JPH06344430A - Blow molding method - Google Patents

Blow molding method

Info

Publication number
JPH06344430A
JPH06344430A JP16015393A JP16015393A JPH06344430A JP H06344430 A JPH06344430 A JP H06344430A JP 16015393 A JP16015393 A JP 16015393A JP 16015393 A JP16015393 A JP 16015393A JP H06344430 A JPH06344430 A JP H06344430A
Authority
JP
Japan
Prior art keywords
weight
blow molding
thermoplastic resin
molding method
inert fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16015393A
Other languages
Japanese (ja)
Inventor
Kazuaki Hashimoto
和明 橋本
Shigemi Matsumoto
繁美 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP16015393A priority Critical patent/JPH06344430A/en
Publication of JPH06344430A publication Critical patent/JPH06344430A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a molding being excellent in the impact resistance and the appearance by using an inert fluid to cool the extruded parison. CONSTITUTION:Gas such as nitrogen, carbon dioxide, helium, argon and neon and water, etc., are used as inert fluid. These are used individually or at least two kinds in combination. Especially nitrogen and carbon dioxide are preferably used in view of economy. The usage of inert fluid is not especially limited. These are introduced through a conventional introduction path for blowing air. Further, it is effective that the inert fluid is used at the opposite side or both sides of blowing. Pressure for pressing parison on the internal wall of a mold is selected by desired conditions and gage pressure of 2-20kg/cm<2> should be preferable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ブロー成形により優れ
た耐衝撃強度及び外観を有する成形品を得る方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for obtaining a molded article having excellent impact strength and appearance by blow molding.

【0002】[0002]

【従来の技術】従来より、ブロー成形はボトル等の成形
品を得る方法として、高密度ポリエチレン、低密度ポリ
エチレン、線状低密度ポリエチレン、ポリ塩化ビニル等
の熱可塑性樹脂を用いて実施されてきた。最近は熱的性
質、機械的性質に優れるいわゆるエンジニアリングプラ
スチックスを用い、エアーダクト、照明用器具等の電気
・電子部品、エアースポイラー、コンソール等の自動車
部品が製造されている。しかし乍ら、使用されるエンジ
ニアリングプラスチックスがブロー成形の際に200℃
以上の高い温度下で大気中にさらされるために、劣化に
よる成形品の性能低下が避けられなかった。特に耐衝撃
強度の低下は著しく、使用に耐えるものが得られなかっ
た。
2. Description of the Related Art Conventionally, blow molding has been carried out using thermoplastic resins such as high-density polyethylene, low-density polyethylene, linear low-density polyethylene and polyvinyl chloride as a method for obtaining molded articles such as bottles. . Recently, so-called engineering plastics, which have excellent thermal and mechanical properties, are used to manufacture electric / electronic components such as air ducts and lighting equipment, and automobile components such as air spoilers and consoles. However, the engineering plastics used are blown at 200 ° C during blow molding.
Since it is exposed to the atmosphere at the above high temperature, deterioration of the performance of the molded product due to deterioration cannot be avoided. In particular, the impact strength was markedly reduced, and a product that could be used was not obtained.

【0003】この問題を改善する目的で、酸化防止剤、
熱安定剤等を多量に添加する方法が行われているが、そ
の効果は満足できるものではなく、また熱安定剤のブリ
ードにより成形品の表面性を低下させ、かえって品質の
低下を生じさせる結果になっていた。
For the purpose of improving this problem, antioxidants,
Although a method of adding a large amount of a heat stabilizer, etc. has been carried out, the effect is not satisfactory, and the bleeding of the heat stabilizer reduces the surface property of the molded product, resulting in deterioration of quality. It was.

【0004】[0004]

【発明が解決しようとする課題】本発明は、耐衝撃性等
の機械的強度及び成形品の表面性に優れたブロー成形品
を得る方法を提供する。
DISCLOSURE OF THE INVENTION The present invention provides a method for obtaining a blow-molded article which is excellent in mechanical strength such as impact resistance and surface property of the molded article.

【0005】[0005]

【課題を解決するための手段】これらの課題を解決する
ために本発明者らは鋭意検討した結果、不活性流体を用
いて冷却することにより上記課題が解決されることを見
い出し本発明に至った。即ち、本発明は、熱可塑性樹脂
を押出して形成したパリソン又はシートを外壁を規制し
得る合せ金型内で流体を圧入してふくらませ、合せ金型
の内壁に密着させた後冷却する成形法において、不活性
流体を用いて冷却することを特徴とするブロー成形法を
内容とするものである。
As a result of intensive investigations by the present inventors in order to solve these problems, they found that the above problems can be solved by cooling with an inert fluid, leading to the present invention. It was That is, the present invention is a molding method in which a parison or sheet formed by extruding a thermoplastic resin is inflated by pressurizing a fluid in a molding die capable of regulating an outer wall, and closely contacted with the inner wall of the molding die and then cooled. , A blow molding method characterized by cooling with an inert fluid.

【0006】本発明に使用される熱可塑性樹脂は成形品
の所望の性能にもよるが、熱的性質としては熱変形温度
で90℃以上(4.6kg/cm2荷重・ASTM D−64
8−56)のものが好ましく、パリソン又はシートが2
00℃以上の温度において、酸素、水等により劣化が激
しい熱可塑性樹脂に特に好的に適用できる。熱可塑性樹
脂の具体例としては、ポリオレフィン系樹脂、塩化ビニ
ル系樹脂、ポリスチレン樹脂、HIポリスチレン系樹
脂、スチレン─ブタジエン─アクリロニトリルからなる
ABS樹脂、スチレンの一部または大部分をα−メチル
スチレン、マレイミド等に置き換えた耐熱ABS樹脂、
ブタジエンをエチレン−プロピレン系ゴム、ポリブチル
アクリレート等に置き換えた(耐熱)AES、(耐熱)
AAS樹脂等で例示されるABS系樹脂、(変性)ポリ
フェニレンエーテル、ポリカーボネート、ポリアミド、
ポリプロピレン、ポリアセタール、ポリサルフォン、ポ
リアリレート、ポリエーテルイミド等が挙げられ、これ
らは単独又は2種以上組み合わせて用いられる。
The thermoplastic resin used in the present invention has a thermal property of 90 ° C. or more (4.6 kg / cm 2 load / ASTM D-64) depending on the desired performance of the molded product.
8-56) preferred, parison or sheet 2
It can be particularly preferably applied to a thermoplastic resin which is severely deteriorated by oxygen, water and the like at a temperature of 00 ° C. or higher. Specific examples of the thermoplastic resin include polyolefin resin, vinyl chloride resin, polystyrene resin, HI polystyrene resin, ABS resin composed of styrene-butadiene-acrylonitrile, α-methylstyrene, maleimide as a part or most of styrene. Heat-resistant ABS resin, etc.
(Heat resistance) AES (heat resistance) in which butadiene is replaced with ethylene-propylene rubber, polybutyl acrylate, etc.
ABS resins such as AAS resins, (modified) polyphenylene ethers, polycarbonates, polyamides,
Examples thereof include polypropylene, polyacetal, polysulfone, polyarylate, and polyetherimide, and these may be used alone or in combination of two or more.

【0007】本発明に使用される不活性流体としては窒
素、二酸化炭素、ヘリウム、アルゴン、ネオン等の気体
や水等が例示される。これらは単独又は2種以上組み合
わせて用いられるが、経済的な点からは特に窒素、二酸
化炭素が好ましい。不活性流体が気体の場合は、純度と
しては酸素、水等の活性流体が10重量%以下が好まし
く、より好ましくは5重量%以下である。10重量%を
越えると酸化劣化、加水分解等に対する改善効果が不充
分となる。
Examples of the inert fluid used in the present invention include gases such as nitrogen, carbon dioxide, helium, argon and neon, water and the like. These may be used alone or in combination of two or more, and nitrogen and carbon dioxide are particularly preferable from the economical point of view. When the inert fluid is a gas, the purity of the active fluid such as oxygen and water is preferably 10% by weight or less, more preferably 5% by weight or less. If it exceeds 10% by weight, the effect of improving oxidative deterioration, hydrolysis and the like becomes insufficient.

【0008】不活性流体の使用法は特に制限されるもの
ではなく、例えば、従来の吹き込み用空気の導入路から
導入することが可能である。また金型側、即ちブローの
反対側に不活性流体を用いることも、あるいは両側に用
いることも効果的である。パリソンを金型の内壁に押し
つける圧力は所望の条件により選択されるが、2〜20
kg/cm2・ゲージ圧が好ましい。2kg/cm2・ゲージ圧未満
では大気中に存在する酸素、水の分圧の減少が少なく効
果が少ない。
The method of using the inert fluid is not particularly limited, and for example, it can be introduced from the conventional introduction path of the blowing air. It is also effective to use an inert fluid on the mold side, that is, on the opposite side of the blow, or on both sides. The pressure for pressing the parison against the inner wall of the mold is selected depending on the desired conditions, but it is 2-20.
kg / cm 2 · gauge pressure is preferred. If the pressure is less than 2 kg / cm 2 · gauge pressure, the partial pressure of oxygen and water present in the atmosphere will not decrease and the effect will be small.

【0009】[0009]

【実施例】以下に実施例及び比較例を示し本発明を更に
具体的に説明するが、これらは本発明を何ら限定するも
のではない。
EXAMPLES The present invention will be described in more detail below by showing Examples and Comparative Examples, but these do not limit the present invention in any way.

【0010】実施例1〜5、比較例1〜4 (イ)実施例及び比較例に用いた熱可塑性樹脂1〜5 熱可塑性樹脂1 α─メチルスチレン33.3重量%、ブタジエン20重
量%、アクリロニトリル24重量%、スチレン22.7
重量%からなるABS系樹脂100重量部にフェノール
系酸化剤0.3重量部を添加したもの。熱変形温度11
0℃。 熱可塑性樹脂2 熱可塑性樹脂1において、フェノール系酸化剤0.3重
量部に代えてホスファイト系安定剤1重量部を添加した
もの。熱変形温度 107℃。 熱可塑性樹脂3 フェニルマレイミド13.3重量%、ブタジェン20重
量%、アクリロニトリル17.3重量%、スチレン44
重量%からなるABS系樹脂。熱変形温度125℃。 熱可塑性樹脂4 α─スチレン33.3重量%、エチレン−プロピンゴム
20重量%、アクリロニトリル24重量%、スチレン2
2.7重量%からなるABS系樹脂。熱変形温度110
℃。 熱可塑性樹脂5 ポリフェニレンエーテル40重量%、ゴム強化ポリスチ
レン60重量%からなる変性ポリエニレンエーテル樹
脂。熱変形温度123℃。
Examples 1 to 5, Comparative Examples 1 to 4 (a) Thermoplastic resins 1 to 5 used in Examples and Comparative Examples 1 to 5 thermoplastic resin 1 α-methylstyrene 33.3% by weight, butadiene 20% by weight, Acrylonitrile 24% by weight, styrene 22.7
One in which 0.3 parts by weight of a phenol-based oxidizer is added to 100 parts by weight of an ABS resin composed of 100% by weight. Heat distortion temperature 11
0 ° C. Thermoplastic resin 2 Thermoplastic resin 1 containing 1 part by weight of a phosphite-based stabilizer in place of 0.3 part by weight of a phenol-based oxidizing agent. Heat distortion temperature 107 ° C. Thermoplastic resin 3 Phenylmaleimide 13.3% by weight, butadiene 20% by weight, acrylonitrile 17.3% by weight, styrene 44
ABS resin consisting of wt%. Heat distortion temperature 125 ° C. Thermoplastic resin 4 α-styrene 33.3% by weight, ethylene-propyne rubber 20% by weight, acrylonitrile 24% by weight, styrene 2
ABS resin consisting of 2.7% by weight. Heat distortion temperature 110
° C. Thermoplastic resin 5 A modified polyenylene ether resin composed of 40% by weight of polyphenylene ether and 60% by weight of rubber-reinforced polystyrene. Heat distortion temperature 123 ° C.

【0011】(ロ)上記熱可塑性樹脂1〜5の製造 熱可塑性樹脂1 共重合体(A):攪拌機つき重合機に水250重量部、
アルキルベンゼンスルホン酸ナトリウム2重量部を仕込
み窒素置換後70℃に昇温し、過硫酸カリウム0.2重
量部を添加し、α─メチルスチレン50重量部、アクリ
ロニトリル30重量部、スチレン20重量部、t−ドデ
シルメルカプタン0.3重量部からなる単量体混合物を
重合温度70℃で連続的に7時間かけて滴下して滴下終
了後、重合温度を75℃にして1時間攪拌を続け重合を
終了させた。重合転化率は98.5重量%、極限糖度は
0.65dl/g(DMF溶液、30℃、以下同じ)であっ
た。
(B) Production of the thermoplastic resins 1 to 5 Thermoplastic resin 1 Copolymer (A): 250 parts by weight of water in a polymerization machine equipped with a stirrer,
After charging 2 parts by weight of sodium alkylbenzene sulfonate and purging with nitrogen, the temperature was raised to 70 ° C., 0.2 parts by weight of potassium persulfate was added, 50 parts by weight of α-methylstyrene, 30 parts by weight of acrylonitrile, 20 parts by weight of styrene, t -A monomer mixture consisting of 0.3 parts by weight of dodecyl mercaptan was continuously added dropwise at a polymerization temperature of 70 ° C over 7 hours, and after the dropping was completed, the polymerization temperature was set to 75 ° C and stirring was continued for 1 hour to complete the polymerization. It was The polymerization conversion rate was 98.5% by weight, and the limiting sugar content was 0.65 dl / g (DMF solution, 30 ° C., hereinafter the same).

【0012】グラフト共重合体(B):攪拌機重合機に
水280重量部、重量平均粒子径0.30μmのポリブ
タジエンラテックス(固形分)60重量部を仕込み、窒
素置換後70℃に昇温し、過硫酸カリウム0.1重量部
を添加し、アクリロニトリル12重量部、スチレン28
重量部からなる単量体混合物を重合温度70℃で5時間
かけて連続的に滴下し、滴下終了後温度70℃で1時間
攪拌を続け重合を終了させた。重合転化率は98重量
%、グラフト率は40重量%であった。
Graft copolymer (B): 280 parts by weight of water and 60 parts by weight of polybutadiene latex (solid content) having a weight average particle size of 0.30 μm were charged into a stirrer polymerization machine, and after nitrogen substitution, the temperature was raised to 70 ° C. 0.1 parts by weight of potassium persulfate was added, and 12 parts by weight of acrylonitrile and 28 of styrene were added.
A monomer mixture consisting of parts by weight was continuously added dropwise at a polymerization temperature of 70 ° C. over 5 hours, and after completion of the addition, stirring was continued at a temperature of 70 ° C. for 1 hour to complete the polymerization. The polymerization conversion rate was 98% by weight and the graft rate was 40% by weight.

【0013】上記共重合体(A)と共重合体(B)を
2:1(重量比、固形分)ラテックス状で混合し、この
固形分100重量部に対し、フェノール系酸化防止剤
(旭電化株式会社 AO−50)0.3重量部を添加
し、塩化カルシウムで塩析し、洗浄、炉過、乾燥しパウ
ダーを得た。得られたパウダーをベント付押出し機を用
いてペレット化した。熱変形温度は110℃であった。
The above copolymer (A) and the copolymer (B) were mixed in a latex form of 2: 1 (weight ratio, solid content), and 100 parts by weight of this solid content was mixed with a phenolic antioxidant (Asahi). Denka Co., Ltd. AO-50) 0.3 parts by weight was added, salting out with calcium chloride, washing, filtration, and drying to obtain a powder. The obtained powder was pelletized using an extruder with a vent. The heat distortion temperature was 110 ° C.

【0014】熱可塑性樹脂2 前記熱可塑性樹脂1において、ホスファイト系酸化防止
剤(旭電化株式会社PEP8)1重量部を混合し、ペレ
ット化した。熱変形温度は107℃であった。
Thermoplastic resin 2 In the thermoplastic resin 1, 1 part by weight of a phosphite antioxidant (PEP8, Asahi Denka Co., Ltd.) was mixed and pelletized. The heat distortion temperature was 107 ° C.

【0015】熱可塑性樹脂3 前記熱可塑性樹脂1の共重合体(A)の単量体混合物を
フェニルマレイミド20重量部、アクリロニトリル20
重量部、スチレン60重量部に変更した以外は熱可塑性
樹脂1と同様にして熱可塑性樹脂3のパウダーを得、ペ
レット化した。共重合体(A)の重合転化率は99重量
%、極限粘度は0.63dl/g、熱変形温度は125℃で
あった。
Thermoplastic resin 3 20 parts by weight of phenylmaleimide and 20 parts of acrylonitrile were added to the monomer mixture of the copolymer (A) of the thermoplastic resin 1.
A powder of the thermoplastic resin 3 was obtained and pelletized in the same manner as the thermoplastic resin 1 except that the weight part and 60 parts by weight of styrene were changed. The polymerization conversion of the copolymer (A) was 99% by weight, the intrinsic viscosity was 0.63 dl / g, and the heat distortion temperature was 125 ° C.

【0016】熱可塑性樹脂4 グラフト共重合体(B)のポリブタジエンラテックスを
重量平均粒子径0.5μmのエチレン−プロピレンゴム
ラテックスに変更した以外は前記熱可塑性樹脂1と同様
にして熱可塑性樹脂4のパウダーを得、ペレット化し
た。グラフト共重合体(B)の重合転化率は99重量
%、グラフト率は38重量%であった。
Thermoplastic resin 4 A thermoplastic resin 4 was prepared in the same manner as the thermoplastic resin 1 except that the polybutadiene latex of the graft copolymer (B) was changed to an ethylene-propylene rubber latex having a weight average particle diameter of 0.5 μm. A powder was obtained and pelletized. The polymerization conversion rate of the graft copolymer (B) was 99% by weight, and the graft rate was 38% by weight.

【0017】熱可塑性樹脂5 旭化成株式会社製ザイロンSO−700(商品名)を用
いた。
Thermoplastic resin 5 Zylon SO-700 (trade name) manufactured by Asahi Kasei Corporation was used.

【0018】(ハ)ブロー成形 ブロー成形機:株式会社プラコー製:DA−50型ブロ
ー成形機 ブロー成形条件:射出速度(指数):150、スクリュ
ー回転数:60rpm 流体圧力:6Kg/cm2 ・ゲージ圧 冷却時間:100秒 ブロー成形方法:上記熱可塑性樹脂1〜5を用い、パリ
ソン温度約255℃で表1に示す液体を用いて成形し、
外径70mm、平均肉厚3.2mm、長さ約400mmの円筒
状の成形品を得た。得られた成形品の落錘強度と成形品
外観を下記の方法により測定・観察した。結果を表1に
示す。 落錘強度:−30℃での半数破壊高さ(m)×錘の重量
(Kg) 成形品外観:成形品を目視で観察し、下記の基準により
評価した。 〇:焼け、異物等の不良が殆ど観察されない。 ×:焼け、異物等の不良が観察される。
(C) Blow molding Blow molding machine: manufactured by Placo Co., Ltd .: DA-50 type blow molding machine Blow molding conditions: injection speed (index): 150, screw rotation speed: 60 rpm Fluid pressure: 6 kg / cm 2 · gauge Pressure Cooling time: 100 seconds Blow molding method: Using the above thermoplastic resins 1 to 5 and molding at a parison temperature of about 255 ° C. using the liquid shown in Table 1,
A cylindrical molded product having an outer diameter of 70 mm, an average wall thickness of 3.2 mm and a length of about 400 mm was obtained. The drop weight strength and the appearance of the obtained molded product were measured and observed by the following methods. The results are shown in Table 1. Drop weight strength: Half fracture height at -30 ° C (m) x weight weight (Kg) Appearance of molded product: The molded product was visually observed and evaluated according to the following criteria. ◯: Defects such as burning and foreign matter are hardly observed. X: Defects such as burning and foreign matter are observed.

【0019】[0019]

【表1】 [Table 1]

【0020】註: (1)*は該印を付した熱可塑性樹脂及び流体をそれぞ
れ「使用した」ことを意味する。 (2)窒素は純度99重量%、二酸化炭素は純度98重
量%のものを用いた。
Note: (1) * means that the marked thermoplastic resin and fluid are "used" respectively. (2) Nitrogen having a purity of 99% by weight and carbon dioxide having a purity of 98% by weight were used.

【0021】[0021]

【発明の効果】表1から明らかなように、本発明のブロ
ー成形法によれば、機械的強度及び外観に優れた成形品
が得られる。
As is apparent from Table 1, according to the blow molding method of the present invention, a molded product excellent in mechanical strength and appearance can be obtained.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂を押出して形成したパリソ
ン又はシートを外壁を規制し得る合せ金型内で流体を圧
入してふくらませ、合せ金型の内壁に密着させた後冷却
する成形法において、不活性流体を用いて冷却すること
を特徴とするブロー成形法。
1. A molding method in which a parison or sheet formed by extruding a thermoplastic resin is inflated by pressurizing a fluid in a molding die capable of regulating an outer wall, and is brought into close contact with the inner wall of the molding die and then cooled. A blow molding method characterized by cooling with an inert fluid.
【請求項2】 不活性流体が窒素、二酸化炭素、ヘリウ
ム、アルゴンおよびネオンよりなる群から選ばれる少な
くとも1種の気体からなる請求項1記載のブロー成形
法。
2. The blow molding method according to claim 1, wherein the inert fluid comprises at least one gas selected from the group consisting of nitrogen, carbon dioxide, helium, argon and neon.
【請求項3】 パリソン又はシートの温度が200℃以
上に達する請求項1又は2記載のブロー成形法。
3. The blow molding method according to claim 1, wherein the temperature of the parison or the sheet reaches 200 ° C. or higher.
【請求項4】 熱可塑性樹脂が耐熱変形温度90℃以上
(ASTM D−648−56,4.6kg/cm2荷重)で
ある請求項1記載のブロー成形法。
4. The blow molding method according to claim 1, wherein the thermoplastic resin has a heat distortion temperature of 90 ° C. or higher (ASTM D-648-56, 4.6 kg / cm 2 load).
【請求項5】 熱可塑性樹脂がABS系樹脂である請求
項1又は2記載のブロー成形法。
5. The blow molding method according to claim 1, wherein the thermoplastic resin is an ABS resin.
JP16015393A 1993-06-03 1993-06-03 Blow molding method Pending JPH06344430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16015393A JPH06344430A (en) 1993-06-03 1993-06-03 Blow molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16015393A JPH06344430A (en) 1993-06-03 1993-06-03 Blow molding method

Publications (1)

Publication Number Publication Date
JPH06344430A true JPH06344430A (en) 1994-12-20

Family

ID=15709025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16015393A Pending JPH06344430A (en) 1993-06-03 1993-06-03 Blow molding method

Country Status (1)

Country Link
JP (1) JPH06344430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502106A (en) * 2013-11-20 2017-01-19 シャンハイ クムホサニー プラスチックス カンパニー リミテッド High heat resistant ABS resin composition suitable for blow molding and method for preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502106A (en) * 2013-11-20 2017-01-19 シャンハイ クムホサニー プラスチックス カンパニー リミテッド High heat resistant ABS resin composition suitable for blow molding and method for preparing the same

Similar Documents

Publication Publication Date Title
JP3352681B2 (en) Blow molding method and composition
JP2008517093A (en) Improved rubber-modified monovinylidene aromatic polymer and molded article made therefrom
JP7260301B2 (en) Thermoplastic resin composition for blow molding and molded article molded therefrom
JPH06500806A (en) Sulfone polymer foam produced with aqueous blowing agents
JPH03109441A (en) Foam
JPH0732454A (en) Blow molding resin composition and blow molding method
JPH06344430A (en) Blow molding method
JPH0847963A (en) Blow molding machine and method
JPH07137117A (en) Blow molding method
JP4282779B2 (en) Styrenic resin composition for blow molding and blow-molded product thereof
JPH1112418A (en) Heat-resistant styrene copolymer composition
JP2005225960A (en) Rubber-modified styrenic resin composition and molded article obtained by using the same
JP4094755B2 (en) Styrenic resin composition for blow molding and blow-molded product thereof
US5432219A (en) Styrenic resin composition for extrusion
JP2002356594A (en) Resin composition for blow molding and blow molding thereof
JPH04258665A (en) Polyphenylene ether composition having improved melt strength
JP3567648B2 (en) Blow molding
CN113166457B (en) Ionomer foams of copolymers of vinylidene aromatic monomers with unsaturated compounds having acid groups and methods of forming the same
JPH1160747A (en) Master batch for extrusion foaming and its production and production of heat-resistant styrene-based resin foam using the same
JPS61254650A (en) Block copolymer composition and production thereof
JPH10110075A (en) Styrene resin composition for blow molding and blow-molded styrene resin article
JPH1149883A (en) Thermoplastic polyester resin foamed product and its molded product and production of thermoplastic resin foamed product
JP3075210B2 (en) Multi-layer blow molded product
JPH0539416A (en) Sliding molded body
JPH04277508A (en) Rubber-modified styrene resin excellent in strength and transparency

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030408