JPH07136463A - Method for treating exhaust gas - Google Patents

Method for treating exhaust gas

Info

Publication number
JPH07136463A
JPH07136463A JP5287986A JP28798693A JPH07136463A JP H07136463 A JPH07136463 A JP H07136463A JP 5287986 A JP5287986 A JP 5287986A JP 28798693 A JP28798693 A JP 28798693A JP H07136463 A JPH07136463 A JP H07136463A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
exhaust
zro
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5287986A
Other languages
Japanese (ja)
Other versions
JP3212429B2 (en
Inventor
Shigeru Nojima
野島  繁
Kozo Iida
耕三 飯田
Takafuru Kobayashi
敬古 小林
Akira Serizawa
暁 芹沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28798693A priority Critical patent/JP3212429B2/en
Publication of JPH07136463A publication Critical patent/JPH07136463A/en
Application granted granted Critical
Publication of JP3212429B2 publication Critical patent/JP3212429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To clean exhaust gas containing NOx, CO and hydrocarbons using a catalyst with high activity and a long life by arranging a catalyst containing Ir on the exhaust inflow side and an oxidation catalyst on the exhaust outflow side in a method in which exhaust gas containing nitrogen oxides is treated in the presence of hydrocarbons. CONSTITUTION:In a method for treating exhaust gas containing NOx in the presence of hydrocarbons, a catalyst containing Ir is arranged on the exhaust inflow side and an oxidation catalyst is arranged on the exhaust outflow side. The carrier of the catalyst containing Ir is composed of one or more kinds of porous material selected from gamma-Al2O3, Al2O3.ZrO2, TiO2, ZrO2, SiO2.Al2O3 Y-type zeolite, silica light, molybdenite, etc. The oxidation catalyst contains one or more kinds of active metal selected from a group consisting of Pt, Pd, and Rh. The catalyst used for cleaning exhaust gas has good durability and stability and is used advantageously for clearing exhaust gas from a lean-burn engine of a gasoline car and a diesel engine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物(以下、NO
xと略す)、一酸化炭素(CO)、炭化水素(以下、H
Cと略す)を含有する排気ガスを処理する方法に関す
る。
The present invention relates to nitrogen oxides (hereinafter referred to as NO
abbreviated as x), carbon monoxide (CO), hydrocarbon (hereinafter, H)
A method for treating an exhaust gas containing C).

【0002】[0002]

【従来の技術】自動車等の排ガス処理においては、排ガ
ス中のCO、HCを利用して、理論空燃比付近の極めて
狭い範囲でNOxを浄化しているのが一般的である。近
年、地球環境問題の高まりの中で自動車の低燃費化の要
求は強く理論空燃比以上で燃焼させるリーンバーンエン
ジンがキーテクノロジーとして注目されている。ただ
し、自動車の走行性、加速性を考慮に入れるとリーン領
域のみのエンジンは不具合点が多く、実際は理論空燃比
(ストイキオ)付近、リーン領域の双方で燃焼を行わせ
る必要がある。最近、リーン領域のNOxの浄化に関し
ては、コバルト又は銅を含有した結晶性シリケート触媒
が高性能を有する触媒として脚光をあびている。
2. Description of the Related Art In the treatment of exhaust gas from automobiles and the like, it is common to use CO and HC in the exhaust gas to purify NOx in an extremely narrow range near the stoichiometric air-fuel ratio. In recent years, the demand for low fuel consumption of automobiles has been strongly demanded due to the increase of global environmental problems, and a lean burn engine that burns at a ratio higher than the theoretical air-fuel ratio has been attracting attention as a key technology. However, considering the driving and acceleration characteristics of the automobile, there are many problems with the engine only in the lean region, and it is necessary to actually perform combustion both in the vicinity of the stoichiometric air-fuel ratio (Stoichio) and in the lean region. Recently, regarding purification of NOx in the lean region, a crystalline silicate catalyst containing cobalt or copper has been highlighted as a catalyst having high performance.

【0003】しかし、これらの触媒を用いて加速する場
合、ガス温度が瞬時に高温になり、かつ、この時のガス
組成は水素等の還元剤が過剰に存在するリッチ雰囲気に
なる。この条件においては、上記コバルト又は銅を含有
した結晶性シリケートを適用しても触媒の劣化を防ぐこ
とができないため、高温リッチ雰囲気の触媒の耐久性向
上がこれらの触媒の実用化上の大きな課題となってい
る。
However, when accelerating using these catalysts, the gas temperature instantly rises to a high temperature, and the gas composition at this time becomes a rich atmosphere in which a reducing agent such as hydrogen is excessively present. Under this condition, even if the crystalline silicate containing cobalt or copper is applied, deterioration of the catalyst cannot be prevented, and therefore improvement of durability of the catalyst in a high temperature rich atmosphere is a major problem in practical application of these catalysts. Has become.

【0004】[0004]

【発明が解決しようとする課題】上記不具合点を克服す
るため、本発明者らは鋭意検討を行ったところイリジウ
ムを担持した触媒が耐久性を有する触媒であることを見
い出している(特願平5−26369など参照)。さら
に、本発明者らはPt,Rh等の酸化触媒がCO,HC
の燃焼に加えて200〜350℃の低温域で脱硝作用を
有することを見い出している(特願平4−23070
0,特願平5−13575,特願平5−13576参
照)。
In order to overcome the above-mentioned problems, the present inventors have conducted diligent studies and found that the catalyst carrying iridium is a durable catalyst (Japanese Patent Application No. Hei 10-135242). 5-26369 etc.). Furthermore, the present inventors have found that the oxidation catalysts such as Pt and Rh are CO and HC.
It has been found that, in addition to the combustion of NOx, it has a denitration action in a low temperature range of 200 to 350 ° C (Japanese Patent Application No. 4-23070).
0, Japanese Patent Application No. 5-13575, Japanese Patent Application No. 5-13576).

【0005】リーンバーンエンジン、ディーゼルエンジ
ンの排ガス条件(ガス組成、ガス量、温度等)はボイラ
排ガスに比べ幅広く、特に温度が200〜600℃の広
範囲にて随時存在するため、高活性、長寿命な触媒を組
み合わせて適用する方法が望まれている。本発明はこの
要望に応じうるNOx,CO及びCHを含有する排気ガ
スを浄化する方法を提供しようとするものである。
Exhaust gas conditions (gas composition, gas amount, temperature, etc.) of lean burn engines and diesel engines are wider than those of boiler exhaust gas, and particularly, they exist in a wide temperature range of 200 to 600 ° C. at any time, so they have high activity and long life. A method of applying various catalysts in combination is desired. The present invention seeks to provide a method of purifying exhaust gas containing NOx, CO and CH which can meet this demand.

【0006】[0006]

【課題を解決するための手段】上記状況を鑑み筆者らは
鋭意好ましい排ガス処理方法を検討したところ、排気流
入側にイリジウムを含有した触媒を排気流出側に酸化触
媒を配置させることにより上記目的に適した方法である
ことを見い出し、本発明を完成するに至った。
In view of the above situation, the inventors of the present invention have studied earnestly the exhaust gas treatment method, and as a result, by arranging an oxidation catalyst on the exhaust gas outflow side with a catalyst containing iridium on the exhaust gas inflow side, The inventors have found that it is a suitable method and completed the present invention.

【0007】すなわち、本発明は (1)窒素酸化物を含有する排気ガスを炭化水素の存在
下で処理する方法において、排気流入側にイリジウムを
含有した触媒を排気流出側に酸化触媒を配置することを
特徴とする排気ガス処理方法。 (2)排気流入側に配置するイリジウムを含有した触媒
の担体が (1±0.8 )R2 O・〔aM2 3 ・bM′O・cAl
2 3 〕・ySiO2 (但し、上記式中、Rはアルカリ金属イオン及び/又は
水素イオン、MはVIII族元素、希土類元素、チタン、バ
ナジウム、クロム、ニオブ、アンチモン及びガリウムか
らなる群より選ばれた少なくとも1種以上の元素イオ
ン、M′はマグネシウム、カルシウム、ストロンチウ
ム、バリウムのアルカリ土類金属イオン、a≧0、20
>b≧0、a+c=1、3000>y>11)なる化学
式を有し、本文で詳記する表Aに示すX線回折パターン
を有する結晶性シリケートであることを特徴とする上記
(1)記載の排気ガス処理方法。 (3)排気流入側に配置するイリジウムを含有した触媒
の担体が組成式でγ−Al2 3 、Al2 3 ・ZrO
2 、TiO2 、ZrO2 、SiO2 ・Al2 3、Al
2 3 ・TiO2 、TiO2 ・ZrO2 、SO4 /Zr
2 、SO4 /ZrO2 ・Al2 3 、SO4 /ZrO
2 ・TiO2 、6Al2 3 ・BaO、11Al2 3
・La2 3 、Y型ゼオライト、A型ゼオライト、シリ
カライト、モルデナイト、X型ゼオライトからなる群か
ら選ばれた1種以上の多孔質物質であることを特徴とす
る上記(1)記載の排気ガス処理方法。 (4)排気流出側に配置する酸化触媒の元素が白金、パ
ラジウム、ロジウム及びルテニウムよりなる群から選ば
れた1種以上の活性金属を含有するものであることを特
徴とする上記(1)〜(3)いずれかに記載の排気ガス
処理方法。 (5)排気流出側に配置する酸化触媒において、排気の
上流側にロジウムを含有する触媒を排気の下流側に白金
を含有する触媒を直列に組み合わせて設置することを特
徴とする上記(4)記載の排気ガス処理方法。である。
That is, the present invention is: (1) In a method of treating exhaust gas containing nitrogen oxides in the presence of hydrocarbons, a catalyst containing iridium is arranged on the exhaust inflow side and an oxidation catalyst is arranged on the exhaust outflow side. An exhaust gas treatment method characterized by the above. (2) The carrier of the catalyst containing iridium placed on the exhaust inflow side is (1 ± 0.8) R 2 O. [aM 2 O 3 .bM'O.cAl
2 O 3 ] .ySiO 2 (wherein R is an alkali metal ion and / or hydrogen ion, M is a group VIII element, a rare earth element, titanium, vanadium, chromium, niobium, antimony and gallium. At least one elemental ion, M ′ is an alkaline earth metal ion of magnesium, calcium, strontium or barium, a ≧ 0, 20
> B ≧ 0, a + c = 1, 3000>y> 11), and the crystalline silicate having the X-ray diffraction pattern shown in Table A described in detail in the present text. Exhaust gas treatment method described. (3) The catalyst carrier containing iridium disposed on the exhaust inflow side has a composition formula of γ-Al 2 O 3 , Al 2 O 3 .ZrO.
2 , TiO 2 , ZrO 2 , SiO 2 · Al 2 O 3 , Al
2 O 3 · TiO 2 , TiO 2 · ZrO 2 , SO 4 / Zr
O 2 , SO 4 / ZrO 2 · Al 2 O 3 , SO 4 / ZrO
2・ TiO 2 , 6Al 2 O 3・ BaO, 11Al 2 O 3
The exhaust gas according to (1) above, which is one or more kinds of porous substances selected from the group consisting of La 2 O 3 , Y-type zeolite, A-type zeolite, silicalite, mordenite, and X-type zeolite. Gas treatment method. (4) The above (1) to (1), wherein the element of the oxidation catalyst arranged on the exhaust gas outflow side contains at least one active metal selected from the group consisting of platinum, palladium, rhodium and ruthenium. (3) The exhaust gas treatment method according to any one of the above. (5) In the oxidation catalyst arranged on the exhaust gas outflow side, the catalyst containing rhodium is installed upstream of the exhaust gas in combination with the catalyst containing platinum on the downstream side of the exhaust gas in series, and the above-mentioned (4) Exhaust gas treatment method described. Is.

【0008】本発明の排気流入側に配置する触媒におい
て、担体として使用する結晶性シリケートは下記表Aに
示すX線回折パターンを有する。
In the catalyst disposed on the exhaust gas inflow side of the present invention, the crystalline silicate used as the carrier has the X-ray diffraction pattern shown in Table A below.

【0009】[0009]

【表1】 VS:非常に強い S:強い M:中級 W:弱い X線源:Cu Kα[Table 1] VS: Very strong S: Strong M: Intermediate W: Weak X-ray source: Cu Kα

【0010】該結晶性シリケートにイリジウムを担持す
る方法としては、結晶性シリケートをイリジウム塩溶液
に浸漬し、イオン交換法又は含浸法によって担持するこ
とができる。担持するイリジウムは0.002wt%以
上で十分に活性が発現し、好ましくは0.02wt%以
上で高い活性を有する。
As a method for supporting iridium on the crystalline silicate, the crystalline silicate can be supported by immersing the crystalline silicate in an iridium salt solution and then carrying out an ion exchange method or an impregnation method. The supported iridium has a sufficient activity at 0.002 wt% or more, and preferably has a high activity at 0.02 wt% or more.

【0011】前記結晶性シリケート以外の担体としては
単独酸化物であるγ−Al2 3 、TiO2 、Zr
2 、複合酸化物であるAl2 3 ・ZrO2 、SiO
2 ・Al 2 3 、Al2 3 ・TiO2 、TiO2 ・Z
rO2 、6Al2 3 ・BaO、11Al2 3 ・La
2 3 、固体超強酸であるSO4 /ZrO2 、SO4
ZrO2 ・Al2 3 、SO4 /ZrO2 ・TiO
2 (これらの固体強酸は各元素の水酸化物、複合水酸化
物を1NのH2 SO4 に約1時間室温で浸漬し、ろ過、
乾燥、焼成することによって得られる)及びゼオライト
群であるY型ゼオライト、A型ゼオライト、シリカライ
ト(ペンタシル型構造を有したゼオライトの1種で、S
iとOのみで構成されているもの)、モルデナイト、X
型ゼオライトが用いられる。この群の担体を使用する場
合のイリジウムの担持方法及び担持量は前記結晶性シリ
ケートを担体として用いた場合と同様である。
As a carrier other than the crystalline silicate,
Γ-Al which is a single oxide2O3, TiO2, Zr
O2, Al that is a complex oxide2O3・ ZrO2, SiO
2・ Al 2O3, Al2O3・ TiO2, TiO2・ Z
rO2, 6Al2O3・ BaO, 11Al2O3・ La
2O3, Solid super acid SOFour/ ZrO2, SOFour/
ZrO2・ Al2O3, SOFour/ ZrO2・ TiO
2(These solid strong acids are hydroxides and complex hydroxides of each element.
1N H2SOFourSoak for about 1 hour at room temperature, filter,
Obtained by drying and calcining) and zeolite
Group Y-type zeolite, A-type zeolite, silicalite
To (a type of zeolite with a pentasil-type structure, S
i consisting of only i and O), mordenite, X
Type zeolite is used. When using this group of carriers
The loading method and loading amount of iridium in the
This is the same as when cate is used as a carrier.

【0012】本発明の排気流出側に配置する白金、パラ
ジウム、ロジウム及びルテニウムよりなる群から選ばれ
た1種以上の活性金属を含有する酸化触媒の担体として
は、一般的にAl2 3 、ZrO2 、SiO2 、TiO
2 などの高比表面積の材料が使用される。ディーゼル排
気ガスを処理するに際してはSOx耐久性を考慮に入れ
るとTiO2 を担体として使用することが好ましい。な
お、酸化触媒の担持する活性金属の量は上記触媒と同じ
範囲で十分である。
The carrier of the oxidation catalyst containing at least one active metal selected from the group consisting of platinum, palladium, rhodium and ruthenium arranged on the exhaust gas outlet side of the present invention is generally Al 2 O 3 , ZrO 2 , SiO 2 , TiO
High specific surface area materials such as 2 are used. In treating diesel exhaust gas, it is preferable to use TiO 2 as a carrier in consideration of SOx durability. The amount of active metal supported by the oxidation catalyst is sufficient in the same range as the above catalyst.

【0013】なお、本発明の排気流出側に配置する酸化
触媒としては、ガソリンエンジン排気ガス浄化用として
用いられている3元触媒(理論空燃比付近でNOx,C
O,HCを同時に除去することができる触媒)を使用す
ることもできる。
As the oxidation catalyst arranged on the exhaust gas outflow side of the present invention, a three-way catalyst (NOx, C near the theoretical air-fuel ratio) used for purifying exhaust gas of a gasoline engine is used.
It is also possible to use a catalyst capable of simultaneously removing O and HC.

【0014】また、排気流出側に配置する酸化触媒とし
て、排気の上流側にロジウムを含有する触媒を排気の下
流側に白金を含有する触媒を分割して直列に組み合わせ
て配置することによって、より広範囲の温度域で脱硝を
行うようにすることもできる。ロジウムを含有する触媒
と白金を含有する触媒とを組み合せる理由は、通常のリ
ーンバーンエンジン、ディーゼルエンジン排気ガスでは
約200℃付近で白金を含有する触媒が高い脱硝活性を
有し、一方約300℃付近でロジウムを含有する触媒が
高い脱硝活性を有するため、これらを組み合わせること
により200〜300℃の低温領域で幅広い脱硝活性を
保つことができるからである。
Further, as the oxidation catalyst to be arranged on the exhaust gas outflow side, a catalyst containing rhodium on the upstream side of the exhaust gas and a catalyst containing platinum on the downstream side of the exhaust gas are divided and arranged in series, whereby It is also possible to perform denitration in a wide temperature range. The reason why the catalyst containing rhodium and the catalyst containing platinum are combined is that the catalyst containing platinum has a high denitration activity at about 200 ° C. in the exhaust gas of a normal lean burn engine or diesel engine, while the catalyst has about 300 This is because the catalyst containing rhodium has a high denitrification activity at around 0 ° C, and by combining these, a wide range of denitrification activity can be maintained in the low temperature range of 200 to 300 ° C.

【0015】なお、本発明の排気流出側に配置される酸
化触媒は低温領域での脱硝を促進させるだけではなく、
当然のごとくCO,HCの可燃性ガスの低温燃焼も可能
にするものである。
It should be noted that the oxidation catalyst arranged on the exhaust gas outflow side of the present invention not only promotes denitration in the low temperature region, but also
As a matter of course, it also enables low temperature combustion of combustible gases such as CO and HC.

【0016】[0016]

【作用】通常、イリジウムを担持した触媒及び白金、パ
ラジウム、ロジウム、ルテニウムを担持した酸化触媒に
より、NOx、CO、HCを含有する排気ガスを浄化す
る浄化反応式は下記のとおりである。
The purifying reaction formula for purifying exhaust gas containing NOx, CO, and HC by a catalyst carrying iridium and an oxidation catalyst carrying platinum, palladium, rhodium, and ruthenium is as follows.

【0017】[0017]

【化1】 *1)炭化水素(HC)の例としてC3 6 を代表とし
て示した。 *2)含酸素炭化水素の例としてCH2 Oを代表として
示した。 上記反応式において、(1)はHCの活性化、(2)は
HCの燃焼、(3)は脱硝反応、(4)はCOの燃焼を
意味している。
[Chemical 1] * 1) As an example of hydrocarbon (HC), C 3 H 6 is shown as a representative. * 2) CH 2 O is shown as an example of the oxygen-containing hydrocarbon. In the above reaction formula, (1) means activation of HC, (2) means combustion of HC, (3) means denitration reaction, and (4) means combustion of CO.

【0018】本発明で排気流入側に配置するイリジウム
を有した触媒の好ましい脱硝温度は300〜500℃、
一方排気流出側に配置する酸化触媒はいずれも300℃
以下が好ましい脱硝温度である。脱硝反応は上式で示す
ように、HC,COの燃焼反応と併発して生じているた
め、排気流入側のイリジウムを担持した触媒で未燃とし
て残るHCが排気流出側の酸化触媒の脱硝反応への有効
な還元剤として作用する。
In the present invention, the catalyst having iridium disposed on the exhaust gas inflow side has a preferable denitration temperature of 300 to 500 ° C.
On the other hand, all the oxidation catalysts placed on the exhaust gas outflow side are
The following are preferable denitration temperatures. As shown in the above equation, the denitration reaction occurs in parallel with the combustion reaction of HC and CO. Therefore, the HC remaining unburned in the catalyst carrying iridium on the exhaust inflow side is the denitrification reaction of the oxidation catalyst on the exhaust outflow side. Acts as an effective reducing agent to

【0019】本発明において用いる触媒は、貴金属触媒
のため700℃以上の高温リーン又はリッチ雰囲気に長
時間さらされても上記k1 ,k2 ,k3 及びk4 の反応
速度定数はほとんど変化せず、耐久性を有する触媒であ
ることを見い出している。
Since the catalyst used in the present invention is a precious metal catalyst, the reaction rate constants of k 1 , k 2 , k 3 and k 4 hardly change even when exposed to a high temperature lean or rich atmosphere of 700 ° C. or higher for a long time. However, it has been found to be a durable catalyst.

【0020】[0020]

【実施例】 〇触媒1の調製 水ガラス1号(SiO2 :30%):5616gを水:
5429gに溶解し、この溶液を溶液Aとする。一方、
水:4175gに硫酸アルミニウム:718.9g、塩
化第二鉄:110g、酢酸カルシウム:47.2g、塩
化ナトリウム:262g、濃塩酸:2020gを溶解
し、この溶液を溶液Bとする。溶液Aと溶液Bを一定割
合で供給し、沈殿を生成させ、十分攪拌してpH=8.
0のスラリを得る。このスラリを20リットルのオート
クレーブに仕込み、さらにテトラプロピルアンモニウム
ブロマイドを500g添加し、160℃にて72時間水
熱合成を行い、合成後水洗して乾燥させ、さらに500
℃、3時間焼成させ結晶性シリケート1を得る。この結
晶性シリケート1は酸化物のモル比で(結晶水を省く)
下記の組成式で表され、結晶構造はX線回折で前記表A
にて表示されるものである。 0.5NaO2 ・0.5H2 O・〔0.8Al2 3
0.2Fe2 3 ・0.25CaO〕・25SiO2 上記結晶性シリケート1を4NのNH4 Cl水溶液40
℃に3時間攪拌してNH4 イオン交換を実施した。イオ
ン交換後洗浄して100℃、24時間乾燥させた後、4
00℃、3時間焼成してH型の結晶性シリケート1を得
た。
Example Preparation of Catalyst 1 Water glass No. 1 (SiO 2 : 30%): 5616 g of water:
It is dissolved in 5429 g, and this solution is referred to as solution A. on the other hand,
Aluminum sulfate: 718.9 g, ferric chloride: 110 g, calcium acetate: 47.2 g, sodium chloride: 262 g, concentrated hydrochloric acid: 2020 g are dissolved in water: 4175 g, and this solution is referred to as solution B. Solution A and solution B were supplied at a constant ratio to form a precipitate, which was sufficiently stirred to pH = 8.
Get a zero slurry. This slurry was charged into a 20 liter autoclave, 500 g of tetrapropylammonium bromide was further added, and hydrothermal synthesis was carried out at 160 ° C. for 72 hours. After the synthesis, washing with water and drying were carried out, and further 500
The crystalline silicate 1 is obtained by baking at 3 ° C. for 3 hours. This crystalline silicate 1 has a molar ratio of oxides (the water of crystallization is omitted).
It is represented by the following composition formula and its crystal structure is determined by X-ray diffraction as shown in Table A above.
Is displayed in. 0.5NaO 2 · 0.5H 2 O · [0.8Al 2 O 3 ·
0.2Fe 2 O 3 · 0.25CaO] · 25SiO 2 The above crystalline silicate 1 was added with 4N NH 4 Cl aqueous solution 40
NH 4 ion exchange was carried out by stirring at ℃ for 3 hours. After washing after ion exchange and drying at 100 ° C for 24 hours, 4
H-type crystalline silicate 1 was obtained by baking at 00 ° C. for 3 hours.

【0021】次に、上記100部のH型の結晶性シリケ
ート1に対して、バインダとしてアルミナゾル:3部、
シリカゾル:55部(SiO2 :20%)及び水:20
0部加え、充分攪拌を行いウォッシュコート用スラリと
した。次にコージェライト用モノリス基材(400セル
の格子目)を上記スラリに浸漬し、取り出した後余分な
スラリを吹きはらい200℃で乾燥させた。コート量は
基材1リットルあたり200g担持し、このコート物を
ハニカムコート物1とする。次に、塩化イリジウム(I
rCl4 ・H2 O:2.88g/H2 O:200cc)
に上記ハニカムコート物1を浸漬し1時間含浸した後、
基材の壁の付着した液をふきとり200℃で乾燥させ
た。次で500℃で窒素雰囲気で12時間パージ処理を
行い、ハニカム触媒1を得た。
Next, with respect to 100 parts of the above H-type crystalline silicate 1, alumina sol as a binder: 3 parts,
Silica sol: 55 parts (SiO 2 : 20%) and water: 20
0 part was added and sufficiently stirred to obtain a wash coat slurry. Next, the monolith substrate for cordierite (lattice of 400 cells) was immersed in the slurry, taken out, and then excess slurry was blown off and dried at 200 ° C. The coated amount is 200 g per liter of the substrate, and this coated product is referred to as honeycomb coated product 1. Next, iridium chloride (I
rCl 4 · H 2 O: 2.88 g / H 2 O: 200 cc)
After immersing the honeycomb coated article 1 in the above and impregnating it for 1 hour,
The liquid adhering to the wall of the substrate was wiped off and dried at 200 ° C. Next, a purging process was performed at 500 ° C. in a nitrogen atmosphere for 12 hours to obtain a honeycomb catalyst 1.

【0022】〇触媒2〜16の調製 触媒1の結晶性シリケート1の合成法において、塩化第
二鉄の代わりに塩化コバルト、塩化ルテニウム、塩化ロ
ジウム、塩化ランタン、塩化セリウム、塩化チタン、塩
化バナジウム、塩化クロム、塩化アンチモン、塩化ガリ
ウム及び塩化ニオブを各々酸化物換算でFe2 3 と同
じモル数だけ添加した以外は結晶性シリケート1と同様
の操作を繰り返して結晶性シリケート2〜12を調製し
た。これらの結晶性シリケートの結晶構造はX線回折で
前記表Aに表示されるものであり、その組成は酸化物の
モル比(脱水された形態)で表わして0.5NaO2
0.5H2 O・(0.2M2 3 ・0.8Al2 3
0.25CaO)・25SiO2 である。ここでMはC
o,Ru,Rh,La,Ce,Ti,V,Cr,Sb,
Ga,Nbである。また、塩化第二鉄及び酢酸カルシウ
ムの代わりに何も添加せず結晶性シリケート1と同様の
方法において、結晶性シリケート13を得た。
Preparation of Catalysts 2 to 16 In the method for synthesizing the crystalline silicate 1 of catalyst 1, cobalt chloride, ruthenium chloride, rhodium chloride, lanthanum chloride, cerium chloride, titanium chloride, vanadium chloride, in place of ferric chloride, Crystalline silicates 2 to 12 were prepared by repeating the same operation as in crystalline silicate 1 except that chromium chloride, antimony chloride, gallium chloride and niobium chloride were added in the same mole number as Fe 2 O 3 in terms of oxide. . The crystal structure of these crystalline silicates is shown in Table A above by X-ray diffraction, and its composition is expressed by the molar ratio of oxides (dehydrated form) of 0.5 NaO 2 ·.
0.5H 2 O ・ (0.2M 2 O 3・ 0.8Al 2 O 3
0.25CaO) · 25SiO 2 . Where M is C
o, Ru, Rh, La, Ce, Ti, V, Cr, Sb,
Ga and Nb. Also, crystalline silicate 13 was obtained in the same manner as crystalline silicate 1 without adding anything in place of ferric chloride and calcium acetate.

【0023】さらに、触媒1の結晶性シリケート1の合
成法において、酢酸カルシウムの代わりに酢酸マグネシ
ウム、酢酸ストロンチウム、酢酸バリウムを各々酸化物
換算でCaOと同じモル数だけ添加した以外は結晶性シ
リケート1と同様の操作を繰り返して結晶性シリケート
14〜16を調製した。これらの結晶性シリケートの結
晶構造はX線回折で前記表Aに表示されるものであり、
その組成は酸化物のモル比(脱水された形態)で表わし
て0.5Na2 O・0.5H2 O・(0.2Fe2 3
・0.8Al2 3 ・0.25MeO)・25SiO2
である。ここでMeはMg,Sr,Baである。上記結
晶性シリケート2〜16を用いて実施例1と同様の方法
でH型の結晶性シリケート2〜16を得、このシリケー
トをさらに実施例1の触媒の調製と同様の工程にてコー
ジェライトモノリス基材にコートしてハニカムコート物
2〜16を得た。次に塩化イリジウム水溶液に浸漬し触
媒1と同様の処理にてハニカム触媒2〜16を得た。
Further, in the method for synthesizing crystalline silicate 1 of catalyst 1, crystalline silicate 1 is used except that magnesium acetate, strontium acetate, and barium acetate are added in the same molar number as CaO in terms of oxide instead of calcium acetate. The same operation as above was repeated to prepare crystalline silicates 14 to 16. The crystal structures of these crystalline silicates are those shown in Table A above by X-ray diffraction,
The composition is expressed by the molar ratio of oxides (dehydrated form) of 0.5Na 2 O.0.5H 2 O. (0.2Fe 2 O 3
・ 0.8Al 2 O 3・ 0.25MeO) ・ 25SiO 2
Is. Here, Me is Mg, Sr, or Ba. Using the above crystalline silicates 2 to 16, H type crystalline silicates 2 to 16 were obtained in the same manner as in Example 1, and the silicates were further subjected to the same steps as in the preparation of the catalyst of Example 1 to form cordierite monolith. The substrate was coated to obtain honeycomb coated products 2 to 16. Next, the honeycomb catalysts 2 to 16 were obtained by immersing in an iridium chloride aqueous solution and performing the same treatment as that of the catalyst 1.

【0024】〇触媒17〜33の調製 さらに、組成式で、γ−Al2 3 、Al2 3 ・Zr
2 、TiO2 、ZrO2 、SiO2 ・Al2 3 、A
2 3 ・TiO2 、TiO2 ・ZrO2 、SO4 /Z
rO2 、SO4 /ZrO2 ・Al2 3 、SO4 /Zr
2 ・TiO2、6Al2 3 ・BaO、11Al2
3 ・La2 3 、Y型ゼオライト、A型ゼオライト、シ
リカライト、モルデナイト及びX型ゼオライトを担体に
用いて実施例1と同様の工程にてコージェライトモノリ
ス基材にコートしてハニカムコート物17〜33を得
た。次に塩化イリジウム水溶液に浸漬し触媒1と同様の
処理にてハニカム触媒17〜33を得た。
Preparation of Catalysts 17 to 33 Furthermore, in the composition formula, γ-Al 2 O 3 , Al 2 O 3 .Zr
O 2 , TiO 2 , ZrO 2 , SiO 2 · Al 2 O 3 , A
l 2 O 3 · TiO 2 , TiO 2 · ZrO 2 , SO 4 / Z
rO 2 , SO 4 / ZrO 2 · Al 2 O 3 , SO 4 / Zr
O 2 · TiO 2 , 6Al 2 O 3 · BaO, 11Al 2 O
A honeycomb-coated article 17 was prepared by coating a cordierite monolith substrate with 3 · La 2 O 3 , Y-type zeolite, A-type zeolite, silicalite, mordenite and X-type zeolite as a carrier in the same process as in Example 1. ~ 33 were obtained. Next, the honeycomb catalysts 17 to 33 were obtained by immersing in an aqueous solution of iridium chloride and performing the same treatment as that of the catalyst 1.

【0025】〇触媒34〜37の調製 ハニカム触媒19と同様の方法でTiO2 (アナターゼ
型)をコージェライトモノリス基材にコートしたハニカ
ムコート物19に、塩化白金酸(H2 PtCl 6 ・6H
2 O:4.2g/H2 O:200cc)、硝酸パラジウ
ム(Pd(NO 3 3 :1.9g/H2 O:200c
c)、塩化ロジウム(RhCl3 :1.7g/H2 O:
200cc)、塩化ルテニウム(RuCl3 ・5H
2 O:2.7g/H2 O:200cc)の各水溶液に各
々浸漬し触媒1と同様の方法でハニカム触媒34〜37
を得た。以上の触媒1〜37の触媒の性状を表Bにまと
めて示す。
Preparation of Catalysts 34 to 37 TiO 2 was prepared in the same manner as the honeycomb catalyst 19.2(Anatase
Type) coated on a cordierite monolith substrate
Chloroplatinic acid (H2PtCl 6・ 6H
2O: 4.2 g / H2O: 200 cc), paradiu nitrate
Mu (Pd (NO 3)3: 1.9 g / H2O: 200c
c), rhodium chloride (RhCl3: 1.7 g / H2O:
200 cc), ruthenium chloride (RuCl3・ 5H
2O: 2.7 g / H2O: 200 cc) for each aqueous solution
Each of the honeycomb catalysts 34 to 37 in the same manner as the catalyst 1
Got The properties of the above catalysts 1 to 37 are summarized in Table B.
I will show you.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】(実験例1)実施例にて調製したハニカム
触媒1〜33を排気流入側に、白金を担持したハニカム
触媒34を排気流出側に設置し、活性評価試験Run1
〜Run33を実施した。活性評価条件は下記のとお
り。
(Experimental Example 1) The honeycomb catalysts 1 to 33 prepared in the examples are installed on the exhaust gas inflow side, and the honeycomb catalyst 34 carrying platinum is installed on the exhaust gas outflow side, and the activity evaluation test Run1 is performed.
~ Run 33 was performed. The activity evaluation conditions are as follows.

【0030】〇(ガス組成) NO:500ppm、CO:1000ppm、C
2 4 :1500ppm、O 2 :8%、CO2 :10
%、H2 O:10%、残:N2 〇ガス量:405Nl/min、GHSV 15,00
0h-1 〇触媒形状:15mm×15mm×60mm(144セ
ル数)135ccを2個直列に配置(計27cc) 〇反応温度:250,350,450℃ 初期状態の触媒の脱硝率を後記表Cに示す。
O (gas composition) NO: 500 ppm, CO: 1000 ppm, C
2HFour: 1500ppm, O 2: 8%, CO2: 10
%, H2O: 10%, balance: N2 O Gas amount: 405 Nl / min, GHSV 15,000
0h-1 〇Catalyst shape: 15mm × 15mm × 60mm (144s
No.) 135cc two in series (27cc in total) Reaction temperature: 250, 350, 450 ° C The denitration rate of the catalyst in the initial state is shown in Table C below.

【0031】また、排気流入側にハニカム触媒1を排気
流出側にハニカム触媒35〜37を設置し活性評価試験
Run34〜Run36を実施した。さらに、排気流出
側の触媒を2分割して、前段と後段に分け前段の排気上
流側にハニカム触媒36を後段の排気下流側にハニカム
触媒34を設置し、活性評価試験Run37を実施し
た。
Further, the honeycomb catalyst 1 was installed on the exhaust inflow side and the honeycomb catalysts 35 to 37 were installed on the exhaust outflow side, and activity evaluation tests Run34 to Run36 were carried out. Further, the catalyst on the exhaust outflow side was divided into two, and was divided into a front stage and a rear stage, the honeycomb catalyst 36 was installed on the exhaust upstream side of the front stage, and the honeycomb catalyst 34 was installed on the exhaust downstream side of the rear stage, and the activity evaluation test Run 37 was performed.

【0032】(実験例2)Run No.1〜37で配
置した触媒をリッチ雰囲気(還元雰囲気)で強制劣化試
験を実施した。強制劣化試験は下記の通り。 〇(ガス条件) H2 :5%、H2 O:10%、残:N2 GHSV:5000h-1、温度:750℃、ガス供給時
間:6時間 触媒形状:15mm×15mm×60mm(144セ
ル)
(Experimental Example 2) Run No. The catalysts arranged in 1 to 37 were subjected to a forced deterioration test in a rich atmosphere (reducing atmosphere). The forced deterioration test is as follows. 〇 (Gas condition) H 2 : 5%, H 2 O: 10%, balance: N 2 GHSV: 5000 h −1 , temperature: 750 ° C., gas supply time: 6 hours Catalyst shape: 15 mm × 15 mm × 60 mm (144 cells )

【0033】上記強制劣化条件にて処理したRun N
o.1〜37の組み合わせ触媒を実験例1の活性評価条
件において活性評価試験を実施した。反応温度250
℃、350、450℃における強制劣化試験後の触媒の
脱硝率を表Cに併せて示す。表Cに示すように本組み合
わせ触媒であるRun No.1〜37は高温還元雰囲
気においても触媒の活性を高く維持することを確認し
た。なお、CO及びHCの除去率は本反応温度では全て
100%であることを確認している。
Run N processed under the above-mentioned forced deterioration condition
o. An activity evaluation test was carried out on the combination catalysts 1 to 37 under the activity evaluation conditions of Experimental Example 1. Reaction temperature 250
Table C also shows the denitration rate of the catalyst after the forced deterioration test at 350 ° C, 350 ° C, and 450 ° C. As shown in Table C, this combination catalyst Run No. It was confirmed that 1 to 37 maintain high catalyst activity even in a high temperature reducing atmosphere. It has been confirmed that the removal rates of CO and HC are all 100% at this reaction temperature.

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【表6】 [Table 6]

【0036】[0036]

【表7】 [Table 7]

【0037】[0037]

【発明の効果】以上、説明したように、本発明による排
気ガス浄化に際して使用する触媒は耐久性に富む安定な
触媒であり、本発明はガソリン車のリーンバーンエンジ
ン排ガス用やディーゼルエンジン排ガス浄化に極めて有
利に利用し得る。
As described above, the catalyst used for purifying the exhaust gas according to the present invention is a stable and durable catalyst, and the present invention is applicable to lean burn engine exhaust gas of gasoline vehicles and diesel engine exhaust gas purification. It can be used very advantageously.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 29/22 ZAB A 9343−4G 29/74 ZAB A 9343−4G 35/02 ZAB P 8017−4G 35/04 ZAB 8017−4G 301 L 8017−4G F01N 3/28 301 D B01D 53/36 102 H (72)発明者 芹沢 暁 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 29/22 ZAB A 9343-4G 29/74 ZAB A 9343-4G 35/02 ZAB P 8017-4G 35/04 ZAB 8017-4G 301 L 8017-4G F01N 3/28 301 D B01D 53/36 102 H (72) Inventor Akira Serizawa 1-1, Atsunoura Town, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries Nagasaki Shipbuilding Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物を含有する排気ガスを炭化水
素の存在下で処理する方法において、排気流入側にイリ
ジウムを含有した触媒を排気流出側に酸化触媒を配置す
ることを特徴とする排気ガス処理方法。
1. A method for treating an exhaust gas containing nitrogen oxides in the presence of hydrocarbons, wherein an iridium-containing catalyst is disposed on the exhaust inflow side and an oxidation catalyst is disposed on the exhaust outflow side. Gas treatment method.
【請求項2】 排気流入側に配置するイリジウムを含有
した触媒の担体が (1±0.8 )R2 O・〔aM2 3 ・bM′O・cAl
2 3 〕・ySiO2 (但し、上記式中、Rはアルカリ金属イオン及び/又は
水素イオン、MはVIII族元素、希土類元素、チタン、バ
ナジウム、クロム、ニオブ、アンチモン及びガリウムか
らなる群より選ばれた少なくとも1種以上の元素イオ
ン、M′はマグネシウム、カルシウム、ストロンチウ
ム、バリウムのアルカリ土類金属イオン、a≧0、20
>b≧0、a+c=1、3000>y>11)なる化学
式を有し、本文で詳記する表Aに示すX線回折パターン
を有する結晶性シリケートであることを特徴とする請求
項1記載の排気ガス処理方法。
2. The catalyst carrier containing iridium disposed on the exhaust gas inflow side is (1 ± 0.8) R 2 O. [aM 2 O 3 .bM'O.cAl
2 O 3 ] .ySiO 2 (wherein R is an alkali metal ion and / or hydrogen ion, M is a group VIII element, a rare earth element, titanium, vanadium, chromium, niobium, antimony and gallium. At least one elemental ion, M ′ is an alkaline earth metal ion of magnesium, calcium, strontium or barium, a ≧ 0, 20
> B ≧ 0, a + c = 1, 3000>y> 11), and a crystalline silicate having an X-ray diffraction pattern shown in Table A described in detail herein. Exhaust gas treatment method.
【請求項3】 排気流入側に配置するイリジウムを含有
した触媒の担体が組成式でγ−Al2 3 、Al2 3
・ZrO2 、TiO2 、ZrO2 、SiO2・Al2
3 、Al2 3 ・TiO2 、TiO2 ・ZrO2 、SO
4 /ZrO2、SO4 /ZrO2 ・Al2 3 、SO4
/ZrO2 ・TiO2 、6Al2 3・BaO、11A
2 3 ・La2 3 、Y型ゼオライト、A型ゼオライ
ト、シリカライト、モルデナイト、X型ゼオライトから
なる群から選ばれた1種以上の多孔質物質であることを
特徴とする請求項1記載の排気ガス処理方法。
3. A catalyst carrier containing iridium arranged on the exhaust gas inflow side has a composition formula of γ-Al 2 O 3 , Al 2 O 3
・ ZrO 2 , TiO 2 , ZrO 2 , SiO 2 .Al 2 O
3 , Al 2 O 3 · TiO 2 , TiO 2 · ZrO 2 , SO
4 / ZrO 2 , SO 4 / ZrO 2 · Al 2 O 3 , SO 4
/ ZrO 2 · TiO 2 , 6Al 2 O 3 · BaO, 11A
2. One or more kinds of porous substances selected from the group consisting of l 2 O 3 .La 2 O 3 , Y-type zeolite, A-type zeolite, silicalite, mordenite, and X-type zeolite. Exhaust gas treatment method described.
【請求項4】 排気流出側に配置する酸化触媒の元素が
白金、パラジウム、ロジウム及びルテニウムよりなる群
から選ばれた1種以上の活性金属を含有するものである
ことを特徴とする請求項1〜3いずれかに記載の排気ガ
ス処理方法。
4. The element of the oxidation catalyst disposed on the exhaust gas outflow side contains at least one active metal selected from the group consisting of platinum, palladium, rhodium and ruthenium. 4. The exhaust gas treatment method according to any one of 3 to 3.
【請求項5】 排気流出側に配置する酸化触媒におい
て、排気の上流側にロジウムを含有する触媒を排気の下
流側に白金を含有する触媒を直列に組み合わせて設置す
ることを特徴とする請求項4記載の排気ガス処理方法。
5. The oxidation catalyst disposed on the exhaust gas outflow side is characterized in that a catalyst containing rhodium is installed upstream of the exhaust gas and a catalyst containing platinum is installed in series on the downstream side of the exhaust gas. 4. The exhaust gas treatment method according to 4.
JP28798693A 1993-11-17 1993-11-17 Exhaust gas treatment method Expired - Lifetime JP3212429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28798693A JP3212429B2 (en) 1993-11-17 1993-11-17 Exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28798693A JP3212429B2 (en) 1993-11-17 1993-11-17 Exhaust gas treatment method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000235302A Division JP3576471B2 (en) 2000-08-03 2000-08-03 Exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JPH07136463A true JPH07136463A (en) 1995-05-30
JP3212429B2 JP3212429B2 (en) 2001-09-25

Family

ID=17724321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28798693A Expired - Lifetime JP3212429B2 (en) 1993-11-17 1993-11-17 Exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP3212429B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696470A1 (en) 1994-08-12 1996-02-14 Mitsubishi Jukogyo Kabushiki Kaisha Catalysts for cleaning exhaust gases
WO1997037761A1 (en) * 1996-04-11 1997-10-16 Ict Co., Ltd. Exhaust gas purifying catalyst and exhaust gas purifying method
JPH10156184A (en) * 1996-11-29 1998-06-16 Ict:Kk Catalyst for removing nitrogen oxide
KR19980085499A (en) * 1997-05-29 1998-12-05 김영귀 How to improve heat resistance of ZSM-5 automotive catalyst for lean burn zeolite system
WO2007049778A1 (en) * 2005-10-24 2007-05-03 Toyota Jidosha Kabushiki Kaisha Catalyst support and catalyst for exhaust-gas purification

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696470A1 (en) 1994-08-12 1996-02-14 Mitsubishi Jukogyo Kabushiki Kaisha Catalysts for cleaning exhaust gases
US5710084A (en) * 1994-08-12 1998-01-20 Mitsubishi Jukogyo Kabushiki Kaisha Catalysts for cleaning exhaust gases
WO1997037761A1 (en) * 1996-04-11 1997-10-16 Ict Co., Ltd. Exhaust gas purifying catalyst and exhaust gas purifying method
US6214307B1 (en) 1996-04-11 2001-04-10 Ict Co., Ltd. Exhaust gas purifying catalyst and exhaust gas purifying method
KR100300825B1 (en) * 1996-04-11 2002-02-28 준쵸 셈바 Catalyst for exhaust gas purification and exhaust gas purification method
JPH10156184A (en) * 1996-11-29 1998-06-16 Ict:Kk Catalyst for removing nitrogen oxide
KR19980085499A (en) * 1997-05-29 1998-12-05 김영귀 How to improve heat resistance of ZSM-5 automotive catalyst for lean burn zeolite system
WO2007049778A1 (en) * 2005-10-24 2007-05-03 Toyota Jidosha Kabushiki Kaisha Catalyst support and catalyst for exhaust-gas purification
US7776783B2 (en) 2005-10-24 2010-08-17 Toyota Jidosha Kabushiki Kaisha Catalyst carrier and exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP3212429B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
JP3129377B2 (en) Exhaust gas purification catalyst
JPH0899034A (en) Catalyst for purifying exhaust gas
JPH08281107A (en) Catalyst for purifying exhaust gas
JP2660412B2 (en) Exhaust gas purification method
JP3129366B2 (en) DeNOx catalyst and exhaust gas treatment method
JP3219480B2 (en) Exhaust gas treatment method and catalyst
JPH07136463A (en) Method for treating exhaust gas
JP3310781B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3072520B2 (en) Exhaust gas purification catalyst
JPH06296870A (en) Catalyst for exhaust gas purification
JP3287873B2 (en) Exhaust gas purification catalyst
JP2002113331A (en) Method of denitration from exhaust gas and its system
JP3495548B2 (en) Reduction method of sulfur trioxide
JP3576471B2 (en) Exhaust gas treatment method
JP2849585B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3495542B2 (en) Sulfur trioxide reduction method
JP3495527B2 (en) Sulfur trioxide reduction method
JP3310755B2 (en) Exhaust gas treatment catalyst
JP3300721B2 (en) Exhaust gas purification catalyst
JPH05317725A (en) Exhaust gas treating catalyst and method for treating exhaust gas
JP2966675B2 (en) Exhaust treatment method
JP3249243B2 (en) Exhaust gas treatment catalyst
JP3276193B2 (en) Exhaust treatment catalyst
JPH07116470A (en) Method for cleaning exhaust gas
JPH05168937A (en) Exhaust gas purifying catalyst

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

EXPY Cancellation because of completion of term