JPH07147301A - Method of bonding semiconductor chip - Google Patents

Method of bonding semiconductor chip

Info

Publication number
JPH07147301A
JPH07147301A JP29309393A JP29309393A JPH07147301A JP H07147301 A JPH07147301 A JP H07147301A JP 29309393 A JP29309393 A JP 29309393A JP 29309393 A JP29309393 A JP 29309393A JP H07147301 A JPH07147301 A JP H07147301A
Authority
JP
Japan
Prior art keywords
semiconductor element
substrate
liquid crystal
crystal panel
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29309393A
Other languages
Japanese (ja)
Other versions
JP3361583B2 (en
Inventor
Takafumi Kashiwagi
隆文 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29309393A priority Critical patent/JP3361583B2/en
Publication of JPH07147301A publication Critical patent/JPH07147301A/en
Application granted granted Critical
Publication of JP3361583B2 publication Critical patent/JP3361583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]

Landscapes

  • Wire Bonding (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To provide a method of thermocompression bonding, capable of eliminating positioning errors that are inherent in conventional thermocompression bonding. CONSTITUTION:A substrate, on which a semiconductor chip fixed preliminarily with an anisotropic conductive sheet, is placed on a stage 1, and it is heated and compressed by a press 2, which is composed of either a metal block heated by pulsating current or a combination of a hot block and a press member. The metal block, or the press member, has a coefficient of thermal expansion that is equivalent to the change in dimensions of the substrate during thermocompression bonding. This process is suited to the manufacture of color liquid crystal displays, which uses an anisotropic conductive sheet and requires accurate connections.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子の基板上へ
の実装方法に関し、特に高精度が得られる接続方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for mounting a semiconductor element on a substrate, and more particularly to a connection method with which high accuracy can be obtained.

【0002】[0002]

【従来の技術】異方導電性接着シートを用いて半導体素
子を基板に接続する技術は、熱および圧力を加えるのみ
で狭ピッチ電極の接続が容易に得られるため近年広く用
いられるようになった。特に液晶表示装置における液晶
パネルへの駆動LSIの接続は透明電極と金属という異
種材料間の接続のため、LSIがボンディングされたテ
ープキャリアを異方導電性接着シートを用いて熱圧着接
続する方法が一般的である。次に図を用いて、従来の液
晶パネルと駆動LSIの接続方法を説明する。
2. Description of the Related Art The technique of connecting a semiconductor element to a substrate using an anisotropic conductive adhesive sheet has been widely used in recent years because the connection of narrow-pitch electrodes can be easily obtained only by applying heat and pressure. . In particular, the connection of the driving LSI to the liquid crystal panel in the liquid crystal display device is a connection between the transparent electrodes and the dissimilar materials such as metal. Therefore, there is a method of thermocompression bonding the tape carrier to which the LSI is bonded using an anisotropic conductive adhesive sheet. It is common. Next, a conventional method of connecting a liquid crystal panel and a drive LSI will be described with reference to the drawings.

【0003】駆動LSIはポリイミドなどのフィルムテ
ープ上に形成した銅箔のリードに半導体チップをボンデ
ィングしたいわゆるテープキャリアパッケージ(以後T
CPと略す)の形状をしたものを用いる。図9に示すよ
うに液晶パネル20の端子21上に異方導電性接着シー
ト22を仮止めした後TCP23の端子と液晶パネル端
子との位置整合を行い、異方導電性接着シート22の粘
着性を利用して仮固定する。通常液晶パネルの端子1辺
につき複数個のTCP23が接続されるためこの工程を
TCP23の個数だけ繰り返す。これは異方導電性接着
シート22の熱硬化には一定の時間がかかるため時間当
たりの生産量を増大するため個々のTCP23について
熱圧着工程を行わずに、少なくとも1辺のTCP23は
同時に熱圧着工程を行うためである。
A drive LSI is a so-called tape carrier package (hereinafter referred to as "T-carrier package") in which a semiconductor chip is bonded to a copper foil lead formed on a film tape such as polyimide.
The shape of (abbreviated as CP) is used. As shown in FIG. 9, after the anisotropic conductive adhesive sheet 22 is temporarily fixed on the terminals 21 of the liquid crystal panel 20, the terminals of the TCP 23 and the liquid crystal panel terminals are aligned and the adhesive property of the anisotropic conductive adhesive sheet 22 is adjusted. Use to temporarily fix. Since a plurality of TCPs 23 are normally connected to one side of the liquid crystal panel, this process is repeated for each TCP 23. Since it takes a certain amount of time for the anisotropic conductive adhesive sheet 22 to be thermoset, the production amount per hour is increased. Therefore, at least one side of the TCP 23 is thermocompressed at the same time without performing the thermocompression bonding process for each TCP 23. This is because the process is performed.

【0004】次に図10に示すように液晶パネル20を
ステージ上に配置し、高温の加圧装置25にてTCP2
3の端子上を加圧し異方導電性接着シート22に圧力お
よび熱を与えることにより、異方導電性接着シート22
中の導電粒子が液晶パネル20とTCP23の両電極間
に挟持された状態で接着剤が硬化し機械的かつ電気的な
接続を得る。
Next, as shown in FIG. 10, the liquid crystal panel 20 is placed on the stage, and the TCP2 is applied by the high temperature pressurizing device 25.
3 by applying pressure and heat to the anisotropic conductive adhesive sheet 22 by applying pressure on the terminals of the anisotropic conductive adhesive sheet 22.
With the conductive particles inside being sandwiched between both electrodes of the liquid crystal panel 20 and the TCP 23, the adhesive cures and a mechanical and electrical connection is obtained.

【0005】最近、液晶パネルは表示画素密度の上昇が
急速に進んでおり、それと共に駆動LSIとの接続端子
電極の狭ピッチ化が進んでいる。特に表示のカラー化に
より画素密度が3倍になった結果端子電極ピッチは3分
の1になり、液晶パネル端子とTCP端子の接続位置精
度に対する要求は格段に高まっている。
In recent years, the liquid crystal panel has been rapidly increasing in display pixel density, and along with it, the pitch of the connection terminal electrodes with the drive LSI has been narrowed. In particular, as the pixel density has tripled due to the colorization of the display, the terminal electrode pitch has become 1/3, and the demand for the connection position accuracy between the liquid crystal panel terminal and the TCP terminal has been remarkably increased.

【0006】[0006]

【発明が解決しようとする課題】ところで、液晶パネル
と駆動用TCPの相互接続位置精度について、前記従来
の方法では液晶パネルをステージ上に配置し高温の加圧
装置にてTCP端子上を加圧し異方導電性接着シート中
の接着剤を硬化させる工程において原理的な位置ズレが
発生することが判明した。このメカニズムを図を用いて
説明する。
Regarding the accuracy of the interconnection position between the liquid crystal panel and the driving TCP, the above-mentioned conventional method places the liquid crystal panel on the stage and presses the TCP terminal with a high temperature pressurizing device. It was found that a theoretical positional shift occurs in the process of curing the adhesive in the anisotropic conductive adhesive sheet. This mechanism will be described with reference to the drawings.

【0007】図11(a)はTCP23を液晶パネル端
子21に電極の位置整合を行った後異方導電性接着シー
ト22の粘着力を利用して仮固定した状態である。この
状態においては材料加工上の誤差を無視すればTCP電
極26と液晶パネル電極27の両者の位置は整合してい
る。図11(b)は液晶パネル20をステージ上に固定
した後高温の加圧装置25が上方より下降しTCP23
に接した瞬間である。この後加圧装置の熱が液晶パネル
20に伝導し液晶パネル20は徐々に昇温する、また加
圧装置は熱伝導により短時間的には温度降下するがヒー
ターより熱が供給されるため降下量は少ない。図11
(c)は図11(b)より一定時間経過後の状態を示
し、昇温した液晶パネル20には熱膨張による寸法変化
が生じている。一方、異方導電性接着シート22は軟化
しTCP23と液晶パネル20間の摩擦係数が低下して
いるため両者間には滑りが発生し易く、TCP23は液
晶パネル20の寸法変化に追随せずむしろ加圧装置25
に密着し追随している。図11(d)に示すように一定
時間経過後異方導電性接着シート22の熱硬化が終了
し、液晶パネル20とTCP23は図11(c)の位置
関係のまま固定され、加圧装置が上昇し液晶パネル20
が室温にまで冷却されても両者の位置関係は変化しな
い。TCP23と液晶パネル20の両端子の位置ズレ量
は1個のTCP23内では寸法スケールが小さいため顕
著ではないが、ズレ量は熱圧着の寸法スケールに比例す
るため複数個のTCP23が接続された液晶パネル20
の端子1辺全体においては重大な位置ズレとなり接続不
良の原因となる。
FIG. 11A shows a state in which the TCP 23 is aligned with the electrodes of the liquid crystal panel terminal 21 and then temporarily fixed by utilizing the adhesive force of the anisotropic conductive adhesive sheet 22. In this state, the positions of both the TCP electrode 26 and the liquid crystal panel electrode 27 are aligned, ignoring errors in material processing. In FIG. 11B, after the liquid crystal panel 20 is fixed on the stage, the high temperature pressurizing device 25 descends from above and TCP 23
It was the moment I came into contact with. After that, the heat of the pressurizing device is conducted to the liquid crystal panel 20 and the temperature of the liquid crystal panel 20 is gradually raised. Further, the pressure of the pressurizing device is lowered in a short time by heat conduction, but is lowered because heat is supplied from the heater. The quantity is small. Figure 11
FIG. 11C shows a state after a certain time has elapsed from FIG. 11B, and the temperature of the liquid crystal panel 20 has changed due to thermal expansion. On the other hand, since the anisotropic conductive adhesive sheet 22 is softened and the friction coefficient between the TCP 23 and the liquid crystal panel 20 is lowered, slippage is likely to occur between the two, and the TCP 23 does not follow the dimensional change of the liquid crystal panel 20, rather. Pressurizing device 25
It closely adheres to and follows. As shown in FIG. 11D, the thermosetting of the anisotropic conductive adhesive sheet 22 is completed after a certain period of time, the liquid crystal panel 20 and the TCP 23 are fixed in the positional relationship of FIG. LCD panel 20 rising
Even if is cooled to room temperature, the positional relationship between the two does not change. The positional deviation amount of both terminals of the TCP 23 and the liquid crystal panel 20 is not significant because the size scale is small within one TCP 23, but the deviation amount is proportional to the thermocompression bonding size scale. Panel 20
This will cause a serious positional deviation on the entire one side of the terminal and cause connection failure.

【0008】また、この現象は加圧装置が高温保持され
たブロックではなく直接電流を印可できる形状に加工し
た金属ブロックであり、TCP23端子上を加圧した後
パルス状電流を印加しブロックを発熱させる方式の場合
でも発生する。この場合、金属ブロックは熱ひずみを防
止するためにスーパーインバーなどの非常に熱膨張係数
が小さい金属が使用される。よって、金属ブロックが発
熱しある程度時間が経過した場合は図11(c)と同様
な状態となり位置ズレが発生する。
Further, this phenomenon is not a block in which the pressurizing device is kept at a high temperature but a metal block processed into a shape capable of directly applying an electric current. After pressurizing the TCP23 terminal, a pulsed electric current is applied to heat the block. It occurs even in the case of the method. In this case, for the metal block, a metal having a very small coefficient of thermal expansion such as Super Invar is used to prevent thermal strain. Therefore, when the metal block generates heat and a certain amount of time elapses, the state becomes the same as that in FIG. 11C, and the positional deviation occurs.

【0009】これを解決する方法として、TCPを1個
ずつ圧着しズレを低減する方法があるが、圧着時間はT
CP1個当たり15〜20秒必要であり多数のTCPを
用いる大型の液晶パネルでは工程時間が増大し実用的で
はない。
As a method of solving this, there is a method of reducing the deviation by pressure-bonding TCP one by one, but the pressure-bonding time is T
It takes 15 to 20 seconds per CP, which is not practical because a large liquid crystal panel using a large number of TCPs requires a long process time.

【0010】本発明は、このような従来の半導体素子接
続方法の課題を考慮し、熱圧着時に原理的に生じる位置
ズレを根本的に無くす半導体素子接続方法を提供するこ
とを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the conventional semiconductor element connecting method, and an object thereof is to provide a semiconductor element connecting method which fundamentally eliminates the positional deviation which occurs in principle during thermocompression bonding. is there.

【0011】[0011]

【課題を解決するための手段】本発明の半導体素子接続
方法は、異方導電性接着シートを介して半導体素子を被
接続基板に仮固定する工程、前記被接続基板を平滑なス
テージ上に配置した後加圧装置により前記半導体素子を
加圧し同時に加熱する熱圧着工程より構成され、前記加
圧装置がパルス状電流により発熱する金属製ブロックか
らなり、かつ前記金属が、前記熱圧着工程における被接
続基板と加圧装置の到達温度差に対応し両者の熱膨張に
よる寸法変化値がほぼ一致するような熱膨張係数を持つ
ものである。 あるいは、上記加圧装置が高温に保持さ
れた加熱ブロックと前記半導体素子に直接接する圧接部
材からなり、前記圧接部材が、前記熱圧着工程における
被接続基板と圧接部材の到達温度差に対応し両者の熱膨
張による寸法変化値がほぼ一致するような熱膨張係数を
持つものである。
A method of connecting a semiconductor device according to the present invention comprises a step of temporarily fixing a semiconductor device to a substrate to be connected through an anisotropic conductive adhesive sheet, and the substrate to be connected is arranged on a smooth stage. After that, the semiconductor element is pressed by a pressing device and heated at the same time, and the pressing device is composed of a metal block that generates heat by a pulsed current, and the metal is the target of the thermocompression bonding step. It has a coefficient of thermal expansion that corresponds to the difference in temperature reached by the connection board and the pressurizing device so that the dimensional change values due to thermal expansion of the two substantially match. Alternatively, the pressurizing device is composed of a heating block held at a high temperature and a press-contact member that is in direct contact with the semiconductor element, and the press-contact member corresponds to a difference in temperature reached between the substrate to be connected and the press-contact member in the thermocompression bonding step. It has a coefficient of thermal expansion such that the dimensional change values due to the thermal expansion of are almost the same.

【0012】[0012]

【作用】本発明では、異方導電性接着シートを介して半
導体素子が仮固定された被接続基板をステージに配置し
た後加圧装置にて半導体素子を加圧する。次に加圧装置
を構成する金属ブロックにパルス状電流を印加し加圧装
置を一定時間加熱する。熱は半導体素子及び異方導電性
接着シートを介して被接続基板に伝導し基板は昇温し一
定温度に到達する。この時加圧装置及び被接続基板には
熱膨張による寸法変化が生じる、また被接続基板は熱が
ステージに伝導するため加圧装置とは温度差が生じ基板
の方が低温になる。加圧装置を構成する金属ブロックの
熱膨張係数をα1到達温度をt1、被接続基板の熱膨張係
数をα2到達温度をt2とし、圧着作業前の両者の温度を
0とする。単位長さ当たりの寸法変化は、加圧装置に
ついて、(数1)で、また、被接続基板について、(数
2)で表現される。
In the present invention, the semiconductor device is temporarily pressed by the pressure device after the connected substrate on which the semiconductor device is temporarily fixed is placed on the stage via the anisotropic conductive adhesive sheet. Next, a pulsed current is applied to the metal block forming the pressurizing device to heat the pressurizing device for a certain period of time. Heat is conducted to the substrate to be connected through the semiconductor element and the anisotropic conductive adhesive sheet, and the temperature of the substrate rises to reach a certain temperature. At this time, the pressurizing device and the substrate to be connected undergo a dimensional change due to thermal expansion, and since heat is conducted to the substrate to be connected to the stage, a temperature difference occurs between the substrate and the pressurizing device and the substrate becomes lower in temperature. Let the thermal expansion coefficient of the metal block constituting the pressurizing device be α 1 reaching temperature t 1 , the thermal expansion coefficient of the substrate to be connected be α 2 reaching temperature t 2, and the temperature of both before the pressure bonding work be t 0 . . The dimensional change per unit length is expressed by (Equation 1) for the pressure device and (Equation 2) for the connected substrate.

【0013】[0013]

【数1】 [Equation 1]

【0014】[0014]

【数2】 [Equation 2]

【0015】この時、金属ブロックの熱膨張係数をα1
を(数3)で表される値にすれば到達温度における加圧
装置と被接続基板の寸法変化量は一致する。
At this time, the coefficient of thermal expansion of the metal block is set to α 1
If is set to a value represented by (Equation 3), the amount of dimensional change between the pressurizing device and the connected substrate at the ultimate temperature is the same.

【0016】[0016]

【数3】 [Equation 3]

【0017】よって両者に挟持された半導体素子の被接
続基板に対する相対的な位置変化は生じない。
Therefore, the relative position of the semiconductor element sandwiched between the two with respect to the substrate to be connected does not occur.

【0018】また、加圧装置が高温に保持された加熱ブ
ロックと前記半導体素子に直接接する圧接部材からなる
場合は次のような工程になる。
If the pressurizing device comprises a heating block kept at a high temperature and a press-contacting member that is in direct contact with the semiconductor element, the following steps are performed.

【0019】異方導電性接着シートを介して半導体素子
が仮固定された被接続基板をステージに配置した後加圧
装置の圧接部材が半導体素子を加圧する。次に高温に保
持された加熱ブロックを圧接部材に近接あるいは密接さ
せ圧接部材を一定時間加熱する。熱は半導体素子及び異
方導電性接着シートを介して被接続基板に伝導し基板は
昇温し一定温度に到達する。この時加圧装置の圧接部材
及び被接続基板には熱膨張による寸法変化が生じる。ま
た被接続基板は熱がステージに伝導するため圧接部材と
は温度差が生じ基板の方が低温になる。この時圧接部材
の熱膨張係数をα1到達温度をt1、被接続基板の熱膨張
係数をα2到達温度をt2とし、圧着作業前の両者の温度
をt0とすると前記説明と同様なメカニズムにより、圧
接部材の熱膨張係数α1を(数3)で表される値にする
ことで到達温度における圧接部材と被接続基板の寸法変
化は一致する。よって両者に挟持された半導体素子の被
接続基板に対する相対的な位置変化は生じない。
After the connection substrate to which the semiconductor element is temporarily fixed via the anisotropic conductive adhesive sheet is arranged on the stage, the pressure contact member of the pressure device presses the semiconductor element. Next, the heating block kept at a high temperature is brought close to or in close contact with the pressure contact member to heat the pressure contact member for a certain period of time. Heat is conducted to the substrate to be connected through the semiconductor element and the anisotropic conductive adhesive sheet, and the temperature of the substrate rises to reach a certain temperature. At this time, a dimensional change occurs due to thermal expansion in the pressure contact member of the pressure device and the substrate to be connected. Further, since heat is conducted to the stage of the substrate to be connected to the stage, a temperature difference occurs between the substrate and the pressure contact member, and the temperature of the substrate becomes lower. At this time, assuming that the thermal expansion coefficient of the pressure contact member is α 1 attainment temperature t 1 , the thermal expansion coefficient of the substrate to be connected is α 2 attainment temperature t 2, and the temperature of both before the pressure bonding work is t 0 , the same as the above description. By setting the thermal expansion coefficient α 1 of the pressure contact member to a value represented by (Equation 3) by such a mechanism, the dimensional change between the pressure contact member and the substrate to be connected at the ultimate temperature is the same. Therefore, the relative position of the semiconductor element sandwiched between them with respect to the substrate to be connected does not change.

【0020】[0020]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は本発明の一実施例における半導体素
子接続方法に用いられる装置の側面図である。半導体素
子を被接続基板に圧着する加圧装置2は図2に示す形状
にモリブデン製のブロック5を加工したものであり矢印
の向きに電流を流すことにより圧接面7が発熱する。図
1に示すように加圧装置2全体はエアシリンダ4により
上下に移動し、ステージ1上に置かれた被接続基板の端
子部を加圧することができる。
FIG. 1 is a side view of an apparatus used in a semiconductor element connecting method according to an embodiment of the present invention. The pressurizing device 2 for press-bonding the semiconductor element to the substrate to be connected is one in which a block 5 made of molybdenum is processed into the shape shown in FIG. 2, and the press-contact surface 7 generates heat by passing an electric current in the direction of the arrow. As shown in FIG. 1, the entire pressurizing device 2 can be moved up and down by the air cylinder 4 to pressurize the terminal portion of the substrate to be connected placed on the stage 1.

【0022】本実施例では被接続基板は液晶パネルを構
成するガラス基板であり、接続される半導体素子はテー
プキャリアパッケージ(TCP)実装されたLSIであ
る。
In the present embodiment, the substrate to be connected is a glass substrate forming a liquid crystal panel, and the semiconductor element to be connected is an LSI mounted with a tape carrier package (TCP).

【0023】まず図3に示すように、TCP10と液晶
パネル8の端子9上の電極パターンを位置整合した状態
で異方導電性接着シート11の粘着性を利用して仮接着
した。
First, as shown in FIG. 3, the TCP 10 and the electrode pattern on the terminal 9 of the liquid crystal panel 8 were temporarily aligned with each other using the adhesive property of the anisotropic conductive adhesive sheet 11 in a state of being aligned.

【0024】次に図4に示すように液晶パネル8の端子
9が接続装置の加圧装置2の直下に来るように配置し、
加圧装置2を降下させ液晶パネル端子9上のTCP10
を約1.96MPaの圧力で加圧した。次に加圧装置2
に電流を20秒間印加し昇温させ液晶パネル8の端子9
を加熱した。本実施例では加圧装置2は電流印加前は2
5℃であり電流印加3秒後に250℃に達し、20秒後
までほぼその温度を維持した。この時液晶パネル端子1
1の温度は25℃から160℃まで上昇した。次に、加
圧装置2への印加電流を停止しエアシリンダ4を動作さ
せ加圧装置2が上昇後液晶パネル8をステージ1より取
り出し圧着部を顕微鏡観察したところ液晶パネル端子部
9の電極パターンとTCP10の電極パターンの位置ズ
レは見られなく、電気検査により接続が確認できた。
Next, as shown in FIG. 4, the liquid crystal panel 8 is arranged so that the terminal 9 is directly below the pressure device 2 of the connecting device.
The TCP 10 on the liquid crystal panel terminal 9 is lowered by lowering the pressure device 2.
Was pressurized at a pressure of about 1.96 MPa. Next, pressurizing device 2
Is applied to the terminal 9 of the liquid crystal panel 8 for 20 seconds to raise the temperature.
Was heated. In this embodiment, the pressure device 2 is set to 2 before applying the current.
The temperature was 5 ° C., reached 250 ° C. 3 seconds after the current was applied, and was maintained at that temperature for almost 20 seconds. At this time, the liquid crystal panel terminal 1
The temperature of 1 rose from 25 ° C to 160 ° C. Next, when the current applied to the pressure device 2 is stopped and the air cylinder 4 is operated to raise the pressure device 2, the liquid crystal panel 8 is taken out of the stage 1 and the pressure-bonded portion is observed under a microscope. No positional deviation of the electrode pattern of TCP 10 was observed, and the connection was confirmed by electrical inspection.

【0025】本実施例において、被接続基板はガラス基
板であり、熱膨張係数は、約8×10-6/Kである。圧
着前の温度は加圧装置およびガラス基板共25℃であ
り、圧着時の到達温度は加圧装置は250℃、ガラス基
板は160℃である。よって(数3)により加圧装置2
に求められる熱膨張係数は、4.8×10-6/Kとな
る。
In this embodiment, the substrate to be connected is a glass substrate and the coefficient of thermal expansion is about 8 × 10 -6 / K. The temperature before pressure bonding is 25 ° C. for both the pressure device and the glass substrate, and the temperature reached during pressure bonding is 250 ° C. for the pressure device and 160 ° C. for the glass substrate. Therefore, according to (Equation 3), the pressure device 2
The coefficient of thermal expansion required for is 4.8 × 10 −6 / K.

【0026】本実施例で加圧装置に使用したモリブデン
は熱膨張係数が、約4.8×10-6/Kであり、かつ耐
熱性や機械的強度も優れており本用途に適したものであ
る。ただし加圧装置に使用できる材料はモリブデンに限
るものではなく、他にニッケル−鉄合金やタングステン
など熱膨張係数が前記計算値にほぼ一致しかつ耐熱性お
よび機械的強度が本用途に耐えられるものならば使用可
能である。なお当然ながら前記計算に用いる各パラメー
タは基板、接続装置、接続温度条件が異なると値が変化
するためα1の計算値も異なった値となる。
Molybdenum used in the pressurizing device in this example has a coefficient of thermal expansion of about 4.8 × 10 −6 / K, and is excellent in heat resistance and mechanical strength, and is suitable for this application. Is. However, the material that can be used for the pressurizer is not limited to molybdenum, but other materials such as nickel-iron alloy and tungsten whose coefficient of thermal expansion almost matches the above calculated value and whose heat resistance and mechanical strength can withstand this application. Then it can be used. Of course, each parameter used in the above calculation varies depending on the substrate, the connection device, and the connection temperature conditions, and therefore the calculated value of α 1 also has a different value.

【0027】次に、本発明の他の実施例を説明する。Next, another embodiment of the present invention will be described.

【0028】図5は本実施例における半導体素子接続方
法に用いられる装置の側面図である。半導体素子を被接
続基板に圧着する加圧装置は図6に示すようにモリブデ
ン製のブロックを加工した圧接部材15と上下可動式の
加熱ブロック16より構成される。加熱ブロック16は
真鍮製のブロックに円筒状ヒーター17を埋め込んだ構
造であり、温度センサ19にて温度を検出しヒーター電
流を制御することにより加熱ブロックを一定の温度に保
つことができ、エアシリンダ18の動作により加熱ブロ
ック16を圧接部材15に近接または密着させることに
より圧接部材を加熱し昇温させることができる。このよ
うに加熱ブロックと圧接部材を分離した構造は、実施例
1における図2に示す加圧装置のような複雑かつ高精度
な加工を要する部材が不要、パルス状大電流を供給する
電源が不要、温度の均一性が高いといった利点がある。
図5に示すように加圧装置全体はエアシリンダ4により
上下に移動し、ステージ1上に置かれた被接続基板の端
子部を加圧することができる。
FIG. 5 is a side view of an apparatus used in the semiconductor element connecting method in this embodiment. As shown in FIG. 6, the pressurizing device for press-bonding the semiconductor element to the substrate to be connected is composed of a press-contact member 15 obtained by processing a block made of molybdenum and a vertically movable heating block 16. The heating block 16 has a structure in which a cylindrical heater 17 is embedded in a brass block. By detecting the temperature with a temperature sensor 19 and controlling the heater current, the heating block can be kept at a constant temperature. By the operation of 18, the heating block 16 is brought close to or in close contact with the press contact member 15, so that the press contact member can be heated to raise the temperature. The structure in which the heating block and the pressure contact member are separated in this way does not require a member that requires complicated and highly accurate processing such as the pressurizing device shown in FIG. 2 in the first embodiment, and does not require a power source for supplying a pulsed large current. There is an advantage that the temperature uniformity is high.
As shown in FIG. 5, the entire pressurizing device can be moved up and down by the air cylinder 4 to pressurize the terminal portion of the substrate to be connected placed on the stage 1.

【0029】本実施例では被接続基板は液晶パネルを構
成するガラス基板であり、接続される半導体素子はテー
プキャリアパッケージ(TCP)実装されたLSIであ
る。
In this embodiment, the substrate to be connected is a glass substrate forming a liquid crystal panel, and the semiconductor element to be connected is an LSI mounted with a tape carrier package (TCP).

【0030】まず図7に示すように、TCP10と液晶
パネル8の端子11上の電極パターンを位置整合した状
態で異方導電性接着シート12の粘着性を利用して仮接
着した。
First, as shown in FIG. 7, the TCP 10 and the electrode pattern on the terminal 11 of the liquid crystal panel 8 were temporarily aligned with each other using the adhesive property of the anisotropic conductive adhesive sheet 12 in a state of being aligned.

【0031】次に図8に示すように液晶パネル8の端子
9が加圧装置の圧接部材15の直下に来るように配置
し、エアシリンダ14の動作により圧接部材を降下させ
液晶パネル端子11上のTCP10を約1.96MPa
の圧力で加圧した。次にエアシリンダ18の動作により
265℃に保持した加熱ブロック16を下降させ圧接部
材15に密着し、圧接部材を介して液晶パネル8の端子
11を加熱する。本実施例では圧接部材15は加熱ブロ
ック密着前は25℃であり密着5秒後に250℃に達
し、20秒後までほぼその温度を維持した。この時液晶
パネル端子9の温度は25℃から160℃まで上昇し
た。図8は加熱ブロック16が圧接部材15に密着して
いる状態を示す。次に加熱ブロック16を圧接部材15
より分離した後エアシリンダ14の動作により加圧装置
を上昇させ、その後液晶パネル8をステージ1より取り
出し圧着部を顕微鏡観察したところ液晶パネル端子部の
電極パターンとTCPの電極パターンの位置ズレは見ら
れなく、電気検査により接続が確認できた。
Next, as shown in FIG. 8, the terminals 9 of the liquid crystal panel 8 are arranged so as to be located directly below the pressure contact member 15 of the pressure device, and the operation of the air cylinder 14 causes the pressure contact member to descend, so that the liquid crystal panel terminal 11 is placed above. TCP10 of about 1.96 MPa
It was pressurized with the pressure of. Next, the heating block 16 kept at 265 ° C. is lowered by the operation of the air cylinder 18 to be brought into close contact with the pressure contact member 15, and the terminal 11 of the liquid crystal panel 8 is heated via the pressure contact member. In this embodiment, the pressure contact member 15 was at 25 ° C. before contact with the heating block, reached 250 ° C. after 5 seconds of contact, and maintained that temperature for about 20 seconds. At this time, the temperature of the liquid crystal panel terminal 9 rose from 25 ° C to 160 ° C. FIG. 8 shows a state where the heating block 16 is in close contact with the press contact member 15. Next, the heating block 16 is attached to the pressing member 15 by pressing.
After further separating, the pressure device is raised by the operation of the air cylinder 14, and then the liquid crystal panel 8 is taken out from the stage 1 and the pressure-bonded portion is observed with a microscope. As a result, the positional deviation between the electrode pattern of the liquid crystal panel terminal portion and the TCP electrode pattern is observed. The electrical inspection confirmed the connection.

【0032】本実施例において、被接続基板はガラス基
板であり、熱膨張係数は、約8×10-6/Kである。圧
着前の温度は圧接部材およびガラス基板共25℃であ
り、圧着時の到達温度は加圧装置は250℃、ガラス基
板は160℃である。よって(数3)により加圧装置に
求められる熱膨張係数は、4.8×10-6/Kとなる。
In this embodiment, the substrate to be connected is a glass substrate and the coefficient of thermal expansion is about 8 × 10 -6 / K. The temperature before pressure bonding is 25 ° C. for both the pressure contact member and the glass substrate, and the temperature reached during pressure bonding is 250 ° C. for the pressure device and 160 ° C. for the glass substrate. Therefore, the thermal expansion coefficient required for the pressurizing device according to (Equation 3) is 4.8 × 10 −6 / K.

【0033】本実施例で圧接部材に使用したモリブデン
は熱膨張係数が、約4.8×10-6/Kであり、かつ耐
熱性や機械的強度も優れており本用途に適したものであ
る。ただし加圧装置に使用できる材料はモリブデンに限
るものではなく、他にニッケル−鉄合金やタングステン
など熱膨張係数が前記計算値にほぼ一致しかつ耐熱性お
よび機械的強度が本用途に耐えられるものならば使用可
能である。
The molybdenum used for the pressure contact member in this example has a coefficient of thermal expansion of about 4.8 × 10 -6 / K, and also has excellent heat resistance and mechanical strength, and is suitable for this application. is there. However, the material that can be used for the pressurizer is not limited to molybdenum, but other materials such as nickel-iron alloy and tungsten whose coefficient of thermal expansion almost matches the above calculated value and whose heat resistance and mechanical strength can withstand this application. Then it can be used.

【0034】[0034]

【発明の効果】以上述べたところから明らかなように、
本発明の半導体素子接続方法は、異方導電性接着シート
を用いた熱圧着工法でありながら、熱圧着時に原理的に
生じる位置ズレを根本的に無くしたものであり、高精度
の接続が要求される高表示画素密度のカラー液晶パネル
等の製造を可能にするものである。
As is apparent from the above description,
The semiconductor element connection method of the present invention is a thermocompression bonding method using an anisotropic conductive adhesive sheet, but fundamentally eliminates the positional deviation that occurs in principle during thermocompression bonding, and requires highly accurate connection. It is possible to manufacture a color liquid crystal panel having a high display pixel density.

【0035】また、本発明は液晶パネルだけでなく異方
導電性接着シートを用いた接続工法において広く適用で
き、非常に高い位置精度が容易に得られるという工業的
価値の大なるものである。
Further, the present invention can be widely applied not only to liquid crystal panels but also to a connection construction method using an anisotropic conductive adhesive sheet, and it is of great industrial value that a very high positional accuracy can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における半導体素子接続装置
の側面図
FIG. 1 is a side view of a semiconductor element connecting device according to an embodiment of the present invention.

【図2】同上半導体素子接続装置の加圧装置斜視図FIG. 2 is a perspective view of a pressure device of the same semiconductor element connecting device as above.

【図3】同上半導体素子接続工程の一工程斜視図FIG. 3 is a perspective view of one step of the semiconductor element connecting step of the same.

【図4】同上半導体素子接続工程の一工程側面図FIG. 4 is a side view of one step of the semiconductor element connecting step of the same.

【図5】本発明の他の実施例における半導体素子接続装
置の側面図
FIG. 5 is a side view of a semiconductor element connecting device according to another embodiment of the present invention.

【図6】同上半導体素子接続装置の加圧装置側面図FIG. 6 is a side view of a pressure device of the semiconductor element connecting device of the same as above.

【図7】同上半導体素子接続工程の一工程斜視図FIG. 7 is a perspective view showing a step of connecting the semiconductor elements in the same as above.

【図8】同上半導体素子接続工程の一工程側面図FIG. 8 is a side view of one step of the semiconductor element connecting step of the same.

【図9】従来例における液晶パネルの斜視図FIG. 9 is a perspective view of a liquid crystal panel in a conventional example.

【図10】同上熱圧着工程の一工程側面図FIG. 10 is a side view of one process of the thermocompression bonding process.

【図11】(a)は、同上液晶パネルの断面図、(b)
は、同上液晶パネルの断面図、(c)は、同上液晶パネ
ルの断面図、(d)は、同上液晶パネルの断面図
11 (a) is a sectional view of the liquid crystal panel of the same as above, FIG.
Is a sectional view of the same liquid crystal panel, (c) is a sectional view of the same liquid crystal panel, and (d) is a sectional view of the same liquid crystal panel.

【符号の説明】 1ステージ 2加圧装置 3基礎
フレーム 4エアシリンダー 5金属ブロック 6温度
センサー 7圧接面 8液晶パネル 9液晶
パネル端子 10テープキャリアパッケージ(TCP) 11異
方導電性接着シート 12半導体チップ 13ステージ 14エ
アシリンダ 15圧接部材 16加熱ブロック 17円
筒状ヒーター 18エアシリンダ 19温度センサー 20液
晶パネル 21端子 22異方導電性接着シート 23テープキャリアパッケージ(TCP) 24半
導体チップ 25加圧装置 26TCP電極 27液
晶パネル電極
[Explanation of symbols] 1 stage 2 pressurizing device 3 basic frame 4 air cylinder 5 metal block 6 temperature sensor 7 pressure contact surface 8 liquid crystal panel 9 liquid crystal panel terminal 10 tape carrier package (TCP) 11 anisotropic conductive adhesive sheet 12 semiconductor chip 13 Stage 14 Air Cylinder 15 Pressing Member 16 Heating Block 17 Cylindrical Heater 18 Air Cylinder 19 Temperature Sensor 20 Liquid Crystal Panel 21 Terminal 22 Anisotropic Conductive Adhesive Sheet 23 Tape Carrier Package (TCP) 24 Semiconductor Chip 25 Pressurizing Device 26 TCP Electrode 27 Liquid crystal panel electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】異方導電性接着シートを介して半導体素子
を被接続基板に仮固定する工程と、前記被接続基板をス
テージ上に配置した後加圧装置により前記半導体素子を
加圧し同時に加熱する熱圧着工程とを備え、前記加圧装
置がパルス状電流により発熱する金属製ブロックであ
り、前記金属が、前記熱圧着工程における前記被接続基
板と加圧装置の到達温度差に対応し両者の熱膨張による
寸法変化値が実質上一致するような熱膨張係数を持つこ
とを特徴とする半導体素子接続方法。
1. A step of temporarily fixing a semiconductor element to a substrate to be connected through an anisotropic conductive adhesive sheet, and placing the substrate to be connected on a stage and then pressurizing the semiconductor element by a pressurizing device to simultaneously heat the semiconductor element. And a thermocompression bonding step, wherein the pressurizing device is a metal block that generates heat with a pulsed current, and the metal corresponds to a difference in temperature reached between the connected substrate and the pressurizing device in the thermocompression bonding process. A semiconductor element connecting method, which has a coefficient of thermal expansion such that the dimensional change values due to the thermal expansion of are substantially the same.
【請求項2】異方導電性接着シートを介して半導体素子
を被接続基板に仮固定する工程と、前記被接続基板をス
テージ上に配置した後加圧装置により前記半導体素子を
加圧し同時に加熱する熱圧着工程とを備え、前記加圧装
置が高温に保持された加熱ブロックと前記半導体素子に
直接接する圧接部材を有し、前記圧接部材が、前記熱圧
着工程における前記被接続基板と圧接部材の到達温度差
に対応し両者の熱膨張による寸法変化値が実質上一致す
るような熱膨張係数を持つことを特徴とする半導体素子
接続方法。
2. A step of temporarily fixing a semiconductor element to a connection substrate through an anisotropic conductive adhesive sheet, and a step of placing the connection substrate on a stage and then pressing the semiconductor element by a pressure device to simultaneously heat the semiconductor element. A thermocompression bonding step, wherein the pressing device has a heating block held at a high temperature and a pressure contact member that is in direct contact with the semiconductor element, and the pressure contact member has the connection substrate and the pressure contact member in the thermocompression bonding step. A semiconductor element connecting method characterized by having a coefficient of thermal expansion such that the dimensional change values due to the thermal expansion of both of them substantially correspond to each other in the reached temperature difference.
JP29309393A 1993-11-24 1993-11-24 Semiconductor element connection method Expired - Fee Related JP3361583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29309393A JP3361583B2 (en) 1993-11-24 1993-11-24 Semiconductor element connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29309393A JP3361583B2 (en) 1993-11-24 1993-11-24 Semiconductor element connection method

Publications (2)

Publication Number Publication Date
JPH07147301A true JPH07147301A (en) 1995-06-06
JP3361583B2 JP3361583B2 (en) 2003-01-07

Family

ID=17790343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29309393A Expired - Fee Related JP3361583B2 (en) 1993-11-24 1993-11-24 Semiconductor element connection method

Country Status (1)

Country Link
JP (1) JP3361583B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120815A (en) * 2004-10-21 2006-05-11 Hitachi Chem Co Ltd Packaging method
CN100407881C (en) * 2004-10-13 2008-07-30 友达光电股份有限公司 Pressed-on appts
JP2016058581A (en) * 2014-09-10 2016-04-21 日立化成株式会社 Semiconductor device manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100407881C (en) * 2004-10-13 2008-07-30 友达光电股份有限公司 Pressed-on appts
JP2006120815A (en) * 2004-10-21 2006-05-11 Hitachi Chem Co Ltd Packaging method
JP2016058581A (en) * 2014-09-10 2016-04-21 日立化成株式会社 Semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP3361583B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
CN108695180B (en) Crimping device
JPH04289824A (en) Method for connecting liquid crystal display element to flexible substrate
JP3361583B2 (en) Semiconductor element connection method
JP2009260379A (en) Bonding apparatus and bonding method using the same
JPH10111484A (en) Press bonding device of liquid crystal panel, and production of liquid crystal device
JP4385895B2 (en) Bonding equipment
JPH07130795A (en) Semiconductor element connecting method and apparatus therefor
JP2007115893A (en) Method and apparatus for thermocompression bonding
JP3483219B2 (en) Outer lead bonding equipment
JP3250000B2 (en) Terminal connection structure of liquid crystal display panel and terminal connection method
JPH0493041A (en) Thermocomprerssion bonding method
JPH1197487A (en) Mounting method and the device and anisotropic conductive sheet
JP2003347359A (en) Driver ic pressure bonding device and pressure bonding method
JPH10303256A (en) Tape carrier connection method
JPH09186191A (en) Thermal pressure welding packaging method and apparatus
JPH117040A (en) Method and device for manufacturing liquid crystal display device
JP4982318B2 (en) Electronic device manufacturing method and manufacturing apparatus thereof
JPH0997813A (en) Thermocompression bonding device
JPH04250493A (en) External connecting method for display panel
JP2006147766A (en) Method for connecting cof
JP2009170587A (en) Method and apparatus for manufacturing electronic device
JP2008091804A (en) Electronic component crimping method and apparatus
JPH05341303A (en) Bonding device
JPH11330154A (en) Flexible substrate, tape-carrier package using this and mounting method thereof
JP3066851B2 (en) Liquid crystal display board substrate overlay method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081018

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081018

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091018

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101018

LAPS Cancellation because of no payment of annual fees