JPH07120781A - Production of optical writing type spacial optical modulating element - Google Patents

Production of optical writing type spacial optical modulating element

Info

Publication number
JPH07120781A
JPH07120781A JP29142493A JP29142493A JPH07120781A JP H07120781 A JPH07120781 A JP H07120781A JP 29142493 A JP29142493 A JP 29142493A JP 29142493 A JP29142493 A JP 29142493A JP H07120781 A JPH07120781 A JP H07120781A
Authority
JP
Japan
Prior art keywords
amorphous silicon
hydrogenated amorphous
silicon film
substrate
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29142493A
Other languages
Japanese (ja)
Inventor
Yutaka Ochi
豊 越智
Yasuyuki Natsubori
泰行 夏堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP29142493A priority Critical patent/JPH07120781A/en
Publication of JPH07120781A publication Critical patent/JPH07120781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain a reproduced picture of high picture qualities without irregu lar sensitivity or resolution by forming a hydrogenated amorphous silicon film on a transparent substrate by plasma CVD method, grinding the surface of the hydrogenated amorphous silicon film deposited on the transparent substrate to obtain a parallel plane of the film to the substrate plane, and then using the obtd. film. CONSTITUTION:A hydrogenated amorphous silicon film is formed on a substrate by plasma CVD method at specified substrate temp. under conditions of 15 sccm SiH4 gas, 60 sccm H2 gas, <=1.0PPm flow rate ratio of SiH4 gas to B2F6 gas, and 133 Pa gas pressure. The substrate used is a transparent substrate on which a transparent electrode is formed. The transparent substrate is a glass plate having both surfaces optically flat and parallel to each other and having an almost same coefft. of thermal expansion as the coefft. of thermal expansion of the hydrogenated amorphous silicon film. Further, the hydrogenated amorphous silicon film formed on the substrate is ground to have a parallel plane to the substrate plane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は表示装置、撮像装置、光
コンピュータ等における構成素子として使用される光書
込み型空間光変調素子の製作方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an optical writing type spatial light modulator used as a constituent element in a display device, an image pickup device, an optical computer and the like.

【0002】[0002]

【従来の技術】例えば表示装置や撮像装置において、高
精細度を有する画像情報が得られるようにするために
は、表示装置や撮像装置の構成素子としても、高解像度
の画像情報を得ることができる構成素子を用いることが
必要であるが、前記の高解像度の画像情報が得られる素
子の1つとして、光書込み型空間光変調素子が注目され
ている。図1は前記した光書込み型空間光変調素子SL
Mの一例構成を示したものであって、この図1に示す光
書込み型空間光変調素子SLMは、透明基板BP1と透
明電極Et1と光導電層部材PCLと誘電体ミラーDML
と光変調材層部材PMLと透明電極Et2と透明基板BP
2とを積層して構成されている。
2. Description of the Related Art For example, in order to obtain image information having high definition in a display device or an image pickup device, it is necessary to obtain high resolution image information as a constituent element of the display device or the image pickup device. It is necessary to use a constituent element that can be used, but as one of the elements that can obtain the high-resolution image information, an optical writing type spatial light modulator is drawing attention. FIG. 1 shows the above-mentioned optical writing type spatial light modulator SL.
1 shows an example of the structure of the M. The optical writing type spatial light modulator SLM shown in FIG. 1 includes a transparent substrate BP1, a transparent electrode Et1, a photoconductive layer member PCL, a dielectric mirror DML.
, Light modulation material layer member PML, transparent electrode Et2, transparent substrate BP
It is configured by stacking 2 and.

【0003】透明電極Et1,Et2は透明導電物質の薄膜
で構成されており、また、光導電層部材PCLは使用さ
れる光の波長域において光導電性を示す物質を用いて構
成され、さらに誘電体ミラーDMLは所定の波長帯の光
を反射させうるように多層膜として構成された周知形態
のものが使用でき、さらにまた光変調材層部材PML
は、印加されている電界強度に応じて光の状態( 光の偏
光状態、光の旋光状態、光の散乱状態 )を変化させる光
変調材( 例えばネマティック液晶、ニオブ酸リチウム、
BSO、PLZT、高分子ー液晶複合膜等 )を用いて構
成される。図1中のEは透明電極Et1,Et2間に所定の
電圧を印加するための電源であり、この電源Eは図中で
は交流電源であるとして示されているが、光変調材層部
材PMLの構成物質に応じて直流電源となされたり交流
電源となされたりするのである。
The transparent electrodes Et1 and Et2 are composed of a thin film of a transparent conductive material, and the photoconductive layer member PCL is composed of a material exhibiting photoconductivity in the wavelength range of the light used, and further, a dielectric. As the body mirror DML, a well-known type configured as a multilayer film so as to be able to reflect light of a predetermined wavelength band can be used, and further, the light modulation material layer member PML.
Is a light modulator (for example, nematic liquid crystal, lithium niobate, which changes the state of light (state of polarization of light, state of rotation of light, state of scattering of light) according to the strength of the applied electric field.
BSO, PLZT, polymer-liquid crystal composite film, etc.). Reference numeral E in FIG. 1 denotes a power source for applying a predetermined voltage between the transparent electrodes Et1 and Et2, and this power source E is shown as an AC power source in the figure, but the power source E of the light modulation material layer member PML is shown. Depending on the constituent material, it can be used as a DC power supply or an AC power supply.

【0004】また、図中のWLは光書込み型空間光変調
素子SLMにおける基板BP1 側から入射されて光導電
層部材PCLに集光される書込み光であって、この書込
み光WLは表示の対象にされている情報によって強度変
調されているものである。透明電極Et1,Et2間に電源
Eから所定の電圧が供給されている光書込み型空間光変
調素子SLMにおける透明基板Et1側から、画像情報に
よって強度変調されている書込み光WLが入射して、透
明基板BP1 と透明電極Et1とを通して光導電層部材P
CLに集光されると、前記した書込み光WLが集光され
た部分の光導電層部材PCLの電気抵抗値が、照射され
た光量に応じて変化して、光変調材層部材PMLの両端
には、前記した画像情報と対応している電界強度分布を
示す電界が印加される。
Further, WL in the drawing is the writing light which is incident from the substrate BP1 side in the optical writing type spatial light modulator SLM and is condensed on the photoconductive layer member PCL, and this writing light WL is the object of display. The intensity is modulated according to the information stored in. The writing light WL whose intensity is modulated by image information is incident from the transparent substrate Et1 side of the optical writing type spatial light modulator SLM in which a predetermined voltage is supplied from the power source E between the transparent electrodes Et1 and Et2, and is transparent. Through the substrate BP1 and the transparent electrode Et1, the photoconductive layer member P
When the light is condensed on CL, the electric resistance value of the photoconductive layer member PCL at the part where the writing light WL is condensed changes according to the amount of the irradiated light, and both ends of the light modulation material layer member PML are changed. An electric field showing an electric field intensity distribution corresponding to the above-mentioned image information is applied to.

【0005】それで、光書込み型空間光変調素子SLM
における透明基板BP2 側から読出し光RLを入射させ
ると、その読出し光RLは透明基板BP2 →電極Et2→
光変調材層部材PML→誘電体ミラーDMLの経路によ
り誘電体ミラーDMLに達してそこで反射し、読出し光
の反射光は誘電体ミラーDML→光変調材層部材PML
→電極Et2→透明基板BP2 →の経路で光書込み型空間
光変調素子SLMから出射する。前記のようにして光書
込み型空間光変調素子SLMから出射した光束は、前記
した書込み光WLが有していた画像情報と対応した電界
強度の分布を有する電界が印加されている光変調材層部
材PMLを往復した光束であるから、その読出し光の光
束は、書込み光の画像情報と対応して光の状態が変化し
ているものになっている。
Therefore, the optical writing type spatial light modulator SLM is used.
When the read light RL is made incident from the transparent substrate BP2 side in the above, the read light RL is changed to the transparent substrate BP2 → the electrode Et2 →
The light modulation material layer member PML → reaches the dielectric mirror DML by the path of the dielectric mirror DML and is reflected there, and the reflected light of the read light is the dielectric mirror DML → light modulation material layer member PML.
The light is emitted from the optical writing type spatial light modulator SLM along the path of the electrode Et2, the transparent substrate BP2, and the like. The light flux emitted from the optical writing type spatial light modulator SLM as described above is applied with an electric field having an electric field intensity distribution corresponding to the image information of the writing light WL. Since the light flux is a light flux that travels back and forth through the member PML, the light flux of the read light has its light state changed corresponding to the image information of the writing light.

【0006】光書込み型空間光変調素子SLMにおける
光変調材層部材PMLの構成材料が(1)それに印加され
た電界強度に応じてその中を通過する光の散乱状態を変
化させるようなものであった場合には、前記のようにし
て光書込み型空間光変調素子SLMから出射された読出
し光の反射光束は、書込み光の画像情報と対応して光の
強度が変化している状態のものになっており、また、光
書込み型空間光変調素子SLMにおける光変調材層部材
PMLの構成材料が、 (2)それに印加された電界強度に
応じてその中を通過する光の偏光の状態、あるいは複屈
折の状態を変化させるようなものであった場合には、前
記のようにして光書込み型空間光変調素子SLMから出
射された読出し光の反射光束は、書込み光の画像情報と
対応して偏光の状態、あるいは偏光面の状態が変化して
いる状態のものになっている。前記した(2)の場合には
光書込み型空間光変調素子SLMから出射した光束を検
光子(偏光ビームスプリッタPBSでも同じ)に通過させ
ることにより、光書込み型空間光変調素子SLMから出
射された読出し光の反射光束を、書込み光の画像情報と
対応して光の強度が変化している状態のものにすること
ができる。
The constituent material of the light modulation material layer member PML in the optical writing type spatial light modulation element SLM is such that (1) the scattering state of light passing therethrough is changed according to the electric field strength applied thereto. If there is, the reflected light flux of the reading light emitted from the optical writing type spatial light modulator SLM as described above is in a state in which the intensity of the light changes corresponding to the image information of the writing light. In addition, the constituent material of the light modulating material layer member PML in the optical writing type spatial light modulating element SLM is (2) the polarization state of light passing therethrough according to the electric field strength applied thereto, Alternatively, when the state of birefringence is changed, the reflected light flux of the reading light emitted from the optical writing type spatial light modulator SLM as described above corresponds to the image information of the writing light. The state of polarization, Alternatively, the state of the polarization plane is changed. In the case of the above (2), the light flux emitted from the optical writing type spatial light modulator SLM is passed through the analyzer (the same applies to the polarization beam splitter PBS) to emit the optical writing type spatial light modulator SLM. The reflected light flux of the reading light can be in a state in which the light intensity changes corresponding to the image information of the writing light.

【0007】[0007]

【発明が解決しようとする課題】ところで、前記した光
書込み型空間光変調素子SLMにおいて、それの構成部
材として使用されている光導電層部材PCLの特性は、
光書込み型空間光変調素子SLMの感度や解像度などの
諸特性に対して大きな影響を与えるものである。光書込
み型空間光変調素子SLMに設けられている光導電層部
材PCLは、既述のように、光書込み型空間光変調素子
SLMに入射した書込み光の強度分布に従って電気抵抗
値が変化することにより、前記した書込み光の強度分布
に応じた電界強度分布を光変調材層部材PMLに与える
ことができるようにするためのものであるから、前記し
た光導電層部材PCLとしては、書込み光について高感
度な材料を選択使用した上で、高感度で高解像度な特性
を示すような構成にされていなければならないが、前記
した光導電層部材PCLは、それの膜厚を大にした場合
には感度の上昇と、解像度の低下とを生じ、また、前記
とは逆に、それの膜厚を小にした場合には感度の低下
と、解像度の向上とを生じる。
By the way, the characteristics of the photoconductive layer member PCL used as a constituent member of the above-mentioned optical writing type spatial light modulator SLM are as follows.
This greatly affects various characteristics such as sensitivity and resolution of the optical writing type spatial light modulator SLM. As described above, the photoconductive layer member PCL provided in the optical write type spatial light modulator SLM has an electric resistance value that changes according to the intensity distribution of the write light incident on the optical write type spatial light modulator SLM. By this, the electric field intensity distribution corresponding to the intensity distribution of the writing light can be given to the light modulation material layer member PML. Although a material having high sensitivity must be selected and used, the photoconductive layer member PCL should have a structure showing high sensitivity and high resolution characteristics. Causes an increase in sensitivity and a decrease in resolution, and conversely to the above, when the film thickness thereof is reduced, a decrease in sensitivity and an improvement in resolution occur.

【0008】そして、前記のような光導電層部材PCL
の膜厚の変化は、感度と解像度とを変化させるから、光
書込み型空間光変調素子SLMに設けられている光導電
層部材PCLの厚さにむらがあると、前記の厚さのむら
と対応して感度と解像度とが変化することになるから、
光書込み型空間光変調素子SLMから読出された画像に
は明るさ及び精細度との双方についてのシェーディング
が認められるものになる。それで、光書込み型空間光変
調素子SLMにおける光導電層部材PCLの構成に当っ
ては、高感度を示す光導電材料を選択使用して、それの
全体の厚さを一定にすることが必要とされるが、前記し
た光書込み型空間光変調素子SLMの光導電層部材PC
Lを高感度なものとするのに、近年来、水素化アモルフ
ァスシリコン膜によって光導電層部材PCLを構成させ
ることが行なわれている。
The photoconductive layer member PCL as described above
Since the change in the film thickness changes the sensitivity and the resolution, if there is unevenness in the thickness of the photoconductive layer member PCL provided in the photo-writing type spatial light modulator SLM, the unevenness in thickness is dealt with. Then the sensitivity and resolution will change,
The image read from the optical writing type spatial light modulator SLM has shading in both brightness and definition. Therefore, in the construction of the photoconductive layer member PCL in the photo-writing type spatial light modulator SLM, it is necessary to select and use a photoconductive material exhibiting high sensitivity so as to make the entire thickness thereof constant. The photoconductive layer member PC of the above-mentioned optical writing type spatial light modulator SLM
In order to make L highly sensitive, in recent years, a photoconductive layer member PCL has been made of a hydrogenated amorphous silicon film.

【0009】ところで前記のように水素化アモルファス
シリコン膜によって高感度な光導電層部材PCLを構成
させようとする場合には、水素化アモルファスシリコン
膜の付着時における透明基板の温度を所定の高温度に保
持させておくことが必要とされる。そして前記のように
所定の高温度の状態の透明基板に水素化アモルファスシ
リコン膜を付着形成させる工程の終了後には、前記の透
明基板と水素化アモルファスシリコン膜との温度は室温
に迄低下することになるが、従来、前記した透明基板と
しては光学ガラスBK7が使用されていたので、基板と
して使用された光学ガラスBK7の熱膨張係数(摂氏1
度当り80掛ける10のマイナス7乗)と、前記した透
明基板に付着させた水素化アモルファスシリコン膜の熱
膨張係数(摂氏1度当り36掛ける10のマイナス7乗)
とが大巾に異なるために、前記した透明基板の板厚が厚
い場合には、透明基板から水素化アモルファスシリコン
膜が剥離することが生じるから、前記した透明基板とし
ては厚さの薄いものが使用されるのであるが、前記した
透明基板が薄い場合には透明基板に水素化アモルファス
シリコン膜が付着した状態で両者が一体に彎曲してしま
うことが起こる。
By the way, when the highly sensitive photoconductive layer member PCL is made of the hydrogenated amorphous silicon film as described above, the temperature of the transparent substrate during the deposition of the hydrogenated amorphous silicon film is set to a predetermined high temperature. It is necessary to keep it. After the step of depositing and forming the hydrogenated amorphous silicon film on the transparent substrate in the predetermined high temperature state as described above, the temperature of the transparent substrate and the hydrogenated amorphous silicon film is lowered to room temperature. However, since the optical glass BK7 has been conventionally used as the transparent substrate, the coefficient of thermal expansion of the optical glass BK7 used as the substrate (1 degree Celsius)
80 times 10 minus 7 powers per degree) and the thermal expansion coefficient of the hydrogenated amorphous silicon film deposited on the transparent substrate (36 times 10 minus 7 powers per degree Celsius)
Therefore, if the plate thickness of the transparent substrate is large, the hydrogenated amorphous silicon film may peel off from the transparent substrate. Although used, when the above-mentioned transparent substrate is thin, both of them may be bent together with the hydrogenated amorphous silicon film attached to the transparent substrate.

【0010】前記のように、透明基板の熱膨張係数と、
透明基板に付着させる水素化アモルファスシリコン膜の
熱膨張係数とが大巾に異なる場合に、薄い透明基板に水
素化アモルファスシリコン膜を付着させると、温度の変
化により両者が一体に彎曲してしまうという問題点は、
例えば特開平3ー261918号公報に開示されている
ように、例えば研磨手段の適用、あるいは加熱成形手段
の適用等により、温度の変化時に透明基板と水素化アモ
ルファスシリコン膜とに生じる彎曲形状に対して、予め
逆の形状に彎曲させてある透明基板を用意して、前記の
透明基板を所定の高温度に加熱した状態として水素化ア
モルファスシリコン膜を付着形成させるようにするとい
う提案が示されている。前記の公開公報に開示された提
案によれば、前記の透明基板に水素化アモルファスシリ
コン膜が付着された状態で、透明基板の温度と水素化ア
モルファスシリコン膜との温度とが室温に迄低下した状
態になると、透明基板と水素化アモルファスシリコン膜
との面を平坦にすることができるとしている。しかしな
がら、前記のような提案を実施しても、それによって得
られる透明基板の平坦度には限界があり、例えば50m
m角で厚さが1mmのガラス基板について、0.5μm
以下の平坦度を安定的に得ることが困難であるというこ
とが問題がなる。
As described above, the coefficient of thermal expansion of the transparent substrate,
When the hydrogenated amorphous silicon film deposited on the transparent substrate has a large coefficient of thermal expansion, and the hydrogenated amorphous silicon film is deposited on the thin transparent substrate, the temperature changes and the two bend together. The problem is
For example, as disclosed in Japanese Unexamined Patent Publication No. Hei 3-261918, for example, by applying a polishing means or a heating molding means, to a curved shape generated on the transparent substrate and the hydrogenated amorphous silicon film when the temperature changes. Then, a proposal is made to prepare a transparent substrate which is bent in the opposite shape in advance, and deposit the hydrogenated amorphous silicon film by heating the transparent substrate to a predetermined high temperature. There is. According to the proposal disclosed in the above publication, the temperature of the transparent substrate and the temperature of the hydrogenated amorphous silicon film are lowered to room temperature in the state where the hydrogenated amorphous silicon film is attached to the transparent substrate. In this state, the surfaces of the transparent substrate and the hydrogenated amorphous silicon film can be flattened. However, even if the above-mentioned proposal is carried out, the flatness of the transparent substrate obtained by the proposal has a limit, for example, 50 m.
0.5 μm for a glass substrate with m-square and thickness of 1 mm
There is a problem that it is difficult to stably obtain the following flatness.

【0011】また、透明基板に水素化アモルファスシリ
コン膜を付着形成させる場合に、透明基板面に付着され
る水素化アモルファスシリコン膜の膜厚は、全面が一様
な状態とはならず、例えば50mm角のガラス板に対し
て平均の膜厚が20μmの水素化アモルファスシリコン
膜を付着形成させた場合における膜厚のばらつきは、1
μm以上存在する。透明基板に付着形成させた水素化ア
モルファスシリコン膜の膜厚分布にばらつきが存在する
場合には、既述したような理由によって感度むらや解像
度むらが発生するから、光書込み型空間光変調素子に読
出し光を入射させて、画像情報を読出しても高画質の再
生画像を得ることができないので、それの改善策が求め
られた。
Further, when the hydrogenated amorphous silicon film is deposited on the transparent substrate, the film thickness of the hydrogenated amorphous silicon film deposited on the surface of the transparent substrate is not uniform over the entire surface, and is, for example, 50 mm. When a hydrogenated amorphous silicon film having an average film thickness of 20 μm is adhered and formed on a square glass plate, the film thickness variation is 1
Exists at μm or more. If there is variation in the film thickness distribution of the hydrogenated amorphous silicon film deposited and formed on the transparent substrate, uneven sensitivity and uneven resolution occur due to the reasons described above. Even if the reading light is made incident and the image information is read, a high-quality reproduced image cannot be obtained, so an improvement measure for it is required.

【0012】[0012]

【課題を解決するための手段】本発明は透明電極が付着
された透明基板間に、少なくとも光導電層部材と光変調
材層部材とを含んだ複数の部材を用いて積層構成した光
書込み型空間光変調素子における前記の光導電層部材と
して水素化アモルファスシリコン膜が用いられる光書込
み型空間光変調素子の製作に当り、水素化アモルファス
シリコン膜が付着形成されるべき基板を所定の温度と
し、SiH4ガスが15sccm、H2ガスが60scc
m、SiH4ガスに対するB2H6ガスの流量比が1.0P
Pm以下、ガス圧が133Paであるという雰囲気内に
おいて、プラズマCVD法により前記の基板に水素化ア
モルファスシリコン膜を形成させる場合に、前記の基板
として、表裏両面が平行な光学的平面であるとともに、
前記した水素化アモルファスシリコン膜の示す熱膨張係
数と同程度の熱膨張係数を有するガラスによる透明基板
に透明電極が付着されている構成のものを用い、また、
基板に付着形成された水素化アモルファスシリコン膜の
表面を、前記した基板の面と平行にするように研磨する
工程を設けてなる光書込み型空間光変調素子の製作法を
提供する。
According to the present invention, there is provided an optical writing type in which a plurality of members including at least a photoconductive layer member and a light modulation material layer member are laminated between transparent substrates having transparent electrodes attached thereto. In manufacturing a photo-writing type spatial light modulator in which a hydrogenated amorphous silicon film is used as the photoconductive layer member in the spatial light modulator, the substrate on which the hydrogenated amorphous silicon film is to be deposited is set to a predetermined temperature, 15 sccm of SiH4 gas and 60 sccc of H2 gas
m, flow rate ratio of B2H6 gas to SiH4 gas is 1.0P
When a hydrogenated amorphous silicon film is formed on the above-mentioned substrate by a plasma CVD method in an atmosphere of Pm or less and a gas pressure of 133 Pa, the both sides of the substrate are parallel optical planes, and
A transparent substrate made of glass having a thermal expansion coefficient similar to that of the hydrogenated amorphous silicon film is used, and a transparent electrode is attached to the transparent substrate.
Provided is a method of manufacturing an optical writing type spatial light modulator, which comprises a step of polishing the surface of a hydrogenated amorphous silicon film deposited on a substrate so as to be parallel to the surface of the substrate.

【0013】[0013]

【作用】SiO2が80.9wt%,B2O3が12.7wt
%,Al2O2が2.3wt%,Fe2O3が0.03wt
%,Na2Oが4.0wt%,K2Oが0.04wt%の組
成を有するガラスにより、表裏両面が平行な光学的平面
とされている透明基板の一方の面上に透明導電膜による
電極を付着させる。前記の透明基板を摂氏220度に加
熱して、その温度に保持し、SiH4ガスが15scc
m、H2ガスが60sccm、SiH4ガスに対するB2H
6ガスの流量比が1.0PPm以下、ガス圧が133Pa
であるという雰囲気内において、プラズマCVD法によ
り、膜厚が20マイクロメートルの水素化アモルファス
シリコン膜を形成させる。前記した組成を有するガラス
で構成された透明基板の熱膨張率と、前記の条件で透明
基板上に付着形成された膜厚が20マイクロメートルの
水素化アモルファスシリコン膜の熱膨張率とには大差が
無いので、前記の水素化アモルファスシリコン膜が付着
形成された状態の透明基板が室温にされても表裏両面は
平行な平面のままになっている。次に、砥粒とした酸化
セリウム、ポリッシャーとしてピッチを用いてピッチポ
リシング法により、透明基板に付着形成されている水素
化アモルファスシリコン膜の表面を、前記した透明基板
の面と平行に研磨する。それにより、透明基板に付着形
成させた水素化アモルファスシリコン膜の膜厚分布が一
定とされるために、感度むらや解像度むらが発生せず、
光書込み型空間光変調素子に読出し光を入射させて、画
像情報を読出せば高画質の再生画像が得られる。
[Function] SiO2 is 80.9 wt%, B2O3 is 12.7 wt%
%, Al2O2 is 2.3 wt%, Fe2O3 is 0.03 wt%
%, Na2O is 4.0 wt% and K2O is 0.04 wt%, an electrode made of a transparent conductive film is attached on one surface of a transparent substrate, which is an optical plane whose front and back surfaces are parallel to each other. . The transparent substrate is heated to 220 degrees Celsius and kept at that temperature, and the SiH4 gas is 15 scc.
m, H2 gas is 60 sccm, B2H for SiH4 gas
Flow rate ratio of 6 gas is less than 1.0PPm, gas pressure is 133Pa
In the atmosphere, the hydrogenated amorphous silicon film having a film thickness of 20 μm is formed by the plasma CVD method. There is a large difference between the coefficient of thermal expansion of a transparent substrate made of glass having the above-mentioned composition and the coefficient of thermal expansion of a hydrogenated amorphous silicon film having a thickness of 20 micrometers deposited and formed on the transparent substrate under the above conditions. Therefore, even if the transparent substrate on which the hydrogenated amorphous silicon film is adhered and formed is brought to room temperature, both front and back surfaces remain parallel planes. Next, the surface of the hydrogenated amorphous silicon film adhered and formed on the transparent substrate is polished in parallel with the surface of the transparent substrate by the pitch polishing method using cerium oxide as abrasive grains and pitch as a polisher. As a result, the hydrogenated amorphous silicon film deposited and formed on the transparent substrate has a uniform film thickness distribution, which eliminates uneven sensitivity and uneven resolution.
When read light is made incident on the optical writing type spatial light modulator to read the image information, a reproduced image of high quality can be obtained.

【0014】[0014]

【実施例】以下、添付図面を参照して本発明の光書込み
型空間光変調素子の製作法の具体的な内容を詳細に説明
する。図1は光書込み型空間光変調素子の一例構成を示
す側断面図、図2は水素化アモルファスシリコン膜を付
着させたガラス基板の熱膨張率と水素化アモルファスシ
リコン膜の熱膨張率との差と、水素化アモルファスシリ
コン膜の平坦度との関係を示す図である。本発明の光書
込み型空間光変調素子の製作法では、まず、SiO2が8
0.9wt%,B2O3が12.7wt%,Al2O2が2.
3wt%,Fe2O3が0.03wt%,Na2Oが4.0
wt%,K2Oが0.04wt%の組成を有するガラス板
により、表裏両面が平行な光学的平面とされている透明
基板(図1中の透明基板BP1に相当)を作る。前記の
ように、表裏両面が平行な光学的平面とされている透明
基板は、SiO2が80.9wt%,B2O3が12.7wt
%,Al2O2が2.3wt%,Fe2O3が0.03wt
%,Na2Oが4.0wt%,K2Oが0.04wt%の組
成を有するガラス板を研磨することにより作ることがで
きる。前記の研磨工程は、例えば砥粒として酸化セリウ
ムを用いるとともに、ポリッシャーとしてピッチを用い
て、ピッチポリシング法により前記のガラス板の面を研
磨することによって行なうと良い結果が得られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The concrete contents of the method for manufacturing the optical writing type spatial light modulator of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a side cross-sectional view showing an example of the structure of an optical writing type spatial light modulator, and FIG. 2 is a difference between the coefficient of thermal expansion of a glass substrate to which a hydrogenated amorphous silicon film is attached and the coefficient of thermal expansion of a hydrogenated amorphous silicon film. FIG. 4 is a diagram showing the relationship between the hydrogenated amorphous silicon film and the flatness of the hydrogenated amorphous silicon film. In the method of manufacturing the optical writing type spatial light modulator of the present invention, first, SiO 2 is 8
0.9 wt%, B2O3 12.7 wt%, Al2O2 2.
3wt%, Fe2O3 0.03wt%, Na2O 4.0
A transparent substrate (corresponding to the transparent substrate BP1 in FIG. 1) in which both front and back surfaces are parallel optical planes is made from a glass plate having a composition of wt% and K2O of 0.04 wt%. As described above, the transparent substrate having the front and back surfaces as parallel optical planes has a SiO2 content of 80.9 wt% and a B2O3 content of 12.7 wt%.
%, Al2O2 is 2.3 wt%, Fe2O3 is 0.03 wt%
%, Na2O is 4.0 wt% and K2O is 0.04 wt%. Good results can be obtained by polishing the surface of the glass plate by the pitch polishing method, using cerium oxide as the abrasive grains and pitch as the polisher, and performing the polishing step.

【0015】次に、前記の透明基板の一方の面上に透明
導電膜による透明電極(図1中の透明電極Et1に相当)
を付着させたものを作る。前記の透明電極としては、真
空蒸着法、またはスパッタリング法を適用して、透明基
板面に例えばITO膜を構成させることができる。前記
のように、透明基板の一方の面上に透明導電膜による透
明電極が付着された状態の透明基板を、真空容器中に入
れて真空容器内を所定の真空度となるまで排気し、次に
前記の透明基板を摂氏220度に加熱して、その温度に
保持し、次いで、真空容器中にSiH4ガスが15scc
m、H2ガスが60sccm、SiH4ガスに対するB2H
6ガスの流量比が1.0PPm以下となるようにガスを流
し、ガス圧が133Paであるという雰囲気内におい
て、プラズマCVD法により、膜厚が20マイクロメー
トルの水素化アモルファスシリコン膜を透明基板上に形
成させる。透明基板上に水素化アモルファスシリコン膜
を付着形成させるのには日電アネルバ(株)製のプラズ
マCVD装置(型番PED301)を用い、電極間距離
を35mmとして20Wの電力により、前記の条件で透
明基板上に対して水素化アモルファスシリコン膜を形成
させると、感度も良好な水素化アモルファスシリコン膜
を得ることができた。
Next, a transparent electrode made of a transparent conductive film on one surface of the transparent substrate (corresponding to the transparent electrode Et1 in FIG. 1).
Make something with attached. As the transparent electrode, for example, an ITO film can be formed on the transparent substrate surface by applying a vacuum deposition method or a sputtering method. As described above, the transparent substrate in which the transparent electrode made of the transparent conductive film is attached to one surface of the transparent substrate is placed in a vacuum container, and the inside of the vacuum container is evacuated to a predetermined vacuum degree. Then, the transparent substrate was heated to 220 ° C. and kept at that temperature, and then 15 sccc of SiH 4 gas was added to the vacuum vessel.
m, H2 gas is 60 sccm, B2H for SiH4 gas
The hydrogenated amorphous silicon film with a thickness of 20 μm was formed on the transparent substrate by plasma CVD in an atmosphere in which the gas was flowed at a flow rate ratio of 6 gas of 1.0 PPm or less and the gas pressure was 133 Pa. To form. To deposit and form a hydrogenated amorphous silicon film on a transparent substrate, a plasma CVD device (model number PED301) manufactured by Nichiden Anelva Co., Ltd. was used. When a hydrogenated amorphous silicon film was formed on the top, a hydrogenated amorphous silicon film with good sensitivity could be obtained.

【0016】前記したプラズマCVD装置を用いて電極
間距離を35mmよりも短い距離25mmとした場合に
は、透明基板の温度を前記した220度よりも低い温度
180度とし、真空容器中にSiH4ガスが15scc
m、H2ガスが60sccm、SiH4ガスに対するB2H
6ガスの流量比が1.0PPm以下となるようにガスを流
し、ガス圧が133Paであるという雰囲気内におい
て、プラズマCVD法により、膜厚が20マイクロメー
トルの水素化アモルファスシリコン膜を透明基板上に形
成させてもよいが、この場合に得られる水素化アモルフ
ァスシリコン膜は、既述した電極間距離が35mmで透
明基板の温度を220度の条件で製作した水素化アモル
ファスシリコン膜に比べて感度が低いものであった。な
お、水素化アモルファスシリコン膜の成膜過程で発生す
ると考えられる真応力は、成膜条件を最適化することに
より0に近付けることができ、したがって、透明基板と
水素化アモルファスシリコン膜との界面に発生する内部
応力を0に近付けることにより、透明基板の厚さとは無
関係に彎曲(反り)を0.1μm以下に抑えることがで
き、水素化アモルファスシリコン膜の剥離が生じないよ
うにすることができる。
When the distance between the electrodes is set to 25 mm, which is shorter than 35 mm, using the plasma CVD apparatus described above, the temperature of the transparent substrate is set to 180 ° C., which is lower than 220 ° C., and SiH 4 gas is placed in the vacuum container. Is 15 scc
m, H2 gas is 60 sccm, B2H for SiH4 gas
The hydrogenated amorphous silicon film with a thickness of 20 μm was formed on the transparent substrate by plasma CVD in an atmosphere in which the gas was flowed at a flow rate ratio of 6 gas of 1.0 PPm or less and the gas pressure was 133 Pa. However, the hydrogenated amorphous silicon film obtained in this case is more sensitive than the hydrogenated amorphous silicon film manufactured under the condition that the distance between the electrodes is 35 mm and the temperature of the transparent substrate is 220 ° C. as described above. Was low. The true stress considered to be generated in the process of forming the hydrogenated amorphous silicon film can be brought close to 0 by optimizing the film forming conditions. Therefore, the true stress at the interface between the transparent substrate and the hydrogenated amorphous silicon film is By making the generated internal stress close to 0, the curvature (warpage) can be suppressed to 0.1 μm or less regardless of the thickness of the transparent substrate, and the hydrogenated amorphous silicon film can be prevented from peeling off. .

【0017】前記のように20マイクロメートルの所定
の膜厚の水素化アモルファスシリコン膜が付着された状
態の透明基板を徐冷した後に大気中に取出して研磨す
る。前記の研磨工程は、例えば砥粒として酸化セリウム
を用いるとともに、ポリッシャーとしてピッチを用い
て、ピッチポリシング法により、透明基板に付着形成さ
れている水素化アモルファスシリコン膜の表面を、前記
した透明基板の面と平行に研磨すると良い結果が得られ
る。前記の研磨工程を経ることにより、前記の水素化ア
モルファスシリコン膜の膜厚のばらつきは、研磨が行な
われる前に存在していた1μm程度の膜厚のばらつき
が、前記した研磨工程後には0.3μm以下のばらつき
に改善される。図1に示す光書込み型空間光変調素子に
おいて、PCLとして示してある光導電層部材に対応す
る前記の水素化アモルファスシリコン膜には、図1中に
示されている順次の構成部材、すなわち、誘電体ミラー
DML、光変調材層部材PML、透明電極Et2、透明
基板BP2が積層されることにより、光書込み型空間光
変調素子が作られる。図1に例示してある光書込み型空
間光変調素子では、書込み光が読出し側に行かないよう
にするための遮光層を設けていないが、前記の遮光層が
設けられてもよい。また、図1に例示してある光書込み
型空間光変調素子における光変調材層部材PMLが、例
えば液晶を用いて構成される場合には、配向層が設けら
れたり、シール部材が設けられたりすることはいうまで
もない。前記のように本発明の製作方法に従って製作さ
れた光書込み型空間光変調素子と、従来の光書込み型空
間光変調素子とを比較すると、次の表1に示されるよう
な差異が得られる。
As described above, the transparent substrate on which the hydrogenated amorphous silicon film having a predetermined thickness of 20 μm is adhered is gradually cooled and then taken out into the atmosphere and polished. In the polishing step, for example, cerium oxide is used as abrasive grains, pitch is used as a polisher, and the surface of the hydrogenated amorphous silicon film adhered and formed on the transparent substrate by the pitch polishing method is used. Polishing parallel to the surface gives good results. The thickness variation of the hydrogenated amorphous silicon film due to the above-mentioned polishing step is about 1 μm which was present before the polishing was performed, and the thickness variation of the hydrogenated amorphous silicon film was about 0 μm after the polishing step. The variation is improved to 3 μm or less. In the optical write type spatial light modulator shown in FIG. 1, the hydrogenated amorphous silicon film corresponding to the photoconductive layer member shown as PCL has the sequential constituent members shown in FIG. By stacking the dielectric mirror DML, the light modulation material layer member PML, the transparent electrode Et2, and the transparent substrate BP2, an optical writing type spatial light modulation element is manufactured. In the optical writing type spatial light modulator illustrated in FIG. 1, the light shielding layer for preventing the writing light from going to the reading side is not provided, but the light shielding layer may be provided. Further, when the light modulation material layer member PML in the optical writing type spatial light modulation element illustrated in FIG. 1 is formed by using, for example, liquid crystal, an alignment layer is provided or a seal member is provided. Needless to say. When the optical writing type spatial light modulating element manufactured according to the manufacturing method of the present invention is compared with the conventional optical writing type spatial light modulating element, the differences shown in Table 1 below are obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】表1中に示されている従来例の光書込み型
空間光変調素子は、透明基板として使用されたガラス
が、光学ガラスBK7であり、それの熱膨張率(摂氏1
度当り80掛ける10のマイナス7乗)が、前記した透
明基板に付着させた水素化アモルファスシリコン膜の熱
膨張係数(摂氏1度当り、36掛ける10のマイナス7
乗)に対して大巾に異なるために、光学ガラスBK7に
よる透明基板と、光導電層部材PCLとして使用される
水素化アモルファスシリコン膜との間に、図2中に示さ
れているような大きな応力が発生して、透明基板に2〜
4μmというような大きな彎曲(反り)が生じるのであ
る。また、従来例の光書込み型空間光変調素子では、透
明基板に付着させた水素化アモルファスシリコン膜の膜
厚のばらつきが1μm程度もあるので、透明基板に存在
する2〜4μmというような大きな彎曲(反り)ととも
に、再生画像中に大きなシェーディングが発生するので
ある。
In the conventional optical writing type spatial light modulator shown in Table 1, the glass used as the transparent substrate is the optical glass BK7, and its thermal expansion coefficient (1 degree Celsius).
80 times 10 minus 7 powers per degree) is the coefficient of thermal expansion of the hydrogenated amorphous silicon film deposited on the transparent substrate (36 times 10 minus 7 per degree Celsius).
The difference between the transparent substrate made of the optical glass BK7 and the hydrogenated amorphous silicon film used as the photoconductive layer member PCL is large as shown in FIG. The stress is generated, and the transparent substrate 2
A large curvature (warp) of 4 μm occurs. Further, in the conventional optical writing type spatial light modulator, since the thickness of the hydrogenated amorphous silicon film attached to the transparent substrate varies by about 1 μm, a large curvature of 2 to 4 μm existing on the transparent substrate. Along with (warpage), large shading occurs in the reproduced image.

【0020】本発明の製作方法に従って製作された光書
込み型空間光変調素子と、従来例の光書込み型空間光変
調素子との比較結果を示す「表1」の記載内容をみる
と、本発明の製作方法に従って製作された光書込み型空
間光変調素子は、従来例の光書込み型空間光変調素子に
比べて、優れた特性を有することが明らかである。本発
明の製作方法に従って製作された光書込み型空間光変調
素子では、透明基板の熱膨張率と、透明基板上に付着形
成された水素化アモルファスシリコン膜の熱膨張率とに
差が無いために、前記の水素化アモルファスシリコン膜
が付着形成された状態の透明基板の温度が、室温に迄低
下した状態にされても表裏両面は平行平面状になってお
り、また、透明基板に付着形成させた水素化アモルファ
スシリコン膜の膜厚分布が研磨により一定とされるため
に、感度むらや解像度むらが発生せず、したがってシェ
ーディングのない状態の高画質の再生画像が得られる光
書込み型空間光変調素子を容易に製作できるのである。
Looking at the contents of "Table 1" showing the comparison result of the optical writing type spatial light modulating element manufactured according to the manufacturing method of the present invention and the conventional optical writing type spatial light modulating element, It is apparent that the optical writing type spatial light modulator manufactured by the manufacturing method of 1. has excellent characteristics as compared with the conventional optical writing type spatial light modulator. In the optical writing type spatial light modulator manufactured according to the manufacturing method of the present invention, there is no difference between the coefficient of thermal expansion of the transparent substrate and the coefficient of thermal expansion of the hydrogenated amorphous silicon film deposited and formed on the transparent substrate. Even if the temperature of the transparent substrate on which the hydrogenated amorphous silicon film has been adhered and formed is lowered to room temperature, both the front and back surfaces are parallel flat surfaces. Since the film thickness distribution of the hydrogenated amorphous silicon film is made uniform by polishing, unevenness in sensitivity and unevenness in resolution do not occur, and therefore a high-quality reproduced image with no shading can be obtained. The element can be easily manufactured.

【0021】[0021]

【発明の効果】以上、詳細に説明したところから明らか
なように本発明の光書込み型空間光変調素子の製作法で
は、SiO2が80.9wt%,B2O3が12.7wt%,A
l2O2が2.3wt%,Fe2O3が0.03wt%,Na
2Oが4.0wt%,K2Oが0.04wt%の組成を有す
るガラスにより、表裏両面が平行な光学的平面とされて
いる透明基板の一方の面上に透明導電膜による電極を付
着させ、前記の透明基板を摂氏220度に加熱して、そ
の温度に保持し、SiH4ガスが15sccm、H2ガス
が60sccm、SiH4ガスに対するB2H6ガスの流量
比が1.0PPm以下、ガス圧が133Paであるとい
う雰囲気内において、プラズマCVD法により、水素化
アモルファスシリコン膜を形成させた後に、透明基板に
付着形成されている水素化アモルファスシリコン膜の表
面を、前記した透明基板の面と平行に研磨したものを素
材に用いて光書込み型空間光変調素子を構成したことに
より、前記した組成を有するガラスで構成された透明基
板の熱膨張率と、前記の条件で透明基板上に付着形成さ
れた膜厚が20マイクロメートルの水素化アモルファス
シリコン膜の熱膨張率とには大差が無いために、前記の
水素化アモルファスシリコン膜が付着形成された状態の
透明基板の温度が、室温に迄低下した状態にされても表
裏両面は平行平面状になっていて、透明基板に付着形成
させた水素化アモルファスシリコン膜の膜厚分布が一定
とされるために、感度むらや解像度むらが発生せず、読
出し光を入射させることにより高画質の再生画像が得ら
れる光書込み型空間光変調素子を容易に製作できる。
As is clear from the above description, in the method for manufacturing the optical addressing spatial light modulator of the present invention, SiO2 is 80.9 wt%, B2O3 is 12.7 wt%, A
2.3 wt% of l2O2, 0.03 wt% of Fe2O3, Na
An electrode made of a transparent conductive film is attached to one surface of a transparent substrate, which is an optical plane whose front and back surfaces are parallel to each other, by using glass having a composition of 2O 4.0% by weight and K 2 O 0.04% by weight. An atmosphere in which the transparent substrate is heated to 220 degrees Celsius and kept at that temperature, the SiH4 gas is 15 sccm, the H2 gas is 60 sccm, the flow rate ratio of the B2H6 gas to the SiH4 gas is 1.0 PPm or less, and the gas pressure is 133 Pa. In the above, after the hydrogenated amorphous silicon film is formed by the plasma CVD method, the surface of the hydrogenated amorphous silicon film adhered and formed on the transparent substrate is polished in parallel with the surface of the transparent substrate described above. By configuring the optical writing type spatial light modulator using the above, the coefficient of thermal expansion of the transparent substrate made of glass having the above-mentioned composition and the above Since there is no great difference in the coefficient of thermal expansion of the hydrogenated amorphous silicon film having a film thickness of 20 micrometers deposited and formed on the transparent substrate depending on the circumstances, it is transparent in the state where the hydrogenated amorphous silicon film is deposited and formed. Even if the temperature of the substrate is lowered to room temperature, both front and back surfaces are parallel flat surfaces, and the film thickness distribution of the hydrogenated amorphous silicon film deposited and formed on the transparent substrate is constant. It is possible to easily manufacture an optical writing type spatial light modulator that can obtain a high-quality reproduced image by causing read light to enter without causing uneven sensitivity or uneven resolution.

【図面の簡単な説明】[Brief description of drawings]

【図1】光書込み型空間光変調素子の一例構成を示す側
断面図である。
FIG. 1 is a side sectional view showing an example configuration of an optical writing type spatial light modulator.

【図2】水素化アモルファスシリコン膜を付着させたガ
ラス基板の熱膨張率と水素化アモルファスシリコン膜の
熱膨張率との差と、水素化アモルファスシリコン膜の平
坦度との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the difference between the coefficient of thermal expansion of a glass substrate having a hydrogenated amorphous silicon film attached thereto and the coefficient of thermal expansion of a hydrogenated amorphous silicon film and the flatness of the hydrogenated amorphous silicon film. .

【符号の説明】[Explanation of symbols]

SLM…光書込み型空間光変調素子、BP1,BP2…透
明基板、Et1,Et2…透明電極、PCL…光導電層部
材、DML…誘電体ミラー、PML…光変調材層部材、
E…電源、WL…書込み光、RL…読出し光、
SLM ... Optical writing type spatial light modulator, BP1, BP2 ... Transparent substrate, Et1, Et2 ... Transparent electrode, PCL ... Photoconductive layer member, DML ... Dielectric mirror, PML ... Light modulator material layer member,
E ... Power supply, WL ... Write light, RL ... Read light,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 透明電極が付着された透明基板間に、少
なくとも光導電層部材と光変調材層部材とを含んだ複数
の部材を用いて積層構成した光書込み型空間光変調素子
における前記の光導電層部材として水素化アモルファス
シリコン膜が用いられる光書込み型空間光変調素子の製
作に当り、水素化アモルファスシリコン膜が付着形成さ
れるべき基板を所定の温度とし、SiH4ガスが15sc
cm、H2ガスが60sccm、SiH4ガスに対するB2
H6ガスの流量比が1.0PPm以下、ガス圧が133P
aであるという雰囲気内において、プラズマCVD法に
より前記の基板に水素化アモルファスシリコン膜を形成
させる場合に、前記の基板として、表裏両面が平行な光
学的平面であるとともに、前記した水素化アモルファス
シリコン膜の示す熱膨張係数と同程度の熱膨張係数を有
するガラスによる透明基板に透明電極が付着されている
構成のものを用い、また、基板に付着形成された水素化
アモルファスシリコン膜の表面を、前記した基板の面と
平行にするように研磨する工程を設けてなる光書込み型
空間光変調素子の製作法。
1. A spatial light modulator of the optical writing type, wherein a plurality of members including at least a photoconductive layer member and a light modulator layer member are laminated between transparent substrates to which transparent electrodes are attached. When manufacturing a photo-writing type spatial light modulator in which a hydrogenated amorphous silicon film is used as a photoconductive layer member, the substrate on which the hydrogenated amorphous silicon film is to be deposited is set to a predetermined temperature, and SiH4 gas is supplied at 15 sc.
cm, H2 gas is 60 sccm, B2 for SiH4 gas
H6 gas flow rate ratio is less than 1.0PPm, gas pressure is 133P
When a hydrogenated amorphous silicon film is formed on the above-mentioned substrate by the plasma CVD method in the atmosphere of a, the above-mentioned hydrogenated amorphous silicon is used as the above-mentioned substrate while the front and back surfaces are parallel optical planes. Using a structure in which a transparent electrode is attached to a transparent substrate made of glass having a thermal expansion coefficient similar to that of the film, and the surface of the hydrogenated amorphous silicon film attached and formed on the substrate is A method for manufacturing an optical writing type spatial light modulator, comprising a step of polishing so as to be parallel to the surface of the substrate.
JP29142493A 1993-10-27 1993-10-27 Production of optical writing type spacial optical modulating element Pending JPH07120781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29142493A JPH07120781A (en) 1993-10-27 1993-10-27 Production of optical writing type spacial optical modulating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29142493A JPH07120781A (en) 1993-10-27 1993-10-27 Production of optical writing type spacial optical modulating element

Publications (1)

Publication Number Publication Date
JPH07120781A true JPH07120781A (en) 1995-05-12

Family

ID=17768706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29142493A Pending JPH07120781A (en) 1993-10-27 1993-10-27 Production of optical writing type spacial optical modulating element

Country Status (1)

Country Link
JP (1) JPH07120781A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773465A2 (en) * 1995-10-11 1997-05-14 International Business Machines Corporation Mechanical packaging and thermal management of flat mirror arrays
JP2006012899A (en) * 2004-06-22 2006-01-12 Sharp Corp Semiconductor laser device and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773465A2 (en) * 1995-10-11 1997-05-14 International Business Machines Corporation Mechanical packaging and thermal management of flat mirror arrays
EP0773465A3 (en) * 1995-10-11 1997-08-20 Ibm Mechanical packaging and thermal management of flat mirror arrays
US5721602A (en) * 1995-10-11 1998-02-24 International Business Machines Corporation Mechanical packaging and thermal management of flat mirror arrays
JP2006012899A (en) * 2004-06-22 2006-01-12 Sharp Corp Semiconductor laser device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3132193B2 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
EP0376982B1 (en) Liquid crystal light valve and associated bonding structure
US5745205A (en) Method of introducing slightly titlting homeotropic orientation into liquid crystal, liquid crystal electro-optical device, and liquid crystal light valve
JP2811629B2 (en) Spatial light modulator
JPH07120781A (en) Production of optical writing type spacial optical modulating element
JPH06230410A (en) Spatial optical modulation element
JPH0367247B2 (en)
JP2658747B2 (en) Dielectric mirror and method of manufacturing the same
JPH058807B2 (en)
US4763996A (en) Spatial light modulator
JPH08106093A (en) Liquid crystal light valve
JPH05165050A (en) Photo-conductive liquid crystal light bulb
JPH06337434A (en) Spatial light modulating element
KR0141909B1 (en) Liquid crystal display device with homeotropic alignment layer undercoat formed by ion beam assisted vapor deposition
JP2599832B2 (en) Manufacturing method of spatial light modulator
JP2768589B2 (en) Optical writing liquid crystal light valve
JPH08106088A (en) Space light modulator and its production
JP2003177370A (en) Image converting element and its manufacturing method
JP2599831B2 (en) Spatial light modulator and method of manufacturing the same
JPH04301819A (en) Space optical modulating element
JPH03107824A (en) Optical writing type liquid crystal light valve
JPS6019122A (en) Thin film display element
JPH0862618A (en) Spatial optical modulation element
JPH0553134A (en) Photoconduction type liquid crystal valve
JPH08234228A (en) Optical writing type spatial optical modulation element and its production