JPH07137117A - Blow molding method - Google Patents

Blow molding method

Info

Publication number
JPH07137117A
JPH07137117A JP30750693A JP30750693A JPH07137117A JP H07137117 A JPH07137117 A JP H07137117A JP 30750693 A JP30750693 A JP 30750693A JP 30750693 A JP30750693 A JP 30750693A JP H07137117 A JPH07137117 A JP H07137117A
Authority
JP
Japan
Prior art keywords
compressed air
molding method
blow molding
weight
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30750693A
Other languages
Japanese (ja)
Inventor
Kazuaki Hashimoto
和明 橋本
Shigemi Matsumoto
繁美 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP30750693A priority Critical patent/JPH07137117A/en
Publication of JPH07137117A publication Critical patent/JPH07137117A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a blow molded piece having excellent impact resistance and surface property by expanding a parison in a dowel mold by supplying compressed air, supplying and discharging the compressed air simultaneously so as to cool circularly. CONSTITUTION:A parison or a sheet formed by extruding a thermoplastic resin is expanded in a dowel mold capable of regulating its outer wall by supplying compressed air, and supplying and discharging of the compressed air are performed simultaneously so as to cool circularly. For example, the supplying and the discharging of the compressed air can be performed preferably by using a double pipe nozzle. Here, the double pipe nozzle has a compressed air supply passage 3 having a compressed air induction opening 1 at its one end and a compressed air injection opening 2 at its other end, and has a compressed air discharge passage 4 on its outer periphery. Further, an end 5 on the inner side of the compressed air discharge passage 4 communicates with the compressed air injection opening 2 and a compressed air discharge opening 6 is provided at other end on the outer side, i.e., near an attaching part 7. According to this blow molding method, a molded piece having excellent mechanical strength and appearance can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ブロー成形により優れ
た耐衝撃強度及び外観を有する成形品を得る方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for obtaining a molded article having excellent impact strength and appearance by blow molding.

【0002】[0002]

【従来の技術】従来より、ブロー成形はボトル等の成形
品を得る方法として、高密度ポリエチレン、低密度ポリ
エチレン、線状低密度ポリエチレン、ポリ塩化ビニル等
の熱可塑性樹脂を用いて実施されてきた。最近は熱的性
質、機械的性質に優れるいわゆるエンジニアリングプラ
スチックスを用い、エアーダクト、照明用器具等の電気
・電子部品、エアースポイラー、コンソール等の自動車
部品が製造されている。しかし乍ら、使用されるエンジ
ニアリングプラスチックスがブロー成形の際に200℃
以上の高い温度下で大気中にさらされるために、劣化に
よる成形品の性能低下が避けられなかった。特に耐衝撃
強度の低下は著しく、使用に耐えるものが得られなかっ
た。
2. Description of the Related Art Conventionally, blow molding has been carried out using thermoplastic resins such as high-density polyethylene, low-density polyethylene, linear low-density polyethylene and polyvinyl chloride as a method for obtaining molded articles such as bottles. . Recently, so-called engineering plastics, which have excellent thermal and mechanical properties, are used to manufacture electric / electronic components such as air ducts and lighting equipment, and automobile components such as air spoilers and consoles. However, the engineering plastics used are blown at 200 ° C during blow molding.
Since it is exposed to the atmosphere at the above high temperature, deterioration of the performance of the molded product due to deterioration cannot be avoided. In particular, the impact strength was markedly reduced, and a product that could be used was not obtained.

【0003】この問題を改善する目的で、酸化防止剤、
熱安定剤等を多量に添加する方法が行われているが、そ
の効果は満足できるものではなく、これら添加剤のブリ
ードにより成形品の表面性を低下させ、かえって品質の
低下を生じさせる結果になっていた。
For the purpose of improving this problem, antioxidants,
Although a method of adding a large amount of heat stabilizers and the like has been performed, the effect is not satisfactory, and the bleeding of these additives deteriorates the surface property of the molded product, and rather causes the deterioration of quality. Was becoming.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の如き
問題を解消し、耐衝撃性等の機械的強度及び成形品の表
面性に優れたブロー成形品を得る方法を提供する。
SUMMARY OF THE INVENTION The present invention provides a method for solving the above-mentioned problems and obtaining a blow-molded article having excellent mechanical strength such as impact resistance and excellent surface properties of the molded article.

【0005】[0005]

【課題を解決するための手段】これらの課題を解決する
ために本発明者らは鋭意検討した結果、圧縮空気の供給
と同時に排気を行い循環冷却することにより、上記課題
が解決されることを見い出し本発明に至った。即ち、本
発明は、熱可塑性樹脂を押出して形成したパリソン又は
シートをその外壁を規制し得る合せ金型内で圧縮空気を
供給してふくらませ、その保持圧力により合せ金型の内
壁に密着させた後冷却する成形法において、圧縮空気の
供給と排出とを同時に行い循環冷却することを特徴とす
るブロー成形法を内容とするものである。
As a result of intensive studies made by the present inventors in order to solve these problems, it has been found that the above problems can be solved by supplying compressed air, exhausting it, and circulatingly cooling it. The present invention has been found. That is, according to the present invention, a parison or a sheet formed by extruding a thermoplastic resin is inflated by supplying compressed air in a molding die capable of regulating the outer wall thereof, and brought into close contact with the inner wall of the molding die by its holding pressure. In the post-cooling molding method, the blow molding method is characterized in that the compressed air is supplied and discharged at the same time to circulate and cool.

【0006】本発明に使用される熱可塑性樹脂は成形品
の所望の性能にもよるが、熱的性質としては熱変形温度
で90℃以上(4.6kg/cm2荷重・ASTM D−64
8−56)のものが好ましく、パリソン又はシートが2
00℃以上の温度において、酸素、水等により劣化が激
しい熱可塑性樹脂に特に好的に適用できる。熱可塑性樹
脂の具体例としては、ポリオレフィン系樹脂、塩化ビニ
ル系樹脂、ポリスチレン樹脂、HIポリスチレン樹脂、
ABS樹脂、スチレンの一部または大部分をα−メチル
スチレン、マレイミド等に置き換えた耐熱ABS樹脂、
ブタジエンをエチレン−プロピレン系ゴム、ポリブチル
アクリレート等に置き換えた(耐熱)AES樹脂、(耐
熱)AAS樹脂等で例示されるABS系樹脂、(変性)
ポリフェニレンエーテル、ポリカーボネート、ポリアミ
ド、ポリプロピレン、ポリアセタール、ポリサルフォ
ン、ポリアリレート、ポリエーテルイミド等が挙げら
れ、これらは単独又は2種以上組み合わせて用いられ
る。
The thermoplastic resin used in the present invention has a thermal property of 90 ° C. or more (4.6 kg / cm 2 load / ASTM D-64) depending on the desired performance of the molded product.
8-56) preferred, parison or sheet 2
It can be particularly preferably applied to a thermoplastic resin which is severely deteriorated by oxygen, water and the like at a temperature of 00 ° C. or higher. Specific examples of the thermoplastic resin include polyolefin resin, vinyl chloride resin, polystyrene resin, HI polystyrene resin,
ABS resin, heat-resistant ABS resin in which a part or most of styrene is replaced with α-methylstyrene, maleimide, etc.
ABS resin exemplified by (heat resistant) AES resin and (heat resistant) AAS resin in which butadiene is replaced with ethylene-propylene rubber, polybutyl acrylate, etc. (modified)
Examples thereof include polyphenylene ether, polycarbonate, polyamide, polypropylene, polyacetal, polysulfone, polyarylate, and polyetherimide, and these may be used alone or in combination of two or more.

【0007】圧縮空気の供給と排出とを同時に行い循環
冷却する方法は特に制限されるものではなく、例えば、
従来の吹き込み用空気の供給路を利用して二重管式の排
出路を設置することが可能である。また、供給路と別個
に排出路を設置することも効果的である。
The method of circulating and cooling by simultaneously supplying and discharging compressed air is not particularly limited.
It is possible to install a double-pipe type discharge path using the conventional supply path of the blowing air. It is also effective to install the discharge passage separately from the supply passage.

【0008】例えば、図1に示すような二重管式ノズル
を用いて圧縮空気の供給と排出とを好適に行うことがで
きる。図1において、二重管式ノズルは一端に圧縮空気
導入口1を、他端に圧縮空気注入口2を有する圧縮空気
供給路3を備え、その外周に圧縮空気排出路4を備えて
なる。該圧縮空気排出路4の内側の一端5は圧縮空気注
入口2と連絡するとともに、外側の他端、即ち取付部7
の付近には圧縮空気排出口6が設けられている。圧縮空
気の供給量及び排出量は所望の条件により適宜選択され
るが、循環冷却中の供給圧力は2.1〜20.1kg/cm2
・ゲージ圧、内部圧力は2.0〜20.0kg/cm2・ゲー
ジ圧であり、その差圧が0.1kg/cm2・ゲージ圧以上で
あることが好ましい。差圧が0.1kg/cm2・ゲージ圧未
満では循環冷却効果が少なく好ましくない。更に必要に
応じて、冷却された空気を使用したり、窒素、二酸化炭
素等の不活性気体を使用することにより、更に効果を発
揮させることも可能である。
For example, it is possible to preferably supply and discharge compressed air by using a double pipe type nozzle as shown in FIG. In FIG. 1, the double-tube nozzle has a compressed air inlet 1 at one end, a compressed air supply passage 3 having a compressed air inlet 2 at the other end, and a compressed air discharge passage 4 at its outer periphery. One end 5 on the inner side of the compressed air discharge passage 4 communicates with the compressed air inlet 2, and the other end on the outer side, that is, the mounting portion 7
A compressed air discharge port 6 is provided in the vicinity of. The supply amount and discharge amount of compressed air are appropriately selected according to the desired conditions, but the supply pressure during circulating cooling is 2.1 to 20.1 kg / cm 2
The gauge pressure and the internal pressure are 2.0 to 20.0 kg / cm 2 · gauge pressure, and the differential pressure is preferably 0.1 kg / cm 2 · gauge pressure or more. When the differential pressure is less than 0.1 kg / cm 2 · gauge pressure, the effect of circulating cooling is small, which is not preferable. Further, if necessary, it is possible to exert further effects by using cooled air or by using an inert gas such as nitrogen or carbon dioxide.

【0009】[0009]

【実施例】以下に実施例及び比較例を示し本発明を更に
具体的に説明するが、これらは本発明を何ら限定するも
のではない。
EXAMPLES The present invention will be described in more detail below by showing Examples and Comparative Examples, but these do not limit the present invention in any way.

【0010】実施例1〜5、比較例1〜4 (イ)実施例及び比較例に用いた熱可塑性樹脂1〜5 熱可塑性樹脂1 α─メチルスチレン33.3重量%、ブタジエン20重
量%、アクリロニトリル24重量%、スチレン22.7
重量%からなるABS系樹脂100重量部にフェノール
系酸化剤0.3重量部を添加したもの。熱変形温度11
0℃。 熱可塑性樹脂2 熱可塑性樹脂1において、フェノール系酸化剤0.3重
量部に代えてホスファイト系安定剤1重量部を添加した
もの。熱変形温度107℃。 熱可塑性樹脂3 フェニルマレイミド13.3重量%、ブタジェン20重
量%、アクリロニトリル17.3重量%、スチレン44
重量%からなるABS系樹脂。熱変形温度125℃。 熱可塑性樹脂4 α─スチレン33.3重量%、エチレン−プロピンゴム
20重量%、アクリロニトリル24重量%、スチレン2
2.7重量%からなるABS系樹脂。熱変形温度110
℃。 熱可塑性樹脂5 ポリフェニレンエーテル40重量%、ゴム強化ポリスチ
レン60重量%からなる変性ポリエニレンエーテル樹
脂。熱変形温度123℃。
Examples 1 to 5, Comparative Examples 1 to 4 (a) Thermoplastic resins 1 to 5 used in Examples and Comparative Examples 1 to 5 thermoplastic resin 1 α-methylstyrene 33.3% by weight, butadiene 20% by weight, Acrylonitrile 24% by weight, styrene 22.7
One in which 0.3 parts by weight of a phenol-based oxidizer is added to 100 parts by weight of an ABS resin composed of 100% by weight. Heat distortion temperature 11
0 ° C. Thermoplastic resin 2 Thermoplastic resin 1 containing 1 part by weight of a phosphite-based stabilizer in place of 0.3 part by weight of a phenol-based oxidizing agent. Heat distortion temperature 107 ° C. Thermoplastic resin 3 Phenylmaleimide 13.3% by weight, butadiene 20% by weight, acrylonitrile 17.3% by weight, styrene 44
ABS resin consisting of wt%. Heat distortion temperature 125 ° C. Thermoplastic resin 4 α-styrene 33.3% by weight, ethylene-propyne rubber 20% by weight, acrylonitrile 24% by weight, styrene 2
ABS resin consisting of 2.7% by weight. Heat distortion temperature 110
° C. Thermoplastic resin 5 A modified polyenylene ether resin composed of 40% by weight of polyphenylene ether and 60% by weight of rubber-reinforced polystyrene. Heat distortion temperature 123 ° C.

【0011】(ロ)上記熱可塑性樹脂1〜5の製造 熱可塑性樹脂1 共重合体(A):攪拌機つき重合機に水250重量部、
アルキルベンゼンスルホン酸ナトリウム2重量部を仕込
み窒素置換後70℃に昇温し、過硫酸カリウム0.2重
量部を添加し、α─メチルスチレン50重量部、アクリ
ロニトリル30重量部、スチレン20重量部、t−ドデ
シルメルカプタン0.3重量部からなる単量体混合物を
重合温度70℃で連続的に7時間かけて滴下して滴下終
了後、重合温度を75℃にして1時間攪拌を続け重合を
終了させた。重合転化率は98.5重量%、極限粘度は
0.65dl/g(DMF溶液、30℃、以下同じ)であっ
た。
(B) Production of the thermoplastic resins 1 to 5 Thermoplastic resin 1 Copolymer (A): 250 parts by weight of water in a polymerization machine equipped with a stirrer,
After charging 2 parts by weight of sodium alkylbenzene sulfonate and purging with nitrogen, the temperature was raised to 70 ° C., 0.2 parts by weight of potassium persulfate was added, 50 parts by weight of α-methylstyrene, 30 parts by weight of acrylonitrile, 20 parts by weight of styrene, t -A monomer mixture consisting of 0.3 parts by weight of dodecyl mercaptan was continuously added dropwise at a polymerization temperature of 70 ° C over 7 hours, and after the dropping was completed, the polymerization temperature was set to 75 ° C and stirring was continued for 1 hour to complete the polymerization. It was The polymerization conversion rate was 98.5% by weight, and the intrinsic viscosity was 0.65 dl / g (DMF solution, 30 ° C., the same below).

【0012】グラフト共重合体(B):攪拌機つき重合
機に水280重量部、重量平均粒子径0.30μmのポ
リブタジエンラテックス(固形分)60重量部を仕込
み、窒素置換後70℃に昇温し、過硫酸カリウム0.1
重量部を添加し、アクリロニトリル12重量部、スチレ
ン28重量部からなる単量体混合物を重合温度70℃で
5時間かけて連続的に滴下し、滴下終了後温度70℃で
1時間攪拌を続け重合を終了させた。重合転化率は98
重量%、グラフト率は40重量%であった。
Graft copolymer (B): A polymerization machine equipped with a stirrer was charged with 280 parts by weight of water and 60 parts by weight of polybutadiene latex (solid content) having a weight average particle size of 0.30 μm, and the temperature was raised to 70 ° C. after nitrogen substitution. , Potassium persulfate 0.1
1 part by weight, and 12 parts by weight of acrylonitrile and 28 parts by weight of styrene were continuously added dropwise at a polymerization temperature of 70 ° C. over 5 hours. After completion of the addition, stirring was continued at a temperature of 70 ° C. for 1 hour to perform polymerization. Ended. Polymerization conversion rate is 98
The weight percentage and the graft ratio were 40 wt%.

【0013】上記共重合体(A)と共重合体(B)を
2:1(重量比、固形分)ラテックス状で混合し、この
固形分100重量部に対し、フェノール系酸化防止剤
(旭電化株式会社 AO−50)0.3重量部を添加
し、塩化カルシウムで塩析し、洗浄、炉過、乾燥しパウ
ダーを得た。得られたパウダーをベント付押出し機を用
いてペレット化した。熱変形温度は110℃であった。
The above copolymer (A) and the copolymer (B) were mixed in a latex form of 2: 1 (weight ratio, solid content), and 100 parts by weight of this solid content was mixed with a phenolic antioxidant (Asahi). Denka Co., Ltd. AO-50) 0.3 parts by weight was added, salting out with calcium chloride, washing, filtration, and drying to obtain a powder. The obtained powder was pelletized using an extruder with a vent. The heat distortion temperature was 110 ° C.

【0014】熱可塑性樹脂2 前記熱可塑性樹脂1において、ホスファイト系酸化防止
剤(旭電化株式会社PEP8)1重量部を混合し、ペレ
ット化した。熱変形温度は107℃であった。
Thermoplastic resin 2 In the thermoplastic resin 1, 1 part by weight of a phosphite antioxidant (PEP8, Asahi Denka Co., Ltd.) was mixed and pelletized. The heat distortion temperature was 107 ° C.

【0015】熱可塑性樹脂3 前記熱可塑性樹脂1の共重合体(A)の単量体混合物を
フェニルマレイミド20重量部、アクリロニトリル20
重量部、スチレン60重量部に変更した以外は熱可塑性
樹脂1と同様にして熱可塑性樹脂3のパウダーを得、ペ
レット化した。共重合体(A)の重合転化率は99重量
%、極限粘度は0.63dl/g、熱変形温度は125℃で
あった。
Thermoplastic resin 3 20 parts by weight of phenylmaleimide and 20 parts of acrylonitrile were added to the monomer mixture of the copolymer (A) of the thermoplastic resin 1.
A powder of the thermoplastic resin 3 was obtained and pelletized in the same manner as the thermoplastic resin 1 except that the weight part and 60 parts by weight of styrene were changed. The polymerization conversion of the copolymer (A) was 99% by weight, the intrinsic viscosity was 0.63 dl / g, and the heat distortion temperature was 125 ° C.

【0016】熱可塑性樹脂4 グラフト共重合体(B)のポリブタジエンラテックスを
重量平均粒子径0.5μmのエチレン−プロピレンゴム
ラテックスに変更した以外は前記熱可塑性樹脂1と同様
にして熱可塑性樹脂4のパウダーを得、ペレット化し
た。グラフト共重合体(B)の重合転化率は99重量
%、グラフト率は38重量%であった。
Thermoplastic resin 4 A thermoplastic resin 4 was prepared in the same manner as the thermoplastic resin 1 except that the polybutadiene latex of the graft copolymer (B) was changed to an ethylene-propylene rubber latex having a weight average particle diameter of 0.5 μm. A powder was obtained and pelletized. The polymerization conversion rate of the graft copolymer (B) was 99% by weight, and the graft rate was 38% by weight.

【0017】熱可塑性樹脂5 旭化成株式会社製ザイロンSO−700(商品名)を用
いた。
Thermoplastic resin 5 Zylon SO-700 (trade name) manufactured by Asahi Kasei Corporation was used.

【0018】(ハ)ブロー成形 ブロー成形機:株式会社プラコー製:DA−50型ブロ
ー成形機 ブロー成形条件:射出速度(指数):150、スクリュ
ー回転数:60rpm 冷却時間:100秒 ブロー成形方法:上記熱可塑性樹脂1〜5を用い、パリ
ソン温度約255℃で従来の吹込みノズル又は図1に示
す二重管式吹込みノズルを用いて成形し、外径70mm、
平均肉厚3.2mm、長さ約400mmの円筒状の成形品を
得た。得られた成形品の落錘強度と成形品外観を下記の
方法により測定・観察した。結果を表1に示す。 落錘強度:−30℃での半数破壊高さ(m)×錘の重量
(Kg) 成形品外観:成形品を目視で観察し、下記の基準により
評価した。 〇:焼け、異物等の不良が殆ど観察されない。 ×:焼け、異物等の不良が観察される。
(C) Blow molding Blow molding machine: manufactured by Placo Co., Ltd .: DA-50 type blow molding machine Blow molding conditions: injection speed (index): 150, screw rotation speed: 60 rpm Cooling time: 100 seconds Blow molding method: Using the above-mentioned thermoplastic resins 1 to 5 and molding at a parison temperature of about 255 ° C. using a conventional blow nozzle or the double-tube blow nozzle shown in FIG. 1, the outer diameter is 70 mm,
A cylindrical molded product having an average wall thickness of 3.2 mm and a length of about 400 mm was obtained. The drop weight strength and the appearance of the obtained molded product were measured and observed by the following methods. The results are shown in Table 1. Drop weight strength: Half fracture height at -30 ° C (m) x weight weight (Kg) Appearance of molded product: The molded product was visually observed and evaluated according to the following criteria. ◯: Defects such as burning and foreign matter are hardly observed. X: Defects such as burning and foreign matter are observed.

【0019】[0019]

【表1】 [Table 1]

【0020】註:*は該印を付した熱可塑性樹脂及び流
体をそれぞれ「使用した」ことを意味する。
Note: * means "used" with the marked thermoplastic and fluid respectively.

【0021】[0021]

【発明の効果】叙上のとおり、本発明のブロー成形法に
よれば、機械的強度及び外観に優れた成形品が得られ
る。
As described above, according to the blow molding method of the present invention, a molded product excellent in mechanical strength and appearance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に用いられる二重管式ノズルの概
略断面図である。
FIG. 1 is a schematic cross-sectional view of a double-tube nozzle used for implementing the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮空気導入口 2 圧縮空気注入口 3 圧縮空気供給路 4 圧縮空気排出路 5 圧縮空気排出路の内側の一端 6 圧縮空気排出口 1 Compressed Air Inlet 2 Compressed Air Inlet 3 Compressed Air Supply Channel 4 Compressed Air Discharge Channel 5 One End Inside Compressed Air Discharge Channel 6 Compressed Air Discharge Port

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂を押出して形成したパリソ
ン又はシートをその外壁を規制し得る合せ金型内で圧縮
空気を供給してふくらませ、その保持圧力により合せ金
型の内壁に密着させた後冷却する成形法において、圧縮
空気の供給と排出とを同時に行い循環冷却することを特
徴とするブロー成形法。
1. A parison or sheet formed by extruding a thermoplastic resin is inflated by supplying compressed air in a molding die capable of regulating the outer wall of the parison or sheet, and is brought into close contact with the inner wall of the molding die by its holding pressure. In the cooling molding method, a blow molding method is characterized in that the compressed air is supplied and discharged at the same time to circulate and cool.
【請求項2】 圧縮空気の供給圧力が2.1〜20.1
Kg/cm2 ゲージ圧、内部圧力が2.0〜20.0Kg/cm
2 ゲージ圧であり、その差圧が0.1Kg/cm2 ゲージ圧
以上である請求項1記載のブロー成形法。
2. The supply pressure of compressed air is 2.1 to 20.1.
Kg / cm 2 gauge pressure, internal pressure 2.0 to 20.0 Kg / cm
The blow molding method according to claim 1, wherein the pressure is 2 gauge, and the differential pressure is 0.1 kg / cm 2 gauge or more.
【請求項3】 一端に圧縮空導入口と他端に圧縮空気注
入口を有する圧縮空気供給路を備え、該圧縮空気供給路
の外周に圧縮空気排出路を備え、該圧縮空気排出路の内
側の一端は前記圧縮空気注入口と連絡するとともに、外
側の他端付近に圧縮空気排出口を備えた二重管式ノズル
を用い、圧縮空気の供給と排気とを同時に行う請求項1
又は2記載ののブロー成形法。
3. A compressed air supply path having a compressed air introduction port at one end and a compressed air injection port at the other end, a compressed air discharge path provided at the outer periphery of the compressed air supply path, and an inside of the compressed air discharge path. 2. A double-tube nozzle having one end communicating with the compressed air inlet and a compressed air outlet near the other outer end is used to simultaneously supply and exhaust compressed air.
Or the blow molding method described in 2.
【請求項4】 パリソン又はシートの温度が200℃以
上に達する請求項1〜3記載のブロー成形法。
4. The blow molding method according to claim 1, wherein the temperature of the parison or the sheet reaches 200 ° C. or higher.
【請求項5】 熱可塑性樹脂が耐熱変形温度90℃以上
(ASTM D−648−56,4.6kg/cm2荷重)で
ある請求項1〜4記載のブロー成形法。
5. The blow molding method according to claim 1, wherein the thermoplastic resin has a heat distortion resistance of 90 ° C. or higher (ASTM D-648-56, load of 4.6 kg / cm 2 ).
【請求項6】 熱可塑性樹脂がABS系樹脂である請求
項1〜5記載のブロー成形法。
6. The blow molding method according to claim 1, wherein the thermoplastic resin is an ABS resin.
JP30750693A 1993-11-12 1993-11-12 Blow molding method Pending JPH07137117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30750693A JPH07137117A (en) 1993-11-12 1993-11-12 Blow molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30750693A JPH07137117A (en) 1993-11-12 1993-11-12 Blow molding method

Publications (1)

Publication Number Publication Date
JPH07137117A true JPH07137117A (en) 1995-05-30

Family

ID=17969905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30750693A Pending JPH07137117A (en) 1993-11-12 1993-11-12 Blow molding method

Country Status (1)

Country Link
JP (1) JPH07137117A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502106A (en) * 2013-11-20 2017-01-19 シャンハイ クムホサニー プラスチックス カンパニー リミテッド High heat resistant ABS resin composition suitable for blow molding and method for preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502106A (en) * 2013-11-20 2017-01-19 シャンハイ クムホサニー プラスチックス カンパニー リミテッド High heat resistant ABS resin composition suitable for blow molding and method for preparing the same

Similar Documents

Publication Publication Date Title
EP0427104B1 (en) Improved blow molding process and compositions
JP7260301B2 (en) Thermoplastic resin composition for blow molding and molded article molded therefrom
JPH06240129A (en) Method of using polytetrafluoroethylene as nucleating agent for thermoplastic molded into foam
JP5339776B2 (en) Thermoplastic resin composition for blow molding and blow-molded product thereof
EP1339538A1 (en) Methods for molding and processing blends with thermoplastic resins
JPH07137117A (en) Blow molding method
US5227429A (en) Poly(arylene sulfide) resin composition
JPH0847963A (en) Blow molding machine and method
JPH06344430A (en) Blow molding method
JPH1160857A (en) Styrene resin composition and blow-molded article thereof
JP2005225960A (en) Rubber-modified styrenic resin composition and molded article obtained by using the same
JP5117650B2 (en) Blow molding resin composition and blow molded article
JP4094755B2 (en) Styrenic resin composition for blow molding and blow-molded product thereof
EP0398533B1 (en) Poly(arylene sulfide) resin composition
JPH04250005A (en) Manufacture of resin composition
JP4368002B2 (en) ABS resin composition and blow-molded product thereof
JP4159693B2 (en) Thermoplastic resin composition for blow molding and blow-molded product thereof
JP2001279049A (en) Abs-based resin composition for blow molding use and the resultant blow molded product
JP2008133328A (en) Method for producing polyphenylene ether resin composition
JP2000313781A (en) Styrene-based resin composition, and blow-molded product thereof
JPH06306253A (en) Thermoplastic resin composition
JPH10110075A (en) Styrene resin composition for blow molding and blow-molded styrene resin article
JP2013001808A (en) Method of blending powder filler
JPH1036626A (en) Thermoplastic resin composition for blow molding and blow molded item produced therefrom
JPH1149883A (en) Thermoplastic polyester resin foamed product and its molded product and production of thermoplastic resin foamed product

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030408