層を別の太陽電池の第二端部の少なくとも
第二電極層を被覆するはんだ層と接触させ、両はんだ層
の表面相互を圧接させるものとする。その圧接が、両端
部にそれぞれ明けられた貫通孔を通るコンタクトピンの
両端をかしめることにより行われることが有効である。
In order to achieve the above-mentioned object, a method for manufacturing a solar cell device according to the present invention comprises the steps of: forming a first electrode layer, a semiconductor layer and a second electrode layer on a flexible insulating substrate surface; One or more solar cell elements formed by laminating electrode layers and a plurality of solar cells formed in series and connected in series by connecting a second electrode layer to a first electrode layer of an adjacent element In a method for manufacturing a solar cell device in which the solar cells are connected in series, a solder layer extending from the second electrode layer at the first end of one solar cell to the back surface through the end surface of the substrate under the application of ultrasonic waves. The solder layer that covers and covers the back surface of the substrate is brought into contact with the second electrode layer at the second end of another solar cell, and is heated and fused to the second electrode layer that comes into contact with the solder. Alternatively, a solder layer extending from the second electrode layer at the first end of one solar cell to the back surface via the end surface of the substrate is applied under application of ultrasonic waves, and the solder layer covering the back surface of the substrate is separated. A solder layer that covers at least the second electrode layer of the second end of the solar cell and a solder layer that covers the at least second electrode layer of the second end of the other solar cell with the solder layer that covers the back surface of the substrate Layers and heated to fuse the two solder layers. Alternatively, a solder layer extending from the second electrode layer at the first end of one solar cell to the back surface via the end surface of the substrate under ultrasonic application, and the solder layer covering the back surface of the substrate is applied. The second end of another solar cell is brought into contact with a solder layer covering at least the second electrode layer, and the surfaces of both solder layers are pressed against each other. It is effective that the pressure contact is performed by crimping both ends of a contact pin passing through through holes respectively opened at both ends.

【0007】そして、太陽電池の第一端部を溶融はんだ
浴に浸漬し、そのはんだ浴に超音波を印加することによ
りはんだ層を被覆することが有効である。また太陽電池
の第二端部の少なくとも裏面にテープをはりつけてその
端部を溶融はんだ浴に浸漬し、そのはんだ浴に超音波を
印加することによりはんだ層を被覆したのち、テープを
剥離することが有効である。
[0007] Then, it is effective to immerse the first end of the solar cell in a molten solder bath and apply an ultrasonic wave to the solder bath to coat the solder layer. Attach the tape to at least the back of the second end of the solar cell, immerse the end in a molten solder bath, apply ultrasonic waves to the solder bath, coat the solder layer, and then peel off the tape. Is valid.

【0008】[0008]

【作用】順次連結して電気的に直列接続する複数個の太
陽電池の少なくとも一方の端部に上層の第二電極層表面
上から可とう性絶縁基板の裏面に延びるはんだ層を超音
波はんだ被覆法を用いて形成することにより、その端部
に別の太陽電池の端部を重ね合わせて、裏面上のはんだ
層を別の太陽電池の第二電極層と直接あるいはその電極
層の上に形成したはんだ層と融着させることにより、あ
るいは別の太陽電池の第二電極層上に形成したはんだ層
と圧接させることにより、導電性接着剤による場合に比
して強度が高い連結ができ、接続抵抗も低い。そして、
重なり部では基板2枚分の厚さになるだけであるから可
とう性も十分残り、基板をどのような曲面に沿って曲げ
ることも可能になる。
An ultrasonic solder coating is performed on at least one end of a plurality of solar cells sequentially connected and electrically connected in series with a solder layer extending from a surface of an upper second electrode layer to a back surface of a flexible insulating substrate. By using the method, the end of another solar cell is overlapped on that end, and the solder layer on the back surface is formed directly on the second electrode layer of another solar cell or on that electrode layer By fusing with a solder layer that has been made, or by pressing with a solder layer formed on the second electrode layer of another solar cell, a connection with higher strength than when using a conductive adhesive can be made, and connection can be made. Low resistance. And
Since the overlapped portion only has a thickness of two substrates, sufficient flexibility remains, and the substrate can be bent along any curved surface.

【0009】[0009]

【実施例】以下、図2、図3と共通の部分に同一の符号
を付した図を引用して本発明の実施例について説明す
る。図1に示す実施例では、図(a) の平面図および図
(b) の断面図に示すように二つの太陽電池11、12の端部
を重ね合わせる。そして、その接合部Aを拡大して図
(c) の断面図に示すように、太陽電池11の端部に金属電
極4の表面から可とう性絶縁基板1の端面15に沿って裏
面16に達するはんだ層7が形成され、加熱によりこのは
んだ層7を太陽電池12の金属電極4に融着させている。
この結果、図2に示した太陽電池装置と同様な接続が行
われる。そして、図2の場合の導電性テープ5に覆われ
た部分の面積ロスが半減し、太陽電池装置の面積効率が
向上した。基板1の厚さは数十μmであるので、接合部
における厚さの増加はわずかであり、可とう性の減少も
わずかであった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings in which the same reference numerals are given to parts common to FIGS. In the embodiment shown in FIG. 1, the plan view of FIG.
As shown in the sectional view of (b), the ends of the two solar cells 11 and 12 are overlapped. Then, the joint A is enlarged.
As shown in the cross-sectional view of (c), a solder layer 7 is formed at the end of the solar cell 11 from the surface of the metal electrode 4 to the back surface 16 along the end surface 15 of the flexible insulating substrate 1. The solder layer 7 is fused to the metal electrode 4 of the solar cell 12.
As a result, a connection similar to that of the solar cell device shown in FIG. 2 is performed. Then, the area loss of the portion covered with the conductive tape 5 in FIG. 2 was reduced by half, and the area efficiency of the solar cell device was improved. Since the thickness of the substrate 1 was several tens of μm, the increase in the thickness at the joint portion was slight and the decrease in flexibility was also slight.

【0010】図4ははんだ層7の形成に用いる超音波は
んだ被覆装置を示す。この装置のはんだ槽81の中に低融
点はんだ70を入れ、ヒータ82により溶融させる。この溶
融はんだ70をポンプ83によりはんだ導管84の中に上昇さ
せ、太陽電池11の端部をそのはんだ中に浸漬し、はんだ
導管84に超音波振動子85により超音波を印加する。その
結果、金属電極層の表面上ばかりでなく、図1(c) に示
すように高分子材料からなる可とう性絶縁基板1の端面
15、裏面16にもはんだ層が形成できる。
FIG. 4 shows an ultrasonic solder coating apparatus used for forming the solder layer 7. A low melting point solder 70 is put in a solder bath 81 of this apparatus, and is melted by a heater 82. The molten solder 70 is raised into the solder conduit 84 by the pump 83, the end of the solar cell 11 is immersed in the solder, and ultrasonic waves are applied to the solder conduit 84 by the ultrasonic vibrator 85. As a result, not only on the surface of the metal electrode layer but also on the end face of the flexible insulating substrate 1 made of a polymer material as shown in FIG.
15, a solder layer can also be formed on the back surface 16.

【0011】図5に示す本発明の別の実施例では、太陽
電池12の端部の図示しない金属電極層上にもはんだ層7
が形成されている。このはんだ層は超音波を印加しない
ではんだ槽に端部を浸漬してもできるが、図4に示した
装置を用いるときには、端面15および裏面16にテープを
接着し、はんだ層7形成後そのテープをはがすことによ
り、金属電極層の表面上だけにはんだ層7が残る。これ
は、太陽電池12の可とう性絶縁基板1の端面および裏面
にはんだ層7が存在しても何の役にも立たず、かえって
接合部の厚さの増加あるいは他の導電部材との接触によ
る短絡の発生等のおそれがあるからである。そして、太
陽電池11、12の端部を重ね合わせ、はんだ層7同志を接
触させてから、ヒータ86を用いてはんだを接触面71で融
着させることにより、両太陽電池11、12を連結する。
In another embodiment of the present invention shown in FIG. 5, a solder layer 7 is also provided on a metal electrode layer (not shown) at the end of the solar cell 12.
Are formed. This solder layer can be immersed in a solder bath without applying an ultrasonic wave. However, when the apparatus shown in FIG. 4 is used, a tape is adhered to the end face 15 and the back face 16 and the solder layer 7 is formed. By removing the tape, the solder layer 7 remains only on the surface of the metal electrode layer. This is because the presence of the solder layer 7 on the end surface and the back surface of the flexible insulating substrate 1 of the solar cell 12 has no effect, but rather increases the thickness of the joint or makes contact with another conductive member. This is because there is a possibility that a short circuit may occur due to this. Then, the ends of the solar cells 11 and 12 are overlapped, the solder layers 7 are brought into contact with each other, and then the solder is fused on the contact surface 71 by using the heater 86 to connect the two solar cells 11 and 12 together. .

【0012】図6に示す本発明のさらに別の実施例で
は、図5におけると同様にはんだ層7を形成した太陽電
池11、12の端部を重ね合わせ、重ね合わせた部分に複数
のコンタクトピン9を貫通させ、両端をかしめることに
より、はんだ層7同志は圧接され、両太陽電池11、12の
金属電極層の電気的接続および基板の機械的連結ができ
る。
In another embodiment of the present invention shown in FIG. 6, the ends of solar cells 11 and 12 having a solder layer 7 formed thereon are overlapped in the same manner as in FIG. By piercing 9 and crimping both ends, the solder layers 7 are pressed together, so that the electrical connection of the metal electrode layers of both solar cells 11 and 12 and the mechanical connection of the substrates can be performed.

【0013】[0013]

【発明の効果】本発明によれば、太陽電池の一方の端部
を表面から裏面にまたがって超音波はんだ被覆法によっ
てはんだ層を形成することにより、その端部を別の太陽
電池に重ね合わせ、裏面のはんだ層を別の太陽電池の表
面上の金属電極層に直接融着するか、あるいは金属電極
層上に形成したはんだ層と融着あるいは圧接させること
により、複数の太陽電池を順次端部で重ね合わせて連結
し、直列接続することが可能になった。これにより、太
陽電池装置としての直列接続型薄膜太陽電池モジュール
の面積効率を向上させ、同じ面積のモジュールとしては
高効率の、可とう性直列接続型薄膜太陽電池モジュール
が得られる。また、太陽電池の連結をはんだ付けで行う
ことにより、作業が簡単になり、接着強度の向上、特に
高温、高湿下での電気的接続、機械的連結の信頼性の向
上が達せられた。
According to the present invention, one end of a solar cell is superposed from the front surface to the back surface to form a solder layer by an ultrasonic solder coating method, so that the end portion is overlapped with another solar cell. A plurality of solar cells are sequentially terminated by directly fusing the solder layer on the back surface to the metal electrode layer on the surface of another solar cell, or by fusing or pressing the solder layer formed on the metal electrode layer. It is now possible to connect in series by superimposing and connecting in series. As a result, the area efficiency of the series-connected thin-film solar cell module as a solar cell device is improved, and a highly efficient, flexible series-connected thin-film solar cell module with the same area is obtained. In addition, by connecting the solar cells by soldering, the operation is simplified, and an improvement in the adhesive strength, particularly, an improvement in the reliability of electrical connection and mechanical connection under high temperature and high humidity is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による太陽電池装置の一部を
示し、(a) は平面図、(b) は断面図、(c) は(b) の接合
部Aの拡大断面図
FIG. 1 shows a part of a solar cell device according to an embodiment of the present invention, wherein (a) is a plan view, (b) is a cross-sectional view, and (c) is an enlarged cross-sectional view of a joint A of (b).

【図2】可とう性絶縁基板太陽電池を連結した従来の太
陽電池装置の接合部の断面図
FIG. 2 is a cross-sectional view of a junction of a conventional solar cell device in which flexible insulating substrate solar cells are connected.

【図3】別の従来の太陽電池装置の断面図FIG. 3 is a cross-sectional view of another conventional solar cell device.

【図4】本発明の実施例に用いる超音波はんだ被覆装置
の断面図
FIG. 4 is a sectional view of an ultrasonic solder coating apparatus used in an embodiment of the present invention.

【図5】本発明の別の実施例による太陽電池装置の接合
部の断面図
FIG. 5 is a sectional view of a junction of a solar cell device according to another embodiment of the present invention.

【図6】本発明のさらに別の実施例による太陽電池装置
の接合部の断面図
FIG. 6 is a cross-sectional view of a junction of a solar cell device according to yet another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 可とう性絶縁基板 2 透明電極 3 アモルファス半導体薄膜 4 金属電極 7 はんだ層 70 溶融半田 81 はんだ槽 82 ヒータ 85 超音波振動子 86 ヒータ 9 コンタクトピン DESCRIPTION OF SYMBOLS 1 Flexible insulating substrate 2 Transparent electrode 3 Amorphous semiconductor thin film 4 Metal electrode 7 Solder layer 70 Fused solder 81 Solder tank 82 Heater 85 Ultrasonic transducer 86 Heater 9 Contact pin

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1枚の可とう性絶縁基板表面上に第一電極
層、半導体層および第二電極層を積層してなる太陽電池
素子を1個形成してなるかあるいは複数個形成して第二
電極層を隣接素子の第一電極層と接続することにより直
列接続してなる太陽電池の複数個が直列接続される太陽
電池装置の製造方法において、一つの太陽電池の第一端
部の第二電極層上から基板の端面上を経て裏面上に延び
るはんだ層を超音波印加のもとで被覆し、基板裏面を被
覆するはんだ層を別の太陽電池の第二端部の第二電極層
と接触させ、加熱してはんだと接触する第二電極層に融
着させることを特徴とする太陽電池装置の製造方法。
1. A solar cell element comprising a first electrode layer, a semiconductor layer and a second electrode layer laminated on a single flexible insulating substrate, or a plurality of solar cell elements. In the method of manufacturing a solar cell device in which a plurality of solar cells are connected in series by connecting the second electrode layer to the first electrode layer of the adjacent element, the first end of one solar cell A solder layer extending from the second electrode layer to the back surface via the end surface of the substrate is coated under ultrasonic waves, and the solder layer covering the back surface of the substrate is coated with a second electrode at the second end of another solar cell. A method for manufacturing a solar cell device, comprising: contacting a second electrode layer with a second electrode layer;
【請求項2】1枚の可とう性絶縁基板表面上に第一電極
層、半導体層および第二電極層を積層してなる太陽電池
素子を1個形成してなるかあるいは複数個形成して第二
電極層を隣接素子の第一電極層と接続することにより直
列接続してなる太陽電池の複数個が直列接続される太陽
電池装置の製造方法において、一つの太陽電池の第一端
部の第二電極層上から基板の端面上を経て裏面上に延び
るはんだ層を超音波印加のもとで被覆し、基板裏面を被
覆するはんだ層を別の太陽電池の第二端部の少なくとも
第二電極層を被覆するはんだ層と接触させ、加熱して両
はんだ層を融着させることを特徴とする太陽電池装置の
製造方法。
2. A solar cell element comprising a first electrode layer, a semiconductor layer and a second electrode layer laminated on one flexible insulating substrate surface, or one or more solar cell elements are formed. In the method of manufacturing a solar cell device in which a plurality of solar cells are connected in series by connecting the second electrode layer to the first electrode layer of the adjacent element, the first end of one solar cell A solder layer extending from the second electrode layer to the back surface via the end surface of the substrate is coated under ultrasonic waves, and the solder layer covering the back surface of the substrate is coated on at least the second end of the second end of another solar cell. A method for manufacturing a solar cell device, comprising: contacting a solder layer covering an electrode layer; and heating and fusing the two solder layers.
【請求項3】1枚の可とう性絶縁基板表面上に第一電極
層、半導体層および第二電極層を積層してなる太陽電池
素子を1個形成してなるかあるいは複数個形成して第二
電極層を隣接素子の第一電極層と接続することにより直
列接続してなる太陽電池の複数個が直列接続される太陽
電池装置の製造方法において、一つの太陽電池の第一端
部の第二電極層上から基板の端面上を経て裏面上に延び
るはんだ層を超音波印加のもとで被覆し、基板裏面を被
覆するはんだ層を別の太陽電池の第二端部の少なくとも
第二電極層を被覆するはんだ層と接触させ、両はんだ層
の表面相互を圧接させることを特徴とする太陽電池装置
の製造方法。
3. A solar cell element comprising a first electrode layer, a semiconductor layer and a second electrode layer laminated on one flexible insulating substrate surface, or one or more solar cell elements are formed. In the method of manufacturing a solar cell device in which a plurality of solar cells are connected in series by connecting the second electrode layer to the first electrode layer of the adjacent element, the first end of one solar cell A solder layer extending from the second electrode layer to the back surface via the end surface of the substrate is coated under ultrasonic waves, and the solder layer covering the back surface of the substrate is coated on at least the second end of the second end of another solar cell. A method for manufacturing a solar cell device, comprising: contacting a solder layer covering an electrode layer; and bringing the surfaces of both solder layers into pressure contact with each other.
【請求項4】圧接が両端部にそれぞれ明けられた貫通孔
を通るコンタクトピンの両端をかしめることにより行わ
れる請求項3記載の太陽電池装置の製造方法。
4. The method for manufacturing a solar cell device according to claim 3, wherein the pressure contact is performed by caulking both ends of a contact pin passing through through holes respectively opened at both ends.
【請求項5】太陽電池の第一端部を溶融はんだ浴に浸漬
し、そのはんだ浴に超音波を印加することによりはんだ
層を被覆する請求項1ないし4のいずれかに記載の太陽
電池装置の製造方法。
5. The solar cell device according to claim 1, wherein the first end of the solar cell is immersed in a molten solder bath, and the solder layer is coated by applying ultrasonic waves to the solder bath. Manufacturing method.
【請求項6】太陽電池の第二端部の少なくとも裏面にテ
ープをはりつけてその端部を溶融はんだ浴に超音波を印
加することによりはんだ層を被覆したのち、テープを剥
離する請求項2ないし5のいずれかに記載の太陽電池装
置の製造方法。
6. A tape is attached to at least the back surface of the second end of the solar cell, and the end is coated with a solder layer by applying ultrasonic waves to a molten solder bath, and then the tape is peeled off. 5. The method for manufacturing a solar cell device according to any one of 5.
JP4178710A 1992-07-07 1992-07-07 Method of manufacturing solar cell device Expired - Fee Related JP3024367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4178710A JP3024367B2 (en) 1992-07-07 1992-07-07 Method of manufacturing solar cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4178710A JP3024367B2 (en) 1992-07-07 1992-07-07 Method of manufacturing solar cell device

Publications (2)

Publication Number Publication Date
JPH0629564A JPH0629564A (en) 1994-02-04
JP3024367B2 true JP3024367B2 (en) 2000-03-21

Family

ID=16053215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4178710A Expired - Fee Related JP3024367B2 (en) 1992-07-07 1992-07-07 Method of manufacturing solar cell device

Country Status (1)

Country Link
JP (1) JP3024367B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781672B2 (en) 2004-06-01 2010-08-24 Konarka Technologies, Inc. Photovoltaic module architecture
DE102006035626A1 (en) * 2006-07-31 2008-02-07 Zentrum für Material- und Umwelttechnik GmbH Method for attaching a connection conductor to a photovoltaic solar cell
DE102007052971A1 (en) 2007-11-07 2009-06-10 Solarion Ag Contacting and module interconnection of thin-film solar cells on polymeric substrates
JP5430970B2 (en) * 2008-04-28 2014-03-05 株式会社フジクラ Method for manufacturing photoelectric conversion element and method for manufacturing photoelectric conversion element module
JP2010198834A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Method for manufacturing photoelectric conversion element module
EP2433309B1 (en) * 2009-05-18 2023-04-19 Markus Hörmann Vermietungen und Verpachtungen Arrangement and circuit, and method for interconnecting flat solar cells
US10741712B2 (en) * 2012-02-15 2020-08-11 Alta Devices, Inc. Photovoltaic module containing shingled photovoltaic tiles and fabrication processes thereof

Also Published As

Publication number Publication date
JPH0629564A (en) 1994-02-04

Similar Documents

Publication Publication Date Title
JP3146203B1 (en) Thin film solar cell module and method of manufacturing the same
US6531653B1 (en) Low cost high solar flux photovoltaic concentrator receiver
JP3099604B2 (en) Flexible photoelectric conversion module, its connection method and its manufacturing apparatus
JP3448924B2 (en) Method for manufacturing thin-film solar cell module
US5580509A (en) Method for electrically contacting thin-film solar modules
JP3747096B2 (en) Solar cell module and manufacturing method thereof
JPH07202241A (en) Solar battery, mounting method and manufacture thereof
JP3024367B2 (en) Method of manufacturing solar cell device
JP4958525B2 (en) Solar cell module and method for manufacturing solar cell module
JP3121811B1 (en) Thin film solar cell module and method of manufacturing the same
JP2004031646A (en) Solar cell module
WO2014132282A1 (en) Solar cell module
JPH07263733A (en) Thin film photoelectric conversion device and manufacture thereof
JP2001085711A (en) Thin film solar battery module and its manufacturing method
JPS60214550A (en) Solar cell module
JP2003133570A (en) Method of manufacturing solar battery module
JPH1074971A (en) Method for connecting solar cell module
JP3121810B1 (en) Thin film solar cell module and method of manufacturing the same
JP2004079823A (en) Sealing structure, solar cell module using the same, sealing method and the same for solar cell module
CN104716061B (en) Ultrasonic welding method and the photovoltaic module welded using this method
JPH08264819A (en) Semiconductor device and manufacturing method thereof
JPH07263738A (en) Thin-film solar cell module
JPH08236794A (en) Manufacture of thin-film solar cell module
JP3111813B2 (en) Method for manufacturing flexible solar cell module
JPH09237911A (en) Solar cell module

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees