JPH0710509A - Production of iron nitride particle - Google Patents

Production of iron nitride particle

Info

Publication number
JPH0710509A
JPH0710509A JP15236593A JP15236593A JPH0710509A JP H0710509 A JPH0710509 A JP H0710509A JP 15236593 A JP15236593 A JP 15236593A JP 15236593 A JP15236593 A JP 15236593A JP H0710509 A JPH0710509 A JP H0710509A
Authority
JP
Japan
Prior art keywords
iron nitride
iron
solvent
particles
colloid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15236593A
Other languages
Japanese (ja)
Other versions
JP3412189B2 (en
Inventor
Isao Nakatani
功 中谷
Takashi Shinko
貴史 新子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Nittetsu Mining Co Ltd
Original Assignee
National Research Institute for Metals
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals, Nittetsu Mining Co Ltd filed Critical National Research Institute for Metals
Priority to JP15236593A priority Critical patent/JP3412189B2/en
Publication of JPH0710509A publication Critical patent/JPH0710509A/en
Application granted granted Critical
Publication of JP3412189B2 publication Critical patent/JP3412189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an iron nitride large in magnetization and uniform in particle diameter by mixing an iron nitride colloid obtained by vapor phase-liquid phase reaction method with a solvent and drying and sintering them in the atmosphere of gaseous ammonia or inert gas. CONSTITUTION:A mixed solution 4 is produced by introducing iron carbonyl, a surfactant and a lipophilic solvent (e.g. kerosine) and stirring by a stirring device 6. Next, gaseous ammonia is introduced into the mixed solution 4 through an introducing pipe 7, heated by a heating device 2 to produce iron nitride colloid by vapor phase-liquid phase reaction. The obtained iron nitride colloid is mixed with the solvent (e.g. water) and emulsified by irradiating it with ultrasonic wave or the like. Next, the iron nitride particle having isotropic shape and suitable as a magnetic toner or the like is obtained by drying, pulverizing and sintering the emulsion in the atmosphere of gaseous ammonia or inert gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、磁性塗料や、
磁性トナー或いは磁性キャリア等の粉末磁性材料に利用
可能な窒化鉄磁性粒子を製造する方法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a magnetic paint,
The present invention relates to a method for producing iron nitride magnetic particles that can be used as a powder magnetic material such as a magnetic toner or a magnetic carrier.

【0002】[0002]

【従来の技術】従来より、新しい機能性材料としての磁
性流体が注目されている。
2. Description of the Related Art Conventionally, attention has been paid to magnetic fluids as new functional materials.

【0003】例えば、磁性塗料、画像形成装置用の磁性
トナー或いは磁性キャリア等、粉末磁性材料としては、
磁化の値が大きく、等方的な形状(針状、棒状、板状、
偏平状等、異方的形状以外の形状を指し、長径と短径が
あまり違わない回転楕円体、長辺と短辺があまり違わな
い直方体や多面体、又はそれに類する不定形等)を有
し、且つ均一なサイズ、特に、粒径が20nm〜100
μm程度の微粒子が必要とされる。
Examples of powder magnetic materials such as magnetic paints, magnetic toners or magnetic carriers for image forming apparatus are
It has a large magnetization value and isotropic shape (needle, rod, plate,
It refers to a shape other than an anisotropic shape, such as a flat shape, and has a spheroid whose major axis and minor axis do not differ much, a rectangular parallelepiped or polyhedron whose major side does not differ much from its minor side, or an indeterminate shape similar to it. And a uniform size, especially a particle size of 20 nm to 100
Fine particles of the order of μm are required.

【0004】そのため、従来は、球状に焼結させたフェ
ライト粒子、あるいはカルボニル鉄粉が用いられてい
た。
Therefore, conventionally, spherically sintered ferrite particles or carbonyl iron powder has been used.

【0005】しかしながら、フェライトは磁化が小さ
く、画像形成装置用としてはあまり適さない。
However, since ferrite has a small magnetization, it is not suitable for an image forming apparatus.

【0006】一方、カルボニル鉄粉は、そのままで球状
性がよく、その磁化も大きいが、酸化に対して安定でな
い。しかも画像形成装置用に好適な1μm以下のサイズ
の粉体を得にくい等の欠点を有している。
On the other hand, carbonyl iron powder has a good spherical property as it is, and its magnetization is large, but it is not stable against oxidation. In addition, it has a defect that it is difficult to obtain a powder having a size of 1 μm or less suitable for an image forming apparatus.

【0007】そのため、化学的に安定で大きな磁化を有
する磁性材料として、窒化鉄が注目されている。
Therefore, iron nitride has been attracting attention as a magnetic material that is chemically stable and has a large magnetization.

【0008】現在、窒化鉄微粒子の製造方法としては、
次のものが公知である。即ち、 特公昭59−34125号公報等で開示されている、
アンモニアガス雰囲気中で鉄粉末を500℃以上の温度
で加熱窒化する方法(アンモニア窒化法)、 特開平2−164443号公報等で開示されている、
鉄カルボニルFe(CO)5蒸気を、N2 ガスのグロー
放電プラズマ中で分解反応させる方法(プラズマCVD
法)、 特開平3−187907号公報で開示されている、鉄
カルボニルの炭化水素油溶液とアンモニアガスとを約2
00℃で反応させる方法(気相-液相反応法)、及び 減圧したアンモニアガス雰囲気中で鉄を加熱蒸発させ
る方法(ガス中蒸発法)が知られている。
At present, as a method for producing iron nitride fine particles,
The following are known. That is, as disclosed in Japanese Patent Publication No. 59-34125,
A method of heating and nitriding iron powder at a temperature of 500 ° C. or higher in an ammonia gas atmosphere (ammonia nitriding method) is disclosed in JP-A-2-164443.
Method of decomposing iron carbonyl Fe (CO) 5 vapor in glow discharge plasma of N 2 gas (plasma CVD
Method), a hydrocarbon oil solution of iron carbonyl and ammonia gas, which are disclosed in JP-A-3-187907, are used in an amount of about 2
A method of reacting at 00 ° C. (gas phase-liquid phase reaction method) and a method of heating and evaporating iron in a decompressed ammonia gas atmosphere (gas evaporation method) are known.

【0009】アンモニア窒化法では、形成させる窒化鉄
粒子の大きさは、原料となる鉄粒子の大きさによって決
まり、現在のところ、最低粒径は1μmである。ガス中
蒸発法では、いくつかの粒子が鎖状に連結していて、単
一の粒子を得ることが困難であり、更に製造過程でのエ
ネルギー効率も悪く、また生産性において乏しい。プラ
ズマCVD法や気相−液相反応法は、窒化鉄磁性流体の
製造のために開発された方法であり、磁性流体に最適な
10nm程度の超微粒子が得られる。現在のところ、こ
れらの方法から、20nm以上の粒子は得られておら
ず、また、プラズマCVD法は、広い適用範囲を有する
方法ではあるものの、当該方法を行なうための反応装置
は複雑で高価なものであり、且つその操業には高度なテ
クニックが要求されるため、技術的経済的に必ずしも効
率の良い方法でなく、したがって気相-液相反応法か
ら、所望粒径の窒化鉄粒子を合成することが期待され
る。
In the ammonia nitriding method, the size of iron nitride particles to be formed is determined by the size of iron particles as a raw material, and the minimum particle size is 1 μm at present. In the gas evaporation method, it is difficult to obtain a single particle because some particles are linked in a chain, and further, the energy efficiency in the manufacturing process is poor and the productivity is poor. The plasma CVD method and the gas phase-liquid phase reaction method are methods developed for the production of iron nitride magnetic fluid, and ultrafine particles of about 10 nm, which are optimal for magnetic fluid, can be obtained. At present, particles of 20 nm or more have not been obtained from these methods, and although the plasma CVD method has a wide range of application, the reactor for performing the method is complicated and expensive. However, it is not necessarily an efficient method in terms of technology and economy because it requires high technique for its operation. Therefore, iron nitride particles of desired particle size can be synthesized from the gas-liquid reaction method. Expected to do.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、既に述
べたように、磁性塗料、あるいは画像形成装置用の磁性
トナーや磁性キャリア等、粉末磁性材料としては、20
nm〜100μm程度の微粒子が必要とされるのに対し
て、従来の気相−液相反応法では、20nm以上の粒径
で等方的形状の窒化鉄粒子を製造することができない。
However, as described above, as a magnetic powder, a powder magnetic material such as a magnetic toner or a magnetic carrier for an image forming apparatus, 20
While fine particles of about nm to 100 μm are required, the conventional vapor phase-liquid phase reaction method cannot produce isotropic iron nitride particles having a particle size of 20 nm or more.

【0011】そこで本発明者らが、窒化鉄微粒子形成過
程を鋭意研究した結果、窒化鉄の形成は、鉄カルボニル
とアンモニアガスとの反応による当該窒化鉄の前駆物質
である鉄アンミンカルボニル錯体Fe2(CO)5(N
2)2、Fe3(CO)9(NH)2がその臨界濃度以上の濃度
を維持するように継続する限り、窒化鉄の微粒子核の表
面において、優先的に且つ、以前よりも容易に成される
ことをつかみ、一旦生成した窒化鉄の微粒子核を消滅さ
せることなく、その表面において一層ずつ増大させ、当
該窒化鉄を成長させることに成功した。
Therefore, as a result of intensive studies of the iron nitride fine particle formation process, the present inventors found that iron nitride was formed by the reaction of iron carbonyl with ammonia gas, ie, an iron amminecarbonyl complex Fe 2 which is a precursor of the iron nitride. (CO) 5 (N
As long as H 2 ) 2 and Fe 3 (CO) 9 (NH) 2 are maintained so as to maintain the concentration above the critical concentration, they are preferentially and more easily than before on the surface of the fine particle nucleus of iron nitride. We have succeeded in growing the iron nitride by gradually increasing it on the surface without annihilation of the fine particle nuclei of iron nitride once formed.

【0012】このように新しい製造方法によって、従
来、特にアンモニア窒化法を用いても製造することので
きなかった20nm〜1μm程度の粒径で等方的形状の
窒化鉄粒子を製造することが可能になったが、本発明
は、磁性材料としても優れた特性を有するこのような2
0nm〜100μm程度の粒径で等方的形状の窒化鉄粒
子を製造する更に新しい方法を提供することを課題とし
ている。
As described above, according to the new manufacturing method, it is possible to manufacture isotropic iron nitride particles having a particle size of about 20 nm to 1 μm, which could not be manufactured by the conventional ammonia nitriding method. However, according to the present invention, it is possible to realize such a 2
It is an object to provide a further new method for producing isotropic iron nitride particles having a particle size of about 0 nm to 100 μm.

【0013】[0013]

【課題を解決するための手段】本発明は上記課題を、気
相-液相反応により界面活性剤と親油性溶媒の下で作製
した窒化鉄コロイドを溶媒に混合して、そのエマルジョ
ンをアンモニアガス乃至不活性ガス雰囲気中で乾燥並び
に焼結させることによって、解決した。
Means for Solving the Problems The present invention addresses the above problems by mixing a surfactant and an iron nitride colloid prepared under a lipophilic solvent by a gas-liquid reaction with a solvent to form an emulsion of ammonia gas. Or by drying and sintering in an inert gas atmosphere.

【0014】一旦生成した窒化鉄の微粒子核の表面にお
いて一層ずつ増大させる方法では、成長速度がその層厚
みに制限を受けてしまうので、得られた窒化鉄微粒子の
粒径を飛躍的に増大させるために、微粒子同士を等方状
に造粒し焼結することとしたのである。
[0014] In the method of increasing the layer size on the surface of iron nitride fine particle nuclei that have been once generated, the growth rate is limited by the layer thickness, so the particle size of the obtained iron nitride fine particles is dramatically increased. Therefore, the fine particles are isotropically granulated and sintered.

【0015】例えば、等方状の型枠のようなものに詰め
込んで、粒子として焼き固めれば、等方状の粒子を所望
の粒子径で得ることができる。この原料と型枠との関係
を、窒化鉄微粒子を含む溶液とその溶液液滴がその非溶
媒中に存在するエマルジョンとの関係に応用して造粒す
るのである。更にこの造粒された微粒子を焼結すること
により、所望粒子径を有する粒子が製造可能である。
For example, if it is packed in something like an isotropic mold and baked as particles, isotropic particles with a desired particle size can be obtained. The relationship between the raw material and the mold is applied to the relationship between the solution containing the iron nitride fine particles and the emulsion in which the solution droplets are present in the non-solvent to granulate. Further, by sintering the granulated fine particles, particles having a desired particle size can be produced.

【0016】本発明においては、窒化鉄の原料物質とし
て鉄カルボニルを、原料ガスとしてアンモニアを用いる
が、アンモニアに代えて、アミン類等の液状あるいは固
体として反応系に導入できる任意の窒素化合物を用いる
こともできる。有機溶媒としては、例えば、炭化水素
類、あるいはその混合物、ケトン類、エーテル類、エス
テル類、アミン類等が好適で、当該溶媒に添加される界
面活性剤としては、アミン類が好適であるが、これらに
限定されない。
In the present invention, iron carbonyl is used as a raw material for iron nitride and ammonia is used as a raw material gas. Instead of ammonia, any nitrogen compound that can be introduced into the reaction system as a liquid or solid such as amines is used. You can also As the organic solvent, for example, hydrocarbons, or a mixture thereof, ketones, ethers, esters, amines and the like are preferable, and as the surfactant added to the solvent, amines are preferable. , But not limited to these.

【0017】種結晶として形成される窒化鉄コロイドを
非溶媒に加え、超音波分散機、ホモジナイザーなどの高
速攪拌機でエマルジョン化する。この際、窒化鉄の酸化
を回避するため、攪拌する溶液に酸素が混入しないよう
に、不活性ガス雰囲気に接して行うのがよい。装置によ
り異なるが、攪拌の色々な回転速度に対して、コロイド
液滴の粒径は、それぞれある時間を越えると一定となる
ので、その時間をやや越える程度に攪拌を続けるのがよ
い。
The iron nitride colloid formed as seed crystals is added to the non-solvent, and the mixture is emulsified with a high-speed stirrer such as an ultrasonic disperser or a homogenizer. At this time, in order to avoid the oxidation of iron nitride, it is preferable that the stirring is performed in contact with an inert gas atmosphere so that oxygen is not mixed in the solution. Although it depends on the device, the particle diameter of the colloid droplets becomes constant over a certain period of time with respect to various rotation speeds of stirring, so it is preferable to continue stirring for a little longer than that period of time.

【0018】混合を行う際の、窒化鉄コロイドの比重と
溶媒の比重はできるだけ近い方がよく、更にエマルジョ
ンを安定化させるために、HLBが7以上の界面活性剤
を用いるのが好ましい。特にマイクロカプセル状に液滴
を形成させ、溶媒との界面を固定することにより、完全
な球状に液滴とすることができる。
When mixing, the specific gravity of the iron nitride colloid and the specific gravity of the solvent should be as close as possible, and it is preferable to use a surfactant having an HLB of 7 or more in order to stabilize the emulsion. In particular, by forming droplets in the form of microcapsules and fixing the interface with the solvent, it is possible to obtain droplets having a perfect spherical shape.

【0019】このようにして得られたエマルジョンを、
アンモニアガス乃至不活性ガス雰囲気中で加熱乾燥ある
いは噴霧乾燥させ、又は真空乾燥させ、粉末化する。
The emulsion thus obtained is
It is dried by heating or spray drying in an atmosphere of ammonia gas or an inert gas, or vacuum drying, and powdered.

【0020】得られる乾燥窒化鉄粉末は、そのままでは
超微粒子のゆるく集合した集合体である。そこで加熱処
理を行うことにより当該粉末を焼結させる。焼結条件
は、不活性ガス或いは窒素ガス雰囲気で、温度を200
〜400℃とするのが好適である。
The obtained dry iron nitride powder is a loosely aggregated aggregate of ultrafine particles as it is. Therefore, the powder is sintered by performing heat treatment. The sintering conditions are an inert gas or nitrogen gas atmosphere and a temperature of 200.
The temperature is preferably set to 400 ° C.

【0021】得られた単結晶の窒化鉄粒子の表面に付着
している界面活性剤等を取り除くために、アセトン、キ
シレン、ベンゼン、石油ベンジン、シクロヘキサン等の
溶媒を用いる。
A solvent such as acetone, xylene, benzene, petroleum benzine, cyclohexane or the like is used to remove the surfactant and the like adhering to the surface of the obtained single crystal iron nitride particles.

【0022】[0022]

【実施例】以下に、本発明の実施例を挙げて更に具体的
に説明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0023】(1)種結晶形成段階 図1に示される窒化金属磁性流体の合成装置は、底部に
加熱装置2を取り付けた耐熱性熱分解反応槽1に、複数
の気密性導入フランジを有する蓋3を気密に接続するこ
とで形成されている。反応槽1内の溶液4を攪拌できる
ように、一つの導入フランジ5に攪拌装置6が取り付け
られている。導入管7を通して、原料気体が溶液4に導
入されるようになっている。別の導入フランジ8に設け
られた管路を介して原料物質9が、導入口10を介し
て、例えば界面活性剤11が導入される。別の導入口1
2に配置された管路が分岐され、一方には、窒化金属微
粒子の生成反応を行う際の還流冷却装置13が接続さ
れ、他方の管路には、蒸留冷却装置としてのコンデンサ
ー14が接続されている。
(1) Seed Crystal Forming Stage In the apparatus for synthesizing a metal nitride magnetic fluid shown in FIG. 1, a lid having a plurality of airtight introduction flanges is provided in a heat-resistant pyrolysis reaction tank 1 having a heating device 2 attached to the bottom. It is formed by connecting 3 airtightly. A stirring device 6 is attached to one introduction flange 5 so that the solution 4 in the reaction tank 1 can be stirred. The raw material gas is introduced into the solution 4 through the introduction pipe 7. The raw material 9 is introduced through a conduit provided in another introduction flange 8 and, for example, a surfactant 11 is introduced through an introduction port 10. Another inlet 1
The pipe line arranged in 2 is branched, one side is connected to a reflux cooling device 13 for carrying out a reaction for producing metal nitride fine particles, and the other pipe line is connected to a condenser 14 as a distillation cooling device. ing.

【0024】原料として、アルドリッヒ(Aldrich)社製
の純度96.5%の鉄カルボニルを、溶媒として、和光
純薬(株)製のケロシン、界面活性剤として、KAO(株)
製のN- ジエチレンイソブテニルサクシンイミド(アミ
ン)、並びに日本酸素(株)製で純度99.99%のアン
モニアガスを用いた。
Iron carbonyl having a purity of 96.5% manufactured by Aldrich is used as a raw material, kerosene manufactured by Wako Pure Chemical Industries, Ltd. as a solvent, and KAO Co., Ltd. as a surfactant.
N-diethyleneisobutenylsuccinimide (amine) manufactured by Nihon Oxygen Co., Ltd. and ammonia gas having a purity of 99.99% manufactured by Nippon Oxygen Co., Ltd. were used.

【0025】先ず、図1の合成装置の反応槽1におい
て、鉄カルボニル200g、アミン11.3g、ケロシ
ン53.1gからなる混合溶液4中に、導入管7を介し
て、アンモニアガスを流量390ml/minでバブリ
ングしながら十分混合し、加熱装置2によって90℃ま
で加熱し、当該温度で混合溶液4を1時間保持し、その
後、更に185℃に昇温し、再び1時間保持する。この
2段階の加熱操作を、反応槽1中の鉄カルボニルが全て
消費されるまで周期的に繰り返して、種結晶として、窒
化鉄コロイドを86g得た。得られた磁性窒化鉄粒子の
平均粒径を透過型電子顕微鏡の高倍率写真から求めた平
均粒径は10.4nmであった。
First, in the reaction tank 1 of the synthesizer shown in FIG. 1, ammonia gas is introduced into a mixed solution 4 consisting of 200 g of iron carbonyl, 11.3 g of amine and 53.1 g of kerosene through an introducing pipe 7 at a flow rate of 390 ml / Mix thoroughly while bubbling at min, heat to 90 ° C. by the heating device 2, hold the mixed solution 4 at the temperature for 1 hour, then raise the temperature to 185 ° C. and hold again for 1 hour. This two-step heating operation was periodically repeated until all the iron carbonyl in the reaction vessel 1 was consumed, to obtain 86 g of iron nitride colloid as seed crystals. The average particle size of the obtained magnetic iron nitride particles was 10.4 nm as determined from a high magnification photograph of a transmission electron microscope.

【0026】(2)窒化鉄コロイドのエマルジョン化段
階 このようにして得られた窒化鉄コロイドを造粒する一例
について述べる。
(2) Step of emulsifying iron nitride colloid An example of granulating the iron nitride colloid thus obtained will be described.

【0027】エマルジョン化溶媒として水を用いる。水
を用いる場合、窒化鉄コロイドの比重を水に合わせて1
にする。コロイドと水とを体積比1:10の割合で容器
に入れ、窒素ガスで容器をガス置換した後封止する。そ
の後超音波照射することによりエマルジョン化する。こ
の操作により、水中に平均粒径約1〜3μmのコロイド
液滴が乳化したエマルジョンを950g得た。この際、
エマルジョンを長時間維持するために、アミンを113
g添加する。
Water is used as the emulsifying solvent. When using water, adjust the specific gravity of the iron nitride colloid to 1
To Colloid and water are placed in a container at a volume ratio of 1:10, and the container is replaced with nitrogen gas and then sealed. Then, it is emulsified by ultrasonic irradiation. By this operation, 950 g of an emulsion in which colloid droplets having an average particle diameter of about 1 to 3 μm were emulsified in water was obtained. On this occasion,
In order to maintain the emulsion for a long time, 113
g is added.

【0028】(3)乾燥粉末焼結段階 次に得られたエマルジョンを不活性ガス雰囲気中で加熱
乾燥し、粉末化する。そして、この窒化鉄の乾燥粉末
5.8gを、窒素ガス雰囲気中で、200℃で1時間焼
結した。
(3) Dry powder sintering step Next, the obtained emulsion is heated and dried in an inert gas atmosphere to be powdered. Then, 5.8 g of this iron nitride dry powder was sintered at 200 ° C. for 1 hour in a nitrogen gas atmosphere.

【0029】得られた窒化鉄粒子の諸物性は表1のとお
りであった。
The physical properties of the obtained iron nitride particles are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明の製造方法においては、磁化の値
が大きく且つ粒径の揃った等方的形状の窒化鉄粒子が得
られ、このようにして得られた窒化鉄粒子は、粒子表面
を親油性にも親水性にも適宜に変えることができ、水性
溶媒中、又は油溶媒中にそれぞれ懸濁させて、保存、輸
送並びにその他の取り扱いができるので、当該粒子が燃
焼することもなく安全であり、また取り扱い作業も容易
である。
INDUSTRIAL APPLICABILITY In the production method of the present invention, isotropic iron nitride particles having a large magnetization value and a uniform particle size are obtained, and the iron nitride particles thus obtained have a particle surface. Can be appropriately changed to either lipophilic or hydrophilic, and can be stored, transported and otherwise handled by suspending them in an aqueous solvent or an oil solvent, respectively, so that the particles do not burn. It is safe and easy to handle.

【図面の簡単な説明】[Brief description of drawings]

【図1】公知の窒化鉄粒子の合成装置の概略図である。FIG. 1 is a schematic view of a known apparatus for synthesizing iron nitride particles.

【符号の説明】[Explanation of symbols]

1 熱分解反応槽 2 加熱装置 6 攪拌装置 13 還流冷却装置 14 コンデンサー 1 Pyrolysis Reaction Tank 2 Heating Device 6 Stirring Device 13 Reflux Cooling Device 14 Condenser

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 気相-液相反応により界面活性剤と親油
性溶媒の下で作製した窒化鉄コロイドを親油性溶媒に混
合して、エマルジョンをアンモニアガス乃至不活性ガス
雰囲気中で乾燥並びに焼結させてなる窒化鉄粒子の製造
方法。
1. A surfactant and an iron nitride colloid prepared under a lipophilic solvent by a gas-liquid reaction are mixed with a lipophilic solvent, and the emulsion is dried and baked in an atmosphere of ammonia gas or an inert gas. A method for producing iron nitride particles by binding.
JP15236593A 1993-06-23 1993-06-23 Method for producing iron nitride particles Expired - Lifetime JP3412189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15236593A JP3412189B2 (en) 1993-06-23 1993-06-23 Method for producing iron nitride particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15236593A JP3412189B2 (en) 1993-06-23 1993-06-23 Method for producing iron nitride particles

Publications (2)

Publication Number Publication Date
JPH0710509A true JPH0710509A (en) 1995-01-13
JP3412189B2 JP3412189B2 (en) 2003-06-03

Family

ID=15538943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15236593A Expired - Lifetime JP3412189B2 (en) 1993-06-23 1993-06-23 Method for producing iron nitride particles

Country Status (1)

Country Link
JP (1) JP3412189B2 (en)

Also Published As

Publication number Publication date
JP3412189B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JP2004526660A (en) Continuous production method of carbon nanotubes using nano-aggregate fluidized bed and reaction apparatus thereof
WO2005113433A1 (en) Cladophora-form carbon, process for producing the same and production apparatus therefor
JP4774214B2 (en) Method for synthesizing metal nanoparticles
RU2247006C1 (en) Decomposition process for producing submicron particles in liquid bath
JP2001080912A (en) Production of carbon nanotube
JP2006507409A (en) Method for the synthesis of metal nanoparticles
Hong et al. Synthesis and characterization of silicon oxide nanoparticles using an atmospheric DC plasma torch
JP4583928B2 (en) Methods for the synthesis of carbon nanotubes
JP2006213536A (en) Method for producing oxide fine particle by using ultrasonic wave, and oxide fine particle
JPWO2011152406A1 (en) Method for producing metal nanoparticle colloid
JP3363938B2 (en) Method for producing spherical iron nitride fine particles by sintering method
JP3412189B2 (en) Method for producing iron nitride particles
JP3255958B2 (en) Magnetic fluid or magnetic particle manufacturing equipment
JP3276390B2 (en) Iron nitride particles and method for producing the same
JPS62283900A (en) Production of aln whisker
Wang et al. Synthesis of monodisperse and high-purity α-Si3N4 powder by carbothermal reduction and nitridation
KR20040082950A (en) Massive synthesis method of double-walled carbon nanotubes using the vapor phase growth
CN114605966A (en) Nano fluid working medium for heat transfer of heat pipe and preparation method thereof
Madkour et al. Processing of nanomaterials (NMs)
Li et al. A simple method for the preparation of containing Sb nano-and microcrystallines via an ultrasound agitation
JP2009161414A (en) Method for manufacturing magnetic material
JP2007153662A (en) Metal nitride nanoparticles and method for producing the same
CN101301618A (en) Intermediates for manufacturing carbon nanocoils and manufacturing method of carbon nanocoils
Shi et al. Synthesis of carbon materials with different morphologies by solvothermal method with premixing
Pierre et al. Nanoparticle Formation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term