WO2012169856A2 - Back contact solar cell module and method for manufacturing same - Google Patents

Back contact solar cell module and method for manufacturing same Download PDF

Info

Publication number
WO2012169856A2
WO2012169856A2 PCT/KR2012/004593 KR2012004593W WO2012169856A2 WO 2012169856 A2 WO2012169856 A2 WO 2012169856A2 KR 2012004593 W KR2012004593 W KR 2012004593W WO 2012169856 A2 WO2012169856 A2 WO 2012169856A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
substrate
glass
wiring
Prior art date
Application number
PCT/KR2012/004593
Other languages
French (fr)
Korean (ko)
Other versions
WO2012169856A3 (en
Inventor
김대원
Original Assignee
주식회사 에스에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스에너지 filed Critical 주식회사 에스에너지
Publication of WO2012169856A2 publication Critical patent/WO2012169856A2/en
Publication of WO2012169856A3 publication Critical patent/WO2012169856A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a back electrode solar cell module and a method of manufacturing the same that can simplify the manufacturing process.
  • Electrodes of the solar cell may be formed on the front and rear of the solar cell, respectively, but the electrode formed on the front reduces the absorption rate of the solar cell to the sunlight. Therefore, in order to improve the efficiency of the solar cell, a rear electrode type solar cell having a solar cell electrode installed at the rear has been developed.
  • low iron glass or high light transmittance may be used so that visible light is transmitted into the sheet so that the solar cell can collect sunlight.
  • a wiring is formed on an insulating substrate, an insulating resin is applied on the wiring, and a cell on which the electrode is formed is laminated on the insulating resin.
  • the structure is disposed between the front substrate and the back substrate (back sheet), and the filling material is disposed between the front substrate and the structure, and between the rear substrate and the structure, and then through the lamination process to complete the back electrode type solar cell module.
  • the present invention can simplify the manufacturing process and reduce the manufacturing cost, and to provide a method of manufacturing a high precision back electrode type solar cell module.
  • a method of manufacturing a solar cell module includes: forming a wiring on a glass substrate to make a glass wiring substrate, an adhesive film and an electrode formed on the glass wiring substrate, a filler, and a front surface. Laminating a substrate to form a laminated structure, and laminating the laminated structure to melt the adhesive film and the filler to electrically connect the electrode and the wiring.
  • a method of manufacturing a solar cell module Stacking the solar cell, the filler and the front substrate on a wiring board to form a stacked structure, and laminating the stacked structure to electrically connect the electrode and the wiring.
  • a method of manufacturing a solar cell module may include: forming a primary stacked structure by stacking the solar cells on the glass wiring substrate; applying pressure to the primary stacked structure to electrically connect the wires and the electrodes; Stacking the filler and the front substrate on the electrically connected primary laminated structure to form a secondary laminated structure, and laminating the secondary laminated structure.
  • the adhesive film may be melted and filled in the space between the glass wiring board and the cell.
  • the lamination step may be performed in a state where the glass wiring board is placed at the lowermost portion.
  • the filler may be melted and filled in the space between the glass wiring board and the front substrate.
  • the pressure applied to the primary stacked structure to electrically connect the wires and the electrodes may be 0.1 MPa to 5 MPa.
  • the adhesive film may be an anisotropic conductive film.
  • the anisotropic conductive film may be made of any one selected from epoxy resin, acrylic resin, vinyl acetate ethylene, silicone, and combinations thereof.
  • the glass substrate may be made of tempered glass.
  • the front substrate may be ethylene tetra fluor ethylene.
  • the back electrode solar cell module according to the embodiment of the present invention may be made by the method described above.
  • the glass substrate as the back substrate and the insulating substrate, it is not necessary to provide a separate insulating substrate can reduce the manufacturing cost.
  • the filler may not be laminated between the glass substrate and the wiring, thereby reducing the amount of filler used.
  • the strength of the solar cell module is maintained using a glass substrate as the rear substrate, a thin film can be used for the front substrate, thereby reducing the absorption of light by the front substrate, thereby increasing the efficiency of the solar cell.
  • 1 to 5 are flowcharts of a method of manufacturing a back electrode solar cell module according to an embodiment of the present invention.
  • 6 to 10 are flowcharts of a method of manufacturing a back electrode solar cell module according to another embodiment of the present invention.
  • 11 to 17 are flowcharts illustrating a method of manufacturing a back electrode solar cell module according to another embodiment of the present invention.
  • FIG. 18 is a view showing a back electrode solar cell module according to an embodiment of the present invention.
  • a glass wiring board on which wiring is disposed, laminating a cell, a filler, and a front substrate on which the adhesive film and the electrode are formed on the glass wiring board.
  • a wire is formed on a back sheet made of glass to make a glass wiring board.
  • the glass wiring board is made by placing a copper foil on the rear substrate 90 made of glass and patterning the copper foil to form the wiring 20 or by printing a metal such as silver on the glass rear substrate 90 and then electroplating. It can be made by forming wiring.
  • Embodiment of the present invention is characterized in that the rear substrate 90 is made of glass to improve the strength of the solar cell module.
  • the rear substrate 90 is a member that serves as an outer case of the solar cell module and is disposed at the lowermost layer in the laminated structure of the solar cell module. In addition, since the wiring is directly formed directly on the rear substrate 90, it serves as an insulating substrate as well as an external case.
  • the glass does not have a large difference between the solar cell and the coefficient of thermal expansion. Therefore, when the back substrate 90 made of glass is used as an insulating substrate, the strain of the glass is smaller than that of the plastic film in the lamination process, so that the precision of the solar cell module is excellent.
  • the rear substrate 90 made of glass also serves as an insulating substrate on which the wiring 20 is disposed, it may not include a separate insulating substrate, thereby reducing manufacturing costs.
  • tempered glass may be used as the rear substrate 90.
  • there is an effect of increasing the strength of the solar cell module because it uses a strengthened glass with a strong strength compared to using the normal glass as the rear substrate (90).
  • the adhesive film 40 is laminated on the glass wiring board as shown in FIG. 2.
  • the adhesive film 40 is a member for electrically connecting the wiring 20 and the electrode 50. At the same time, the adhesive film 40 serves as a filler between the wiring 20 and the electrode 50.
  • the insulating film is used as the adhesive film 40 so that electricity is not connected between the electrodes 50 adjacent to each other, and only electricity is connected between the electrode 50 and the wiring 20 in contact with the electrodes.
  • the adhesive film 40 may use a non-conductive film (NCF) or an anisotropic conductive film (ACF) film.
  • NCF non-conductive film
  • ACF anisotropic conductive film
  • conductive particles are dispersed in an insulating resin at a concentration lower than a percolation threshold.
  • an epoxy resin an acrylic resin, vinyl acetate ethylene (hereinafter referred to as "VAE"), silicone, or the like may be used.
  • VAE vinyl acetate ethylene
  • Epoxy resin is a kind of thermosetting resin, which has good adhesive strength, is not affected by temperature, and has excellent electrical insulation. In addition, it has excellent properties such as durability, chemical resistance, water resistance and the like.
  • the epoxy resin may contain only a small amount of volatile organic compounds (VOC), thereby producing environment-friendly products.
  • VOC volatile organic compounds
  • Epoxy-based resin is a technique used to bond a semiconductor chip and a glass substrate (Chip On Class, hereinafter referred to as "COG”), a technique used to bond a semiconductor chip and FPCB (“FPCB”). Chip on Film (hereinafter referred to as “COF”) or FPCB and glass substrate or printed circuit board (Printed Circuit Board, referred to as "PCB”) is used in the technology used for bonding.
  • COG Chip On Class
  • FPCB FPCB
  • PCB printed circuit board
  • the technique of connecting an electrode and wiring using an anisotropic conductive film is similar in terms of COG or COF and its function and material. Therefore, the electrode 50 and the wiring 20 can be easily connected using this technique.
  • Acrylic resins have a lower curing temperature than epoxy resins and there is no fear of electrode corrosion by impurities such as chlorine.
  • VAE is a complex of vinyl acetate and ethylene.
  • VAE can be synthesized in a colloidal form dispersed in water, and can be laminated on the wiring 20 in a solution state.
  • the silica filler may function to adjust the viscosity of the coating solution and the coefficient of thermal expansion of the anisotropic conductive film.
  • Silicone is excellent in chemical resistance and does not react with other chemicals, and also has excellent weather resistance and heat resistance.
  • silicon is an environmentally friendly material that does not generate a lot of harmful substances even when burned.
  • silicon is a proven material commonly used as a filler for solar cells. Silicone can be applied on the wiring in a liquid state, when using the silicone as an adhesive film, there is an effect that it is easy to laminate the adhesive film on the wiring.
  • the adhesive film 40 may be a plurality of layers are stacked. At this time, the adhesive film 40 may be made of each of the above-described anisotropic conductive film or insulating film, or may be used in combination.
  • the cells 60 on which the electrodes 50 are formed are stacked on the adhesive film 40.
  • the size of the adhesive film 40 is larger than the size of the electrode 50 and the solar cell 60. Therefore, when aligning the adhesive film 40 and the solar cell to improve the precision of the solar cell module, the solar cell 60 is placed on the lower side and the adhesive film 40 is not laminated on the upper side. As shown in FIG. 3, the adhesive film 40 having a size larger than that of the solar cell 60 may be placed below, and the solar cell 60 having the electrode 50 formed thereon may be stacked thereon.
  • the filler 80 and the front substrate 70 are stacked on the solar cell 60.
  • the filler 80 integrates the solar cell 60, the front substrate 70, and the rear substrate 90, and serves to protect the solar cell.
  • ethylene vinyl acetate or poly vinyl butyral may be used.
  • other known fillers such as silicone may be used.
  • the front substrate 70 serves as an outer case of the solar cell module like the rear substrate.
  • the front substrate 70 also serves to condense sunlight. Therefore, the front substrate is made of a transparent substrate.
  • Ethylene Tetra Fluoro Ethylene (hereinafter referred to as “ETFE”) may be used as the front substrate 70.
  • ETFE is a colorless transparent resin with high light transmittance. It is excellent in chemical resistance, abrasion resistance, etc. and its thermal stability is not changed even if heat of about 300 °C is applied continuously.
  • ETFE when ETFE is used as the outermost layer in the solar cell module and directly receives solar heat, the thermal stability is excellent.
  • ETFE is superior in light transmittance than glass, so that when the glass is used as the front substrate 70 can be formed thinner while increasing the light transmittance, the efficiency of the solar cell module is increased.
  • the glass substrate may be used as the back substrate, and the thickness of the solar cell module may be reduced by using the ETFE as the front substrate 70.
  • the front substrate 70 there is a problem that the light transmittance is lowered, but the front substrate was formed thick in consideration of the strength of the solar cell module.
  • the rear substrate can be formed thick to support the strength of the solar cell module. Therefore, the use of thin ETFE on the front substrate can reduce the thickness of the solar cell module. In addition, there is an effect that the light transmittance is improved by thinning the front substrate.
  • the laminated structure may not be inverted before the lamination process of the laminated structure.
  • the primary structure was formed and then turned upside down and laminated between the front substrate and the rear substrate.
  • the lamination process since the fin member is placed on the bottom surface, a member having a rigid property must be positioned downward in order to prevent deformation of the solar cell module due to the fin member. Therefore, lamination is performed with the rigid front substrate lower than the rear substrate, and thus, the primary structure formed by stacking the solar cells 60 with the electrodes 50 facing downward is turned upside down and laminated on the front substrate. As such, the process of inverting the primary structure was required.
  • a solar cell is disposed between the front substrate and the rear substrate, the first filler is laminated between the front substrate and the solar cell in order to integrate the solar display cell, the front substrate and the back substrate, and the solar cell and The second filler was laminated between the rear substrates. Subsequently, in the lamination process, the first filler and the second filler were melted to integrate the solar cell, the front substrate, and the rear substrate.
  • the wiring 20 is directly stacked on the glass substrate 90 as the glass wiring substrate is used as the insulating substrate and the rear substrate, so that the filler may not be separately stacked on the rear substrate. Therefore, it is possible to reduce the amount of filler used, thereby reducing the manufacturing cost.
  • the laminated structure is laminated to melt the adhesive film 40 and the filler 80 (FIG. 5).
  • the adhesive film 40 is melted and filled in the space between the wiring 20, the electrode 50, or the cell. As such, the adhesive film 40 connects the electrode 50 and the wiring 20 and serves as a filler between the cell 60 and the wiring 20.
  • the adhesive film 40 is made of an insulating film or an anisotropic conductive film, so that electricity does not pass between neighboring electrodes 50, and the electrode 50 and the wiring 20 that are relatively close to each other. Are in contact with each other, or let the electricity through the conductive particles of the anisotropic conductive film.
  • the filler 80 is also melted and filled in the space between the glass rear substrate 90 and the front substrate 70 to integrate the laminated structure.
  • the adhesive film 40 and the filler 80 may be melted through the same lamination process without integrating a separate lamination process to integrate the laminated structure, thereby simplifying the manufacturing process.
  • the adhesive film and the filler can be melted together in one lamination process to simplify the manufacturing process have.
  • FIG. 6 to 10 show a flowchart of a method for manufacturing a back electrode solar cell module according to another embodiment of the present invention.
  • the wiring 20 is formed on the rear substrate 90 made of glass to form a glass wiring substrate.
  • the process of forming the wiring 20 is substantially the same as the embodiment shown in Figs.
  • the adhesive film 40 is formed on the solar cell 60 in which the electrode 50 is formed.
  • the solar cell 60 is disposed so that the electrode 50 faces upward, and the adhesive film 40 made of a liquid is coated on the surface of the electrode 50 and the solar cell 60.
  • a liquid adhesive film 40 is put in a storage container and sprayed on the solar cell 60 to coat the adhesive film 40 on the solar cell 60, or a roller having an adhesive film applied thereto (not shown).
  • the adhesive film 40 may be coated on the solar cell 60 by passing through the solar cell 60.
  • the adhesive film 40 made of an anisotropic conductive film is coated only on the portion where the electrode 50 is formed, and the surface where the electrode 50 is not formed, that is, the surface of the solar cell 60 has conductive particles
  • An adhesive film 40 made of an insulating resin not included may be coated. In this case, the amount of the anisotropic conductive film containing the conductive particles may be reduced, thereby reducing the manufacturing cost.
  • the adhesive film 40 made of an anisotropic conductive film may be coated on the surface of the electrode 50 and the solar cell 60.
  • the coating process may be simplified.
  • the solar cell 60 is laminated on the glass wiring substrate.
  • the glass cell is turned upside down by the solar cell 60. Laminate on the substrate. That is, the glass wiring board is disposed so that the wiring 20 faces upward, and the solar cell 60 is stacked so that the electrode 50 faces the wiring 20 thereon.
  • the filler 80 and the front substrate 70 are sequentially stacked on the solar cell 60 to form a stacked structure.
  • the laminated structure is laminated to form a solar cell module (see FIG. 10).
  • the configuration and lamination process of the filler 80 and the front substrate 70 according to the present embodiment are substantially the same as those shown in FIGS. 1 to 5.
  • FIGS. 1 to 5 may be applied to the present embodiment.
  • 11 to 17 are flowcharts illustrating a method of manufacturing a back electrode solar cell module according to another embodiment of the present invention.
  • the wiring 20 is formed on the rear substrate 90 made of glass to form a glass wiring substrate.
  • the process of forming the wiring 20 is substantially the same as the embodiment shown in Figs.
  • the adhesive film 40 is laminated on the glass wiring substrate as shown in FIG. 12.
  • the adhesive film 40 may be coated on the solar cell 60 in which the electrode 50 is formed (see FIG. 7).
  • the solar cell 60 is stacked on the glass wiring board to form a primary stacked structure, and as shown in FIG. 14, a pressure is applied to the primary stacked structure as shown in FIG. 14.
  • the wiring 20 is electrically connected. At this time, heat may be applied simultaneously. This melts the adhesive film 40 as shown in FIG. 15 and fills the space between the glass wiring board and the cell 60.
  • the pressure applied to the primary laminated structure is 0.1 MPa to 5 MPa. If the pressure applied to the primary laminated structure is less than 0.1 MPa, it is difficult to secure a sufficiently low connection resistance when the electrode 50 and the wiring 20 are electrically connected. If the pressure is greater than 5 MPa, the cell 60 is compressed during the compression process. Can be broken.
  • pressure of 0.1 MPa or more can be applied without using expensive equipment.
  • a pressure of 0.1 MPa to 5 MPa can be applied to the module of FIG. 14 using a coating machine used in a home or office.
  • the filler 80 and the front substrate 70 are sequentially stacked on the solar cell 60 to form a secondary stacked structure.
  • the secondary laminated structure is laminated to form a solar cell module (see FIG. 17).
  • FIG. 18 is a view showing a back electrode solar cell module according to an embodiment of the present invention.
  • the rear substrate 90, the wiring 20, the electrode 50, the solar cell 60 and the front substrate 70 made of glass substrates are sequentially formed. It is stacked.
  • the filler 80 is filled in the space between the front substrate 70 and the rear substrate 90 to surround the wiring 20, the electrode 50, and the solar cell 60.
  • the adhesive film 40 is filled in the space between the wiring 20, the electrode 50, and the solar cell 60.
  • the glass substrate can function as both the rear substrate 90 and the insulating substrate, there is no need for a separate insulating substrate, thereby reducing the manufacturing cost.
  • ETFE may be used as the front substrate 70.
  • ETFE is superior in light transmittance when compared to the same thickness as the glass substrate compared to the glass substrate generally used as the front substrate 70. Therefore, when the ETFE is used as the front substrate, the light transmittance may be increased, and the thickness of the solar cell module may be thinner than when the glass substrate is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a back contact solar cell module and a method for manufacturing same, which can simplify the manufacturing process of the solar cell module. According to one embodiment of the present invention, the back contact solar cell module, manufacturing cost can be reduced by using a glass sheet as a back sheet and as an insulation substrate, thereby eliminating the need for being separately provided with the insulation sheet. Also, a manufacturing process can be simplified by forming a laminated structure, and then melting an adhesive film and a charging material together, instead of laminating for melting the adhesive film during a solar cell module manufacturing process.

Description

[규칙 제26조에 의한 보정 01.08.2012] 후면 전극형 태양전지 모듈 및 그 제조방법[Revision 01.08.2012 by Rule 26] Rear electrode type solar cell module and manufacturing method thereof
본 발명은 제조공정을 단순화할 수 있는 후면 전극형 태양전지 모듈 및 그 제조방법에 관한 것이다.The present invention relates to a back electrode solar cell module and a method of manufacturing the same that can simplify the manufacturing process.
태양전지의 전극은 태양전지의 전면과 후면에 각각 형성될 수 있지만, 상기 전면에 형성되는 전극은 태양전지의 태양광에 대한 흡수율을 감소시킨다. 따라서 태양전지의 효율을 향상시키기 위하여 태양전지의 전극을 후면에 설치하는 후면 전극형 태양전지가 개발되었다.Electrodes of the solar cell may be formed on the front and rear of the solar cell, respectively, but the electrode formed on the front reduces the absorption rate of the solar cell to the sunlight. Therefore, in order to improve the efficiency of the solar cell, a rear electrode type solar cell having a solar cell electrode installed at the rear has been developed.
태양전지 모듈의 전면기판(front sheet)으로 유리를 사용하는 경우, 가시광선이 시트 내부로 투과되어 태양전지 셀이 태양빛을 집광할 수 있도록, 저철분 유리를 사용하거나 또는 광 투과율이 높도록 특수하게 제작된 유리를 사용하여야 했다.When glass is used as the front sheet of the solar cell module, low iron glass or high light transmittance may be used so that visible light is transmitted into the sheet so that the solar cell can collect sunlight. To make glass.
종래의 후면 전극형 태양전지 모듈을 제작하기 위해서는, 우선 절연성 기판 위에 배선을 형성하고, 배선 위에 절연성 수지를 도포하고, 절연성 수지 위에 전극이 형성된 셀을 적층한다. 이러한 구조물을 전면기판과 후면기판(back sheet) 사이에 배치하고, 전면기판과 구조물 사이 그리고 후면기판과 구조물 사이에 각각 충전재를 배치한 후, 라미네이션 공정을 통하여 후면 전극형 태양전지 모듈을 완성한다.In order to manufacture a conventional back electrode solar cell module, first, a wiring is formed on an insulating substrate, an insulating resin is applied on the wiring, and a cell on which the electrode is formed is laminated on the insulating resin. The structure is disposed between the front substrate and the back substrate (back sheet), and the filling material is disposed between the front substrate and the structure, and between the rear substrate and the structure, and then through the lamination process to complete the back electrode type solar cell module.
이러한 후면 전극형 태양전지 모듈의 제조공정에는 많은 재료가 소요되며, 나아가 널리 사용되는 플라스틱 등의 절연성 기판은 태양전지 셀과 비교할 때 열팽창계수의 차이가 크기 때문에, 라미네이션 공정을 통해 셀과 배선기판이 일체화될 때 절연성 기판 등이 변형될 수 있다.The manufacturing process of such a back electrode solar cell module takes a lot of materials, and furthermore, since insulating substrates such as plastics, which are widely used, have a large difference in coefficient of thermal expansion when compared to solar cells, the cell and the wiring board are When integrated, an insulating substrate or the like can be deformed.
본 발명은 제조공정이 간소화되고 제조비용이 감소될 수 있으며, 정밀도가 높은 후면전극형 태양전지 모듈의 제조방법을 제공하고자 한다.The present invention can simplify the manufacturing process and reduce the manufacturing cost, and to provide a method of manufacturing a high precision back electrode type solar cell module.
또한, 상기 방법에 의해 제조된 후면전극형 태양전지를 제공하고자 한다.In addition, to provide a back-electrode solar cell manufactured by the above method.
본 발명의 한 실시예에 따른 태양전지 모듈의 제조방법은, 유리기판 위에 배선을 형성하여 유리배선기판을 만드는 단계, 상기 유리배선기판에 접착필름, 전극이 형성되어 있는 태양전지 셀, 충전재 및 전면기판을 적층하여 적층구조체를 형성하는 단계, 그리고 상기 적층구조체를 라미네이션하여 상기 접착필름 및 상기 충전재를 용융하여 상기 전극 및 상기 배선을 전기적으로 연결하는 단계를 포함한다.According to one or more exemplary embodiments, a method of manufacturing a solar cell module includes: forming a wiring on a glass substrate to make a glass wiring substrate, an adhesive film and an electrode formed on the glass wiring substrate, a filler, and a front surface. Laminating a substrate to form a laminated structure, and laminating the laminated structure to melt the adhesive film and the filler to electrically connect the electrode and the wiring.
본 발명의 다른 실시예에 따른 태양전지 모듈의 제조방법은, 유리기판 위에 배선을 형성하여 유리배선기판을 만드는 단계, 태양전지 셀의 전극이 형성되어 있는 일면에 접착필름을 코팅하는 단계, 상기 유리배선기판에 상기 태양전지 셀, 충전재 및 전면기판을 적층하여 적층구조체를 형성하는 단계, 그리고 상기 적층구조체를 라미네이션하여 상기 전극과 상기 배선을 전기적으로 연결하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method of manufacturing a solar cell module. Stacking the solar cell, the filler and the front substrate on a wiring board to form a stacked structure, and laminating the stacked structure to electrically connect the electrode and the wiring.
본 발명의 다른 실시예에 따른 태양전지 모듈의 제조방법은, 유리기판 위에 배선을 형성하여 유리배선기판을 만드는 단계, 상기 배선 또는 태양전지 셀의 전극이 형성된 일면에 접착필름을 코팅하거나 가접착하는 단계, 상기 유리배선기판 위에 상기 태양전지 셀을 적층하여 1차 적층구조체를 형성하는 단계, 상기 1차 적층구조체에 압력을 가하여 상기 배선과 상기 전극을 전기적으로 연결하는 단계, 상기 배선과 상기 전극이 전기적으로 연결된 1차 적층구조체 위에 충전재 및 전면기판을 적층하여 2차 적층구조체를 형성하는 단계, 그리고 상기 2차 적층구조체를 라미네이션하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method of manufacturing a solar cell module. The method may include: forming a primary stacked structure by stacking the solar cells on the glass wiring substrate; applying pressure to the primary stacked structure to electrically connect the wires and the electrodes; Stacking the filler and the front substrate on the electrically connected primary laminated structure to form a secondary laminated structure, and laminating the secondary laminated structure.
상기 라미네이션 단계 또는 상기 1차 적층구조체에 압력을 가하는 단계에서, 상기 접착필름은 용융되어 상기 유리배선기판과 상기 셀 사이 공간에 채워질 수 있다. In the lamination step or applying pressure to the primary laminated structure, the adhesive film may be melted and filled in the space between the glass wiring board and the cell.
상기 라미네이션 단계는 상기 유리배선기판이 최하부에 놓인 상태에서 진행될 수 있다.The lamination step may be performed in a state where the glass wiring board is placed at the lowermost portion.
상기 라미네이션 단계에서, 상기 충전재가 용융되어 상기 유리배선기판과 상기 전면기판 사이 공간에 채워질 수 있다.In the lamination step, the filler may be melted and filled in the space between the glass wiring board and the front substrate.
상기 배선과 상기 전극을 전기적으로 연결하기 위해 상기 1차 적층구조체에 가해지는 압력은 0.1MPa 내지 5MPa일 수 있다.The pressure applied to the primary stacked structure to electrically connect the wires and the electrodes may be 0.1 MPa to 5 MPa.
상기 접착필름은 이방도전성 필름일 수 있다.The adhesive film may be an anisotropic conductive film.
상기 이방도전성 필름은, 에폭시계 수지, 아크릴계 수지, 비닐 아세테이트 에틸렌, 실리콘 및 이들의 조합 중 선택된 어느 하나를 포함하여 만들어질 수 있다.The anisotropic conductive film may be made of any one selected from epoxy resin, acrylic resin, vinyl acetate ethylene, silicone, and combinations thereof.
상기 유리기판은 강화유리를 포함하여 만들어질 수 있다.The glass substrate may be made of tempered glass.
상기 전면기판은 에틸렌 테트라 플루오르 에틸렌일 수 있다.The front substrate may be ethylene tetra fluor ethylene.
본 발명의 실시예에 따른 후면 전극형 태양전지 모듈은 위에서 설명한 방법에 의해 만들어질 수 있다.The back electrode solar cell module according to the embodiment of the present invention may be made by the method described above.
본 발명의 실시예에 따르면, 유리기판을 후면기판 및 절연성 기판으로 사용함으로써, 별도의 절연성 기판을 구비하지 아니하여도 되므로 제조비용이 저감될 수 있다.According to the embodiment of the present invention, by using the glass substrate as the back substrate and the insulating substrate, it is not necessary to provide a separate insulating substrate can reduce the manufacturing cost.
또한, 유리기판 위에 배선을 바로 배치하여, 유리기판과 배선 사이에 충전재를 적층하지 아니하여도 되어 충전재의 사용량을 감소할 수 있다.In addition, by directly arranging the wiring on the glass substrate, the filler may not be laminated between the glass substrate and the wiring, thereby reducing the amount of filler used.
또한, 후면기판으로 유리기판을 사용하여 태양전지 모듈의 강도가 유지되므로 전면기판에 얇은 필름을 사용할 수 있어 전면기판에 의한 빛의 흡수를 줄임으로써 태양전지의 효율을 높일 수 있는 효과가 있다.In addition, since the strength of the solar cell module is maintained using a glass substrate as the rear substrate, a thin film can be used for the front substrate, thereby reducing the absorption of light by the front substrate, thereby increasing the efficiency of the solar cell.
도 1 내지 도 5는 본 발명의 일 실시예에 따른 후면 전극형 태양전지 모듈 제조방법의 순서도이다.1 to 5 are flowcharts of a method of manufacturing a back electrode solar cell module according to an embodiment of the present invention.
도 6 내지 도 10은 본 발명의 다른 실시예에 따른 후면 전극형 태양전지 모듈 제조방법의 순서도이다.6 to 10 are flowcharts of a method of manufacturing a back electrode solar cell module according to another embodiment of the present invention.
도 11 내지 도 17은 본 발명의 다른 실시예에 따른 후면 전극형 태양전지 모듈 제조방법의 순서도이다.11 to 17 are flowcharts illustrating a method of manufacturing a back electrode solar cell module according to another embodiment of the present invention.
도 18은 본 발명의 실시예에 따른 후면 전극형 태양전지 모듈을 나타낸 도면이다.18 is a view showing a back electrode solar cell module according to an embodiment of the present invention.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. Like parts are designated by like reference numerals throughout the specification.
본 발명의 일 실시예에 따른 후면 전극형 태양전지 모듈 제조방법은 배선이 배치된 유리배선기판을 형성하는 단계, 상기 유리배선기판에 접착필름, 전극이 형성되어 있는 셀, 충전재 및 전면기판을 적층하여 적층구조체를 형성하는 단계, 그리고 상기 적층구조체를 라미네이션 하여 상기 접착필름 및 상기 충전재를 용융하고 상기 전극 및 상기 배선을 전기적으로 연결하는 단계를 포함한다.In the method of manufacturing a back electrode solar cell module according to an embodiment of the present invention, forming a glass wiring board on which wiring is disposed, laminating a cell, a filler, and a front substrate on which the adhesive film and the electrode are formed on the glass wiring board. Forming a laminated structure, and laminating the laminated structure to melt the adhesive film and the filler and electrically connect the electrode and the wiring.
이하에서 본 실시예에 따른 태양전지 모듈의 제조방법에 대하여 상세하게 살펴본다.Hereinafter, a method of manufacturing the solar cell module according to the present embodiment will be described in detail.
우선 도 1에서 보는 바와 같이, 유리로 이루어진 후면기판(back sheet) 위에 배선을 형성하여 유리배선기판을 만든다. 유리배선기판은, 유리로 이루어진 후면기판(90) 위에 동박을 얹고 이를 패터닝하여 배선(20)을 형성함으로써 만들어지거나, 유리 후면기판(90) 위에 은과 같은 금속을 인쇄한 후 전기 도금 등을 통하여 배선을 형성함으로써 만들어질 수 있다.First, as shown in FIG. 1, a wire is formed on a back sheet made of glass to make a glass wiring board. The glass wiring board is made by placing a copper foil on the rear substrate 90 made of glass and patterning the copper foil to form the wiring 20 or by printing a metal such as silver on the glass rear substrate 90 and then electroplating. It can be made by forming wiring.
본 발명의 실시예는 태양전지 모듈의 강도를 개선하기 위하여 후면기판(90)이 유리로 만들어진 것을 특징으로 한다.Embodiment of the present invention is characterized in that the rear substrate 90 is made of glass to improve the strength of the solar cell module.
후면기판(90)은 태양전지 모듈의 외부 케이스 역할을 하는 부재로, 태양전지 모듈의 적층구조체에서 최하층에 배치된다. 아울러 후면기판(90) 바로 위에는 배선이 직접 형성되므로 외부 케이스 역할 뿐만 아니라 절연성 기판의 역할도 한다.The rear substrate 90 is a member that serves as an outer case of the solar cell module and is disposed at the lowermost layer in the laminated structure of the solar cell module. In addition, since the wiring is directly formed directly on the rear substrate 90, it serves as an insulating substrate as well as an external case.
일반적으로 절연성 기판으로 사용되는 플라스틱 필름에 비하여 유리는 태양전지 셀과 열팽창계수의 차이가 크지 아니하다. 따라서 유리로 이루어진 후면기판(90)을 절연성 기판으로 사용하는 경우, 라미네이션 과정에서 플라스틱 필름에 비하여 유리의 변형률이 작아 태양전지 모듈의 정밀도가 우수해진다.In general, compared to the plastic film used as an insulating substrate, the glass does not have a large difference between the solar cell and the coefficient of thermal expansion. Therefore, when the back substrate 90 made of glass is used as an insulating substrate, the strain of the glass is smaller than that of the plastic film in the lamination process, so that the precision of the solar cell module is excellent.
또한, 유리로 이루어진 후면기판(90)이, 배선(20)이 배치되는 절연성 기판의 역할도 하므로, 별도의 절연성 기판을 구비하지 아니할 수 있어 제조비용이 저감되는 효과가 있다. In addition, since the rear substrate 90 made of glass also serves as an insulating substrate on which the wiring 20 is disposed, it may not include a separate insulating substrate, thereby reducing manufacturing costs.
이때, 강화유리를 상기 후면기판(90)으로 사용할 수 있다. 이 경우, 후면기판(90)으로 일반유리를 사용하는 것에 비하여 강도가 강한 강화유리를 사용하기 때문에 태양전지 모듈의 강도가 증가하는 효과가 있다.In this case, tempered glass may be used as the rear substrate 90. In this case, there is an effect of increasing the strength of the solar cell module because it uses a strengthened glass with a strong strength compared to using the normal glass as the rear substrate (90).
이후, 도 2에 도시된 바와 같이 유리배선기판에 접착필름(40)을 적층한다.Thereafter, the adhesive film 40 is laminated on the glass wiring board as shown in FIG. 2.
접착필름(40)은 배선(20)과 전극(50)을 전기적으로 연결하는 부재이다. 동시에 접착필름(40)은 배선(20)과 전극(50) 사이에서 충전재 역할을 한다. The adhesive film 40 is a member for electrically connecting the wiring 20 and the electrode 50. At the same time, the adhesive film 40 serves as a filler between the wiring 20 and the electrode 50.
이때, 서로 이웃한 전극(50)들 사이에는 전기가 통하지 아니하고 전극(50)과 그 전극이 접하고 있는 배선(20) 사이에만 전기가 통하도록 접착필름(40)은 절연성 있는 부재가 사용된다.At this time, the insulating film is used as the adhesive film 40 so that electricity is not connected between the electrodes 50 adjacent to each other, and only electricity is connected between the electrode 50 and the wiring 20 in contact with the electrodes.
구체적으로, 접착필름(40)은 절연성 필름(Non Conductive Film; NCF) 또는 이방도전성(Anisotropic Conductive Film; ACF) 필름을 사용할 수 있다.Specifically, the adhesive film 40 may use a non-conductive film (NCF) or an anisotropic conductive film (ACF) film.
이방도전성 필름은 절연성 수지에 도전성 입자가 임계점(percolation threshold) 보다 낮은 농도로 분산되어 있다.In the anisotropic conductive film, conductive particles are dispersed in an insulating resin at a concentration lower than a percolation threshold.
이방도전성 필름을 전극(50)과 배선(20) 사이에 놓고 필름에 수직방향으로 압력을 가하면 전극(50)과 배선(20) 사이에 있는 도전성 입자를 통해 전기가 통할 수 있고, 전극(50)과 전극(50) 사이에는 도전성 입자의 밀집도가 낮아 전기가 통하지 아니한다.When the anisotropic conductive film is placed between the electrode 50 and the wiring 20 and pressure is applied to the film in the vertical direction, electricity can pass through the conductive particles between the electrode 50 and the wiring 20, and the electrode 50 The density of the conductive particles is low between the electrode and the electrode 50 so that electricity does not pass.
이방도전성 필름에 사용되는 절연성 수지는 에폭시계 수지, 아크릴계 수지, 비닐 아세테이트 에틸렌(Vinyl Acetate-Ethylene, 이하 "VAE"라 함) 또는 실리콘 등이 사용될 수 있다.As the insulating resin used for the anisotropic conductive film, an epoxy resin, an acrylic resin, vinyl acetate ethylene (hereinafter referred to as "VAE"), silicone, or the like may be used.
에폭시계 수지는 열경화성 수지의 일종으로 접착력이 좋고, 온도에 영향을 받지 아니하며 전기절연성이 우수하다. 또한, 내구성, 내화학성, 내수성 등이 우수한 성질이 있다.Epoxy resin is a kind of thermosetting resin, which has good adhesive strength, is not affected by temperature, and has excellent electrical insulation. In addition, it has excellent properties such as durability, chemical resistance, water resistance and the like.
그리고 에폭시계 수지에는 휘발성 유기 화합물(Volatile Organic Compounds, VOC)이 매우 소량만 함유되어 있어 친환경적인 제품을 생산할 수 있다.In addition, the epoxy resin may contain only a small amount of volatile organic compounds (VOC), thereby producing environment-friendly products.
에폭시계 수지는 반도체 칩과 유리기판을 접합하는 데 사용되는 기술(Chip On Class, 이하 "COG"라 함), 반도체 칩과 에프피시비(Flexible PCB, 이하 “FPCB”)와의 접합에 사용되는 기술(Chip on Film, 이하 "COF"라 함) 또는 FPCB와 유리기판 또는 인쇄회로기판(Printed Circuit Board, 이하 “PCB”라 함)과의 접합에 사용되는 기술에 사용된다.Epoxy-based resin is a technique used to bond a semiconductor chip and a glass substrate (Chip On Class, hereinafter referred to as "COG"), a technique used to bond a semiconductor chip and FPCB ("FPCB"). Chip on Film (hereinafter referred to as "COF") or FPCB and glass substrate or printed circuit board (Printed Circuit Board, referred to as "PCB") is used in the technology used for bonding.
이방도전성 필름을 사용하여 전극과 배선을 연결하는 기술의 경우, COG 또는 COF와 그 기능 및 재료의 측면에서 기술이 유사하다. 따라서 이러한 기술을 이용하여 전극(50)과 배선(20)을 용이하게 연결할 수 있다.In the technique of connecting an electrode and wiring using an anisotropic conductive film, the technique is similar in terms of COG or COF and its function and material. Therefore, the electrode 50 and the wiring 20 can be easily connected using this technique.
아크릴계 수지는 에폭시계 수지에 비해 경화온도가 낮고 염소와 같은 불순물에 의한 전극 부식의 염려가 없다.Acrylic resins have a lower curing temperature than epoxy resins and there is no fear of electrode corrosion by impurities such as chlorine.
VAE는 비닐아세테이트와 에틸렌의 복합체이다.VAE is a complex of vinyl acetate and ethylene.
VAE는 물에 분산된 콜로이드계 형태로 합성할 수 있어, 용액 상태로 배선(20)상에 적층할 수 있다.VAE can be synthesized in a colloidal form dispersed in water, and can be laminated on the wiring 20 in a solution state.
에멀전 형태의 VAE에 실리카 등의 충전재와 도전입자를 분산시켜 코팅하면, 얇고 균일한 이방도전성 필름을 생산할 수 있다. 그리고 이를 다양한 인쇄법으로 배선(20)에 코팅하는 경우, 이방도전성 필름을 원하는 부위에 선택적으로 코팅할 수 있다. 이때, 실리카 충전재는 코팅액의 점도와 이방도전성 필름의 열팽창계수를 조절하는 기능을 할 수 있다.By dispersing and coating the filler such as silica and the conductive particles in the emulsion VAE, a thin and uniform anisotropic film can be produced. And when it is coated on the wiring 20 by various printing methods, an anisotropic conductive film can be selectively coated on the desired portion. In this case, the silica filler may function to adjust the viscosity of the coating solution and the coefficient of thermal expansion of the anisotropic conductive film.
실리콘은 내약품성이 우수하여 다른 화학물과 화학반응을 하지 아니하고, 내후성 및 내열성 또한 우수한 특징이 있다. 또한, 실리콘은 연소되더라도 유해물질을 많이 발생시키지 않는 친환경성 물질이다.Silicone is excellent in chemical resistance and does not react with other chemicals, and also has excellent weather resistance and heat resistance. In addition, silicon is an environmentally friendly material that does not generate a lot of harmful substances even when burned.
또한, 실리콘은 태양전지의 충전재로 일반적으로 많이 사용되는 검증된 물질이다. 실리콘은 액상의 상태에서 배선 위에 도포할 수 있어, 실리콘을 접착필름으로 사용하는 경우, 접착필름을 배선 위에 적층하기가 용이한 효과가 있다.In addition, silicon is a proven material commonly used as a filler for solar cells. Silicone can be applied on the wiring in a liquid state, when using the silicone as an adhesive film, there is an effect that it is easy to laminate the adhesive film on the wiring.
한편, 접착필름(40)은 복수의 층이 적층될 수 있다. 이때 접착필름(40)은 전술한 이방도전성 필름 또는 절연성 필름 각각으로 이루어질 수 있고, 또는 이들을 병행하여 사용할 수 있다.On the other hand, the adhesive film 40 may be a plurality of layers are stacked. At this time, the adhesive film 40 may be made of each of the above-described anisotropic conductive film or insulating film, or may be used in combination.
이후, 도 3에 도시된 바와 같이, 접착필름(40) 위에 전극(50)이 형성되어 있는 셀(60)을 적층한다. Thereafter, as shown in FIG. 3, the cells 60 on which the electrodes 50 are formed are stacked on the adhesive film 40.
이때, 전극(50) 및 태양전지 셀(60)의 크기에 비하여 접착필름(40)의 크기가 크다. 따라서 접착필름(40)과 태양전지 셀을 정렬(align)하여 태양전지 모듈의 정밀도를 향상시키고자 할 때, 태양전지 셀(60)을 하부에 놓고 접착필름(40)을 상부에 적층하지 아니하고, 도 3에 도시된 바와 같이 태양전지 셀(60)에 비해 크기가 큰 접착필름(40)을 하부에 놓고, 그 위에 전극(50)이 형성되어 있는 태양전지 셀(60)을 적층할 수 있다.At this time, the size of the adhesive film 40 is larger than the size of the electrode 50 and the solar cell 60. Therefore, when aligning the adhesive film 40 and the solar cell to improve the precision of the solar cell module, the solar cell 60 is placed on the lower side and the adhesive film 40 is not laminated on the upper side. As shown in FIG. 3, the adhesive film 40 having a size larger than that of the solar cell 60 may be placed below, and the solar cell 60 having the electrode 50 formed thereon may be stacked thereon.
이후, 도 4에 도시된 바와 같이, 태양전지 셀(60) 위에 충전재(80) 및 전면기판(70)을 적층한다.Thereafter, as shown in FIG. 4, the filler 80 and the front substrate 70 are stacked on the solar cell 60.
충전재(80)는 태양전지 셀(60)과 전면기판(70) 및 후면기판(90)을 일체화하고, 태양전지를 보호하는 역할을 한다.The filler 80 integrates the solar cell 60, the front substrate 70, and the rear substrate 90, and serves to protect the solar cell.
충전재(80)로는 에틸렌 비닐 아세테이트(Ethylene Vinyl Acetate) 또는 폴리비닐부티랄(Poly Vinyl Butyral)을 사용할 수 있다. 이 외에도 실리콘 등 공지된 다른 충전재가 사용될 수 있다.As the filler 80, ethylene vinyl acetate or poly vinyl butyral may be used. In addition, other known fillers such as silicone may be used.
전면기판(70)은 후면기판과 같이 태양전지 모듈의 외부 케이스 역할을 한다. 뿐만 아니라 전면기판(70)은 태양광의 집광기능도 한다. 따라서 전면기판은 투명한 기판으로 이루어진다.The front substrate 70 serves as an outer case of the solar cell module like the rear substrate. In addition, the front substrate 70 also serves to condense sunlight. Therefore, the front substrate is made of a transparent substrate.
전면기판(70)으로 에틸렌 테트라 플루오르 에틸렌(Ethylene Tetra Fluoro Ethylene, 이하 “ETFE”이라 함)이 사용될 수 있다.Ethylene Tetra Fluoro Ethylene (hereinafter referred to as “ETFE”) may be used as the front substrate 70.
ETFE는 무색투명하고 빛의 투과율이 높은 수지이다. 내화학성, 내마모성 등이 우수하고 열안정성이 우수하여 연속적으로 약 300℃의 열이 가해져도 변형이 되지 아니한다. ETFE is a colorless transparent resin with high light transmittance. It is excellent in chemical resistance, abrasion resistance, etc. and its thermal stability is not changed even if heat of about 300 ℃ is applied continuously.
따라서 태양전지 모듈에서 최외곽층이자 태양열을 직접 받는 전면기판(70)으로 ETFE를 사용하면 열 안정성이 우수하다. 또한, ETFE는 유리에 비해 광 투과율이 우수하여 전면기판(70)으로 유리를 사용할 때 보다 얇게 형성하면서도 광 투과율을 높일 수 있어 태양전지 모듈의 효율이 증가하게 된다.Therefore, when ETFE is used as the outermost layer in the solar cell module and directly receives solar heat, the thermal stability is excellent. In addition, ETFE is superior in light transmittance than glass, so that when the glass is used as the front substrate 70 can be formed thinner while increasing the light transmittance, the efficiency of the solar cell module is increased.
또한, 전술한 바와 같이 후면기판으로 유리기판을 사용하고, 전면기판(70)으로는 ETFE를 사용하여 태양전지 모듈의 두께를 감소할 수 있다.In addition, as described above, the glass substrate may be used as the back substrate, and the thickness of the solar cell module may be reduced by using the ETFE as the front substrate 70.
구체적으로, 전면기판(70)으로 유리기판을 사용하는 경우, 광투과율이 낮아지는 문제점이 있으나, 태양전지 모듈의 강도를 고려하여 전면기판을 두껍게 형성하였다. Specifically, in the case of using the glass substrate as the front substrate 70, there is a problem that the light transmittance is lowered, but the front substrate was formed thick in consideration of the strength of the solar cell module.
그러나 상기와 같이 후면기판으로 유리기판을 사용하면, 후면기판을 두껍게 형성하여 태양전지 모듈의 강도를 뒷받침할 수 있다. 따라서 전면기판에 얇은 ETFE를 사용하면 태양전지 모듈의 두께가 얇아질 수 있다. 더불어, 전면기판이 얇아져 광투과율이 개선되는 효과도 있다.However, when the glass substrate is used as the rear substrate as described above, the rear substrate can be formed thick to support the strength of the solar cell module. Therefore, the use of thin ETFE on the front substrate can reduce the thickness of the solar cell module. In addition, there is an effect that the light transmittance is improved by thinning the front substrate.
또한, 종래 전면기판으로 유리기판을 사용하는 경우, 광투과율을 개선하기 위하여 저철분 유리를 사용하였다. 그러나 유리기판을 후면기판(90)으로 사용하게 되면, 유리기판을 통한 광투과율을 고려하지 아니하여도 되므로 저철분 유리기판을 사용할 필요가 방지된다.In addition, when using a glass substrate as a conventional front substrate, low iron glass was used to improve light transmittance. However, when the glass substrate is used as the rear substrate 90, it is not necessary to consider the light transmittance through the glass substrate, thereby avoiding the need to use a low iron glass substrate.
한편, 본 실시예는 후면기판(90) 위에 배선(20)이 직접 접촉하는 형상이므로, 적층구조체의 라미네이션 과정 이전에 적층구조체를 뒤집지 아니하여도 된다.On the other hand, since the wiring 20 is in direct contact with the rear substrate 90 in the present embodiment, the laminated structure may not be inverted before the lamination process of the laminated structure.
기존에는 1차 구조체를 형성하고 이를 뒤집어서 전면기판과 후면기판 사이에 적층하였다. 라미네이션 공정에서는 핀 부재가 바닥면에 놓여 있기 때문에, 태양전지 모듈에 핀 부재로 인한 변형이 생기지 않도록 하기 위해서 견고한 성질을 지닌 부재가 하부로 위치하여야 한다. 따라서 후면기판에 비해 견고한 전면기판을 하부에 놓고 라미네이션을 행하게 되고, 이로 인해 전극(50)을 하부로 향하게 태양전지 셀(60)을 적층하여 형성한 1차 구조체를 뒤집어서 전면기판에 적층하게 된다. 이와 같이 기존에는 1차 구조체를 뒤집는 공정이 필요하였다. In the past, the primary structure was formed and then turned upside down and laminated between the front substrate and the rear substrate. In the lamination process, since the fin member is placed on the bottom surface, a member having a rigid property must be positioned downward in order to prevent deformation of the solar cell module due to the fin member. Therefore, lamination is performed with the rigid front substrate lower than the rear substrate, and thus, the primary structure formed by stacking the solar cells 60 with the electrodes 50 facing downward is turned upside down and laminated on the front substrate. As such, the process of inverting the primary structure was required.
그러나 본 발명의 일 실시예에 따른 태양전지 모듈의 제조방법에서는 유리로 만들어진 후면기판(90)을 최하부에 놓고 그 상부에 접착필름(40), 태양전지 셀(60)을 적층하였기 때문에, 라미네이션 전에 구조체를 뒤집는 공정이 생략될 수 있다. 따라서 제조공정이 간소화 되는 효과가 있다.However, in the method of manufacturing a solar cell module according to an embodiment of the present invention, since the back substrate 90 made of glass is placed at the bottom and the adhesive film 40 and the solar cell 60 are laminated thereon, before lamination, The process of flipping the structure can be omitted. Therefore, the manufacturing process is simplified.
또한, 기존에는 전면기판과 후면기판 사이에 태양전지 셀이 배치되고, 태양전시 셀과 전면기판 및 후면기판을 일체화하기 위하여 전면기판과 태양전지 셀 사이에 제1충전재를 적층하고, 태양전지 셀과 후면기판 사이에 제2충전재를 적층하였다. 이후, 라미네이션 과정에서 제1충전재와 제2충전재가 용융되어 태양전지 셀과 전면기판 및 후면기판을 일체화 하였다.In addition, conventionally, a solar cell is disposed between the front substrate and the rear substrate, the first filler is laminated between the front substrate and the solar cell in order to integrate the solar display cell, the front substrate and the back substrate, and the solar cell and The second filler was laminated between the rear substrates. Subsequently, in the lamination process, the first filler and the second filler were melted to integrate the solar cell, the front substrate, and the rear substrate.
그러나 본 발명의 실시예는 유리배선기판을 절연성 기판 및 후면기판으로 사용함에 따라 배선(20)이 유리기판(90)에 직접 적층되어, 후면기판 위에 충전재를 별도로 적층하지 아니할 수 있다. 따라서 충전재의 사용량을 줄일 수 있어 제조비용이 저감되는 효과가 있다.However, in the embodiment of the present invention, the wiring 20 is directly stacked on the glass substrate 90 as the glass wiring substrate is used as the insulating substrate and the rear substrate, so that the filler may not be separately stacked on the rear substrate. Therefore, it is possible to reduce the amount of filler used, thereby reducing the manufacturing cost.
이후, 적층구조체를 라미네이션 하여 접착필름(40) 및 충전재(80)를 용융한다(도 5).Thereafter, the laminated structure is laminated to melt the adhesive film 40 and the filler 80 (FIG. 5).
라미네이션 과정에서 접착필름(40)이 용융되어 배선(20), 전극(50) 또는 셀 사이의 공간에 채워진다. 이와 같이, 접착필름(40)은 전극(50) 및 배선(20)을 연결하고, 셀(60)과 배선(20) 사이에서 충전재 역할을 한다.In the lamination process, the adhesive film 40 is melted and filled in the space between the wiring 20, the electrode 50, or the cell. As such, the adhesive film 40 connects the electrode 50 and the wiring 20 and serves as a filler between the cell 60 and the wiring 20.
동시에, 전술한 바와 같이 접착필름(40)이 절연성 필름 또는 이방도전성 필름으로 이루어져 있어, 이웃한 전극(50) 사이에는 전기가 통하지 아니하도록 하고, 비교적 거리가 가까운 전극(50)과 배선(20)은 서로 접하거나, 이방도전성 필름의 도전입자를 통해 전기가 통하도록 한다.At the same time, as described above, the adhesive film 40 is made of an insulating film or an anisotropic conductive film, so that electricity does not pass between neighboring electrodes 50, and the electrode 50 and the wiring 20 that are relatively close to each other. Are in contact with each other, or let the electricity through the conductive particles of the anisotropic conductive film.
그리고 이때 충전재(80)도 같이 용융되어 유리 후면기판(90)과 전면기판(70) 사이 공간에 채워져 적층구조체를 일체화 한다.In this case, the filler 80 is also melted and filled in the space between the glass rear substrate 90 and the front substrate 70 to integrate the laminated structure.
이와 같이 접착필름(40) 및 충전재(80)가 별도의 라미네이션 공정을 거치지 아니하고 동일한 라미네이션 공정을 통해 용융되어 적층구조체를 일체화하기 때문에 제조공정이 간소화 될 수 있다.As such, the adhesive film 40 and the filler 80 may be melted through the same lamination process without integrating a separate lamination process to integrate the laminated structure, thereby simplifying the manufacturing process.
또한, 접착필름을 용융하기 위해 태양전지 모듈 제조과정 중간에 라미네이션 하지 아니하고, 전체적으로 하나의 적층구조체를 형성한 후 한 번의 라미네이션 과정에서 접착필름과 충전재를 같이 용융할 수 있어 제조과정이 간소화되는 효과가 있다.In addition, instead of laminating in the middle of the solar cell module manufacturing process to melt the adhesive film, after forming a laminated structure as a whole, the adhesive film and the filler can be melted together in one lamination process to simplify the manufacturing process have.
도 6 내지 도 10에는 본 발명의 다른 실시예에 따른 후면 전극형 태양전지 모듈 제조방법의 순서도가 도시되어 있다.6 to 10 show a flowchart of a method for manufacturing a back electrode solar cell module according to another embodiment of the present invention.
이하에서 본 실시예에 따른 태양전지 모듈의 제조방법에 대하여 상세하게 살펴본다.Hereinafter, a method of manufacturing the solar cell module according to the present embodiment will be described in detail.
도 6에 도시된 바와 같이, 유리로 이루어진 후면기판(90) 위에 배선(20)을 형성하여 유리배선기판을 만든다. 배선(20)을 형성하는 공정은 도 1 내지 도 5에 도시된 실시예와 실질적으로 동일하다. As shown in FIG. 6, the wiring 20 is formed on the rear substrate 90 made of glass to form a glass wiring substrate. The process of forming the wiring 20 is substantially the same as the embodiment shown in Figs.
이어서, 도 7에 도시한 바와 같이, 전극(50)이 형성되어 있는 태양전지 셀(60)에 접착필름(40)을 형성한다. 이 경우 전극(50)이 상부를 향하도록 태양전지 셀(60)을 배치하고, 전극(50) 및 태양전지 셀(60)의 표면에 액상으로 이루어진 접착필름(40)을 코팅한다. Subsequently, as shown in FIG. 7, the adhesive film 40 is formed on the solar cell 60 in which the electrode 50 is formed. In this case, the solar cell 60 is disposed so that the electrode 50 faces upward, and the adhesive film 40 made of a liquid is coated on the surface of the electrode 50 and the solar cell 60.
액상의 접착필름(40)을 보관통에 넣고 태양전지 셀(60)에 분사하여 접착필름(40)을 태양전지 셀(60)에 코팅할 수 있고, 또는 접착필름이 도포되어 있는 롤러(도시하지 아니함) 사이에 태양전지 셀(60)을 통과하여 태양전지 셀(60)에 접착필름(40)을 코팅할 수도 있다. 액상의 접착필름을 사용하게 되면, 특히, 스크린 인쇄 등 인쇄 방법을 사용하는 경우 필요한 부위에만 사용할 수 있고, 사용량도 사용자가 조절할 수 있는 이점이 있다.A liquid adhesive film 40 is put in a storage container and sprayed on the solar cell 60 to coat the adhesive film 40 on the solar cell 60, or a roller having an adhesive film applied thereto (not shown). The adhesive film 40 may be coated on the solar cell 60 by passing through the solar cell 60. When using a liquid adhesive film, in particular, in the case of using a printing method such as screen printing can be used only in the required portion, there is an advantage that the user can adjust the amount.
이때, 전극(50)이 형성되어 있는 부위에만 이방도전성 필름으로 이루어진 접착필름(40)을 코팅하고, 전극(50)이 형성되어 있지 아니한 부위 즉, 태양전지 셀(60)의 표면은 도전입자가 포함되지 아니한 절연성 수지로 이루어진 접착필름(40)을 코팅할 수 있다. 이 경우, 도전입자를 포함하고 있는 이방도전성 필름의 사용량이 줄어들어 제조비용이 저감될 수 있다.At this time, the adhesive film 40 made of an anisotropic conductive film is coated only on the portion where the electrode 50 is formed, and the surface where the electrode 50 is not formed, that is, the surface of the solar cell 60 has conductive particles An adhesive film 40 made of an insulating resin not included may be coated. In this case, the amount of the anisotropic conductive film containing the conductive particles may be reduced, thereby reducing the manufacturing cost.
또는 전극(50) 및 태양전지 셀(60) 표면에 이방도전성 필름으로 이루어진 접착필름(40)을 코팅할 수 있다. 이 경우, 접착필름(40)이 단일 물질로 이루어져 있어 코팅공정이 단순화될 수 있다.Alternatively, the adhesive film 40 made of an anisotropic conductive film may be coated on the surface of the electrode 50 and the solar cell 60. In this case, since the adhesive film 40 is made of a single material, the coating process may be simplified.
이후, 도 8에 도시된 바와 같이 유리배선기판에 태양전지 셀(60)을 적층한다.Subsequently, as illustrated in FIG. 8, the solar cell 60 is laminated on the glass wiring substrate.
이때 유리배선기판에 형성되어 있는 배선(20)과 태양전지 셀(60)에 형성되어 있는 전극(50)이 접착필름(40)을 통해 전기적으로 연결되어야 하므로 태양전지 셀(60)을 뒤집어서 유리배선기판에 적층한다. 즉, 배선(20)이 상부를 향하도록 유리배선기판을 배치하고, 그 위에 전극(50)이 배선(20)을 향하도록 태양전지 셀(60)을 적층한다.At this time, since the wiring 20 formed on the glass wiring board and the electrode 50 formed on the solar cell 60 should be electrically connected through the adhesive film 40, the glass cell is turned upside down by the solar cell 60. Laminate on the substrate. That is, the glass wiring board is disposed so that the wiring 20 faces upward, and the solar cell 60 is stacked so that the electrode 50 faces the wiring 20 thereon.
이후, 도 9에 도시된 바와 같이 태양전지 셀(60) 위에 충전재(80)와 전면기판(70)을 순차적으로 적층하여 적층구조체를 형성한다.Subsequently, as shown in FIG. 9, the filler 80 and the front substrate 70 are sequentially stacked on the solar cell 60 to form a stacked structure.
그리고 적층구조체를 라미네이션 하여 태양전지 모듈을 형성한다(도 10 참고).Then, the laminated structure is laminated to form a solar cell module (see FIG. 10).
본 실시예에 따른 충전재(80)와 전면기판(70)의 구성 및 라미네이션 공정은 도 1 내지 도 5에 도시한 실시예와 실질적으로 동일하다.The configuration and lamination process of the filler 80 and the front substrate 70 according to the present embodiment are substantially the same as those shown in FIGS. 1 to 5.
또한 본 실시예에는 도 1 내지 도 5에 도시한 많은 구성들이 적용될 수 있다.In addition, many configurations shown in FIGS. 1 to 5 may be applied to the present embodiment.
도 11 내지 도 17에는 본 발명의 다른 실시예에 따른 후면 전극형 태양전지 모듈 제조방법의 순서도가 도시되어 있다.11 to 17 are flowcharts illustrating a method of manufacturing a back electrode solar cell module according to another embodiment of the present invention.
이하에서 본 실시예에 따른 태양전지 모듈의 제조방법에 대하여 상세하게 살펴본다.Hereinafter, a method of manufacturing the solar cell module according to the present embodiment will be described in detail.
도 11에 도시된 바와 같이, 유리로 이루어진 후면기판(90) 위에 배선(20)을 형성하여 유리배선기판을 만든다. 배선(20)을 형성하는 공정은 도 1 내지 도 10에 도시된 실시예와 실질적으로 동일하다. As shown in FIG. 11, the wiring 20 is formed on the rear substrate 90 made of glass to form a glass wiring substrate. The process of forming the wiring 20 is substantially the same as the embodiment shown in Figs.
이후, 도 12에 도시된 바와 같이 유리배선기판에 접착필름(40)을 적층한다. 그러나 전극(50)이 형성되어 있는 태양전지 셀(60)에 접착필름(40)을 코팅할 수도 있다(도 7 참고).Thereafter, the adhesive film 40 is laminated on the glass wiring substrate as shown in FIG. 12. However, the adhesive film 40 may be coated on the solar cell 60 in which the electrode 50 is formed (see FIG. 7).
이후, 도 13에 도시된 바와 같이 유리배선기판에 태양전지 셀(60)을 적층하여 1차 적층구조체를 형성하고, 도 14에 도시한 바와 같이 1차 적층구조체에 압력을 가하여 전극(50)과 배선(20)을 전기적으로 연결한다. 이때 열이 동시에 가해질 수 있다. 이렇게 하면 도 15에서와 같이 접착필름(40)이 용융되어 유리배선기판과 셀(60) 사이의 공간에 채워진다.Subsequently, as shown in FIG. 13, the solar cell 60 is stacked on the glass wiring board to form a primary stacked structure, and as shown in FIG. 14, a pressure is applied to the primary stacked structure as shown in FIG. 14. The wiring 20 is electrically connected. At this time, heat may be applied simultaneously. This melts the adhesive film 40 as shown in FIG. 15 and fills the space between the glass wiring board and the cell 60.
도 14에서 1차 적층구조체에 가해지는 압력은 0.1MPa 내지 5MPa이다. 1차 적층구조체에 가해지는 압력이, 0.1MPa보다 작으면 전극(50)과 배선(20)을 전기적으로 연결할 때 충분히 낮은 연결저항을 확보하기가 어려우며, 5MPa보다 크면 압착 과정에서 셀(60)이 파손될 수 있다.In FIG. 14, the pressure applied to the primary laminated structure is 0.1 MPa to 5 MPa. If the pressure applied to the primary laminated structure is less than 0.1 MPa, it is difficult to secure a sufficiently low connection resistance when the electrode 50 and the wiring 20 are electrically connected. If the pressure is greater than 5 MPa, the cell 60 is compressed during the compression process. Can be broken.
현재 진공 상태에서 모듈을 가압/가열하는 장비를 이용하여서는 0.1MPa을 초과하는 압력을 가하기가 어렵다. 그러나 도 14와 같이, 1차 적층구조체를 가압/가열하는 과정은 진공 상태에서 진행할 필요가 없기 때문에, 값비싼 장비를 이용하지 않고도 0.1MPa 이상의 압력을 가할 수 있다. 가령, 가정이나 사무실에서 사용하는 코팅기 등을 이용하여 도 14의 모듈에 0.1MPa 내지 5MPa의 압력을 가할 수 있는 것이다.It is currently difficult to apply a pressure exceeding 0.1 MPa using equipment that pressurizes / heats the module in vacuum. However, as shown in FIG. 14, since the process of pressurizing / heating the primary laminated structure does not need to proceed in a vacuum state, pressure of 0.1 MPa or more can be applied without using expensive equipment. For example, a pressure of 0.1 MPa to 5 MPa can be applied to the module of FIG. 14 using a coating machine used in a home or office.
따라서 본 실시예에 따르면, 충분히 낮은 연결저항을 확보하면서 안정적으로 전극(50)과 배선(20)의 전기적 연결을 가능케 한다.Therefore, according to the present embodiment, it is possible to ensure the electrical connection between the electrode 50 and the wiring 20 stably while ensuring a sufficiently low connection resistance.
이후, 도 16에 도시된 바와 같이 태양전지 셀(60) 위에 충전재(80)와 전면기판(70)을 순차적으로 적층하여 2차 적층구조체를 형성한다. 그런 후 2차 적층구조체를 라미네이션하여 태양전지 모듈을 형성한다(도 17 참고).Thereafter, as shown in FIG. 16, the filler 80 and the front substrate 70 are sequentially stacked on the solar cell 60 to form a secondary stacked structure. Thereafter, the secondary laminated structure is laminated to form a solar cell module (see FIG. 17).
본 실시예에는 도 1 내지 도 10에 도시한 실시예의 구성들이 그대로 적용될 수 있다.The configuration of the embodiment shown in Figs. 1 to 10 can be applied to this embodiment as it is.
도 18에는 본 발명의 실시예에 따른 후면 전극형 태양전지 모듈을 나타낸 도면이 도시되어 있다.18 is a view showing a back electrode solar cell module according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 후면 전극형 태양전지 모듈은 유리기판으로 이루어진 후면기판(90), 배선(20), 전극(50), 태양전지 셀(60) 및 전면기판(70)이 순차적으로 적층되어 있다. 그리고 충전재(80)는 배선(20), 전극(50) 및 태양전지 셀(60)을 감싼 형상으로 전면기판(70)과 후면기판(90) 사이 공간에 채워져 있다. 또한, 배선(20), 전극(50) 및 태양전지 셀(60) 사이의 공간에는 접착필름(40)이 채워져 있다.In the back electrode solar cell module according to the exemplary embodiment of the present invention, the rear substrate 90, the wiring 20, the electrode 50, the solar cell 60 and the front substrate 70 made of glass substrates are sequentially formed. It is stacked. The filler 80 is filled in the space between the front substrate 70 and the rear substrate 90 to surround the wiring 20, the electrode 50, and the solar cell 60. In addition, the adhesive film 40 is filled in the space between the wiring 20, the electrode 50, and the solar cell 60.
이러한 본 실시예에 따르면 하나의 유리기판으로 후면기판(90)과 절연성 기판의 기능을 모두 할 수 있어 별도의 절연성 기판이 필요하지 아니하므로 제조비용을 줄일 수 있는 효과가 있다.According to this embodiment, since the glass substrate can function as both the rear substrate 90 and the insulating substrate, there is no need for a separate insulating substrate, thereby reducing the manufacturing cost.
그리고 전면기판(70)으로는 ETFE가 사용될 수 있다. 이 경우, 일반적으로 전면기판(70)으로 사용되던 유리기판에 비하여 ETFE는 유리기판과 같은 두께로 비교하였을 때 광 투과성이 우수하다. 따라서 ETFE를 전면기판으로 사용하게 되면 광 투과율을 높일 수 있고, 유리기판을 사용할 때보다 태양전지 모듈의 두께가 얇아질 수 있다.ETFE may be used as the front substrate 70. In this case, ETFE is superior in light transmittance when compared to the same thickness as the glass substrate compared to the glass substrate generally used as the front substrate 70. Therefore, when the ETFE is used as the front substrate, the light transmittance may be increased, and the thickness of the solar cell module may be thinner than when the glass substrate is used.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (13)

  1. 유리기판 위에 배선을 형성하여 유리배선기판을 만드는 단계,Forming a glass wiring board by forming a wiring on the glass substrate,
    상기 유리배선기판에 접착필름, 전극이 형성되어 있는 태양전지 셀, 충전재 및 전면기판을 적층하여 적층구조체를 형성하는 단계, 그리고Forming a laminated structure by laminating an adhesive film, a solar cell on which an electrode is formed, a filler and a front substrate on the glass wiring substrate, and
    상기 적층구조체를 라미네이션하여 상기 접착필름 및 상기 충전재를 용융하여 상기 전극 및 상기 배선을 전기적으로 연결하는 단계Laminating the laminated structure to melt the adhesive film and the filler to electrically connect the electrode and the wire.
    를 포함하는 후면 전극형 태양전지 모듈의 제조방법.Method of manufacturing a back electrode solar cell module comprising a.
  2. 유리기판 위에 배선을 형성하여 유리배선기판을 만드는 단계,Forming a glass wiring board by forming a wiring on the glass substrate,
    태양전지 셀의 전극이 형성되어 있는 일면에 접착필름을 코팅하는 단계,Coating an adhesive film on one surface of the solar cell electrode,
    상기 유리배선기판에 상기 태양전지 셀, 충전재 및 전면기판을 적층하여 적층구조체를 형성하는 단계, 그리고Stacking the solar cell, the filler and the front substrate on the glass wiring substrate to form a laminated structure, and
    상기 적층구조체를 라미네이션하여 상기 전극과 상기 배선을 전기적으로 연결하는 단계Laminating the stacked structure to electrically connect the electrode and the wire.
    를 포함하는 후면 전극형 태양전지 모듈의 제조방법.Method of manufacturing a back electrode solar cell module comprising a.
  3. 실리기판 위에 배선을 형성하여 유리배선기판을 만드는 단계,Forming a glass wiring board by forming a wiring on the silicon substrate;
    상기 배선 또는 태양전지 셀의 전극이 형성된 일면에, 접착필름을 코팅하거나 가접착하는 단계,Coating or temporarily bonding an adhesive film to one surface of the wiring or the electrode of the solar cell,
    상기 유리배선기판 위에 상기 태양전지 셀을 적층하여 1차 적층구조체를 형성하는 단계,Stacking the solar cells on the glass wiring substrate to form a first stacked structure;
    상기 1차 적층구조체에 압력을 가하여 상기 배선과 상기 전극을 전기적으로 연결하는 단계,Applying pressure to the primary stacked structure to electrically connect the wires and the electrodes;
    상기 배선과 상기 전극이 전기적으로 연결된 1차 적층구조체 위에 충전재 및 전면기판을 적층하여 2차 적층구조체를 형성하는 단계, 그리고Stacking a filler and a front substrate on the first stacked structure in which the wires and the electrodes are electrically connected to form a second stacked structure, and
    상기 2차 적층구조체를 라미네이션하는 단계Laminating the secondary laminate
    를 포함하는 후면 전극형 태양전지 모듈의 제조방법.Method of manufacturing a back electrode solar cell module comprising a.
  4. 제1항 또는 제2항에서,The method of claim 1 or 2,
    상기 라미네이션 단계에서, 상기 접착필름이 용융되어 상기 유리배선기판과 상기 셀 사이 공간에 채워지는 후면 전극형 태양전지 모듈 제조방법.In the lamination step, the adhesive film is melted and filled in the space between the glass wiring substrate and the cell manufacturing method of the back electrode solar cell module.
  5. 제1항 내지 제3항 중 어느 한 항에서,The method according to any one of claims 1 to 3,
    상기 라미네이션 단계는 상기 유리배선기판이 최하부에 놓인 상태에서 진행되는 후면 전극형 태양전지 모듈의 제조방법.The lamination step is a manufacturing method of a back electrode solar cell module which is performed in a state where the glass wiring substrate is placed on the bottom.
  6. 제1항 내지 제3항 중 어느 한 항에서,The method according to any one of claims 1 to 3,
    상기 라미네이션 단계에서, 상기 충전재가 용융되어 상기 유리배선기판과 상기 전면기판 사이 공간에 채워지는 후면 전극형 태양전지 모듈의 제조방법.The lamination step, the manufacturing method of the back electrode solar cell module is melted and the filler is filled in the space between the glass wiring substrate and the front substrate.
  7. 제3항에서,In claim 3,
    상기 1차 적층구조체에 압력을 가하면, 상기 접찹필름이 용융되어 상기 유리배선기판과 상기 셀 사이 공간에 채워지는 후면 전극형 태양전지 모듈의 제조방법.When the pressure is applied to the primary laminated structure, the adhesive film is melted and filled in the space between the glass wiring board and the cell manufacturing method of the back electrode solar cell module.
  8. 제3항에서,In claim 3,
    상기 배선과 상기 전극을 전기적으로 연결하기 위해 상기 1차 적층구조체에 가해지는 압력은 0.1MPa 내지 5MPa인 후면 전극형 태양전지 모듈의 제조방법.The pressure applied to the primary laminated structure to electrically connect the wiring and the electrode is a manufacturing method of a back electrode solar cell module of 0.1MPa to 5MPa.
  9. 제1항 내지 제3항 중 어느 한 항의 제조방법에 의해 만들어진 후면 전극형 태양전지 모듈.A back electrode solar cell module made by the method of any one of claims 1 to 3.
  10. 제9항에서,In claim 9,
    상기 접착필름은 이방도전성 필름인 후면 전극형 태양전지 모듈.The adhesive film is an anisotropic conductive film back electrode type solar cell module.
  11. 제10항에서,In claim 10,
    상기 이방도전성 필름은, 에폭시계 수지, 아크릴계 수지, 비닐 아세테이트 에틸렌, 실리콘 및 이들의 조합 중 선택된 어느 하나를 포함하는 후면 전극형 태양전지 모듈.The anisotropic conductive film, an epoxy resin, an acrylic resin, vinyl acetate ethylene, silicon and any one selected from a combination thereof back electrode type solar cell module.
  12. 제9항에서,In claim 9,
    상기 유리기판은 강화유리를 포함하는 후면 전극형 태양전지 모듈.The glass substrate is a rear electrode solar cell module comprising a tempered glass.
  13. 제9항에서,In claim 9,
    상기 전면기판은 에틸렌 테트라 플루오르 에틸렌인 후면 전극형 태양전지 모듈.The front substrate is an ethylene tetra fluoro ethylene back electrode type solar cell module.
PCT/KR2012/004593 2011-06-09 2012-06-11 Back contact solar cell module and method for manufacturing same WO2012169856A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0055824 2011-06-09
KR20110055824 2011-06-09

Publications (2)

Publication Number Publication Date
WO2012169856A2 true WO2012169856A2 (en) 2012-12-13
WO2012169856A3 WO2012169856A3 (en) 2013-03-07

Family

ID=47296645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004593 WO2012169856A2 (en) 2011-06-09 2012-06-11 Back contact solar cell module and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101444793B1 (en)
WO (1) WO2012169856A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410313A (en) * 2021-05-10 2021-09-17 深圳市百柔新材料技术有限公司 Conductive circuit film, preparation method thereof and photovoltaic cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147424A (en) * 1993-11-25 1995-06-06 Fuji Electric Co Ltd Manufacture of thin film solar cell module
JP2009266958A (en) * 2008-04-23 2009-11-12 Sharp Corp Solar battery module
KR20110030376A (en) * 2009-09-17 2011-03-23 샤프 가부시키가이샤 Solar battery module substrate and solar battery module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110036A1 (en) 2009-03-23 2010-09-30 シャープ株式会社 Wiring-sheet-attached solar battery cell, solar cell module, and process for manufacturing wiring-sheet-attached solar battery cell
JPWO2010110083A1 (en) 2009-03-25 2012-09-27 シャープ株式会社 Back electrode type solar cell, wiring sheet, solar cell with wiring sheet, solar cell module, method for manufacturing solar cell with wiring sheet, and method for manufacturing solar cell module
CN102473767A (en) * 2009-07-02 2012-05-23 夏普株式会社 Solar battery cell with wiring sheet, solar battery module, and method for producing solar battery cell with wiring sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147424A (en) * 1993-11-25 1995-06-06 Fuji Electric Co Ltd Manufacture of thin film solar cell module
JP2009266958A (en) * 2008-04-23 2009-11-12 Sharp Corp Solar battery module
KR20110030376A (en) * 2009-09-17 2011-03-23 샤프 가부시키가이샤 Solar battery module substrate and solar battery module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410313A (en) * 2021-05-10 2021-09-17 深圳市百柔新材料技术有限公司 Conductive circuit film, preparation method thereof and photovoltaic cell

Also Published As

Publication number Publication date
WO2012169856A3 (en) 2013-03-07
KR20120137309A (en) 2012-12-20
KR101444793B1 (en) 2014-09-29

Similar Documents

Publication Publication Date Title
CN103474493B (en) Encapsulated layer is applied to the photovoltaic module backboard comprising back-contact battery
AU766308B2 (en) Thin film solar cell module and method of manufacturing the same
US20100263718A1 (en) Solar cell module and method for manufacturing solar cell module
CN105358320A (en) Strengthened thin glass-polymer laminates
JP2009088145A (en) Solar battery, manufacturing method for the solar battery, manufacturing method for solar battery module, and the solar battery module
JP5630158B2 (en) Manufacturing method of solar cell module and sealing material for solar cell module
CN207947017U (en) A kind of flexible and transparent display screen
CN203690316U (en) Solar cell module
CN103890968A (en) Integrated back-sheet for back contact photovoltaic module
TW201433766A (en) Thermal receiver for high power solar concentrators and method of assembly
WO2024012160A1 (en) Ibc solar cell module and manufacturing method thereof, and ibc solar cell module string
CN208954072U (en) A kind of touch panel of anti-steam
WO2012169856A2 (en) Back contact solar cell module and method for manufacturing same
CN109801981A (en) Solar battery sheet L shape connector and its application
TW201323198A (en) Conductive adhesive sheet, method for producing the same, collector electrode, and solar cell module
JP4703231B2 (en) Solar cell module and manufacturing method thereof
WO2020204527A1 (en) Solar cell panel and manufacturing method therefor
CN117153951A (en) Production method of back contact photovoltaic module and back contact photovoltaic module
CN104428904A (en) Solar cell module and manufacturing method for same
WO2013066031A1 (en) Solar cell module and method of fabricating the same
WO2013133589A1 (en) Solar cell apparatus
JP2006278740A (en) Solar cell module
WO2012169809A2 (en) Back contact solar cell module and method for manufacturing same
CN2922128Y (en) Photosensitive assembly packaging structure
CN109841698B (en) Solar cell and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796533

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796533

Country of ref document: EP

Kind code of ref document: A2