JPH026629A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPH026629A
JPH026629A JP7308989A JP7308989A JPH026629A JP H026629 A JPH026629 A JP H026629A JP 7308989 A JP7308989 A JP 7308989A JP 7308989 A JP7308989 A JP 7308989A JP H026629 A JPH026629 A JP H026629A
Authority
JP
Japan
Prior art keywords
precursor
fibers
fiber
flame
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7308989A
Other languages
Japanese (ja)
Inventor
Haruo Ohara
春夫 尾原
Makoto Kobayashi
真 木林
Atsushi Tsunoda
敦 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7308989A priority Critical patent/JPH026629A/en
Publication of JPH026629A publication Critical patent/JPH026629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To attain further improvement in the strength and elastic modulus of a carbon fiber and to shorten the overall treatment time of the process for the production of a carbon fiber by carrying out the drawing and flame- resisting treatment of a precursor fiber in a fluidized layer under a specific condition. CONSTITUTION:A precursor fiber is drawn in a fluidized layer under a condition to satisfy the formulas DR>=1.1, 0.7<=D/DR<=1.4 and D<=5 wherein DR is draw ration (times) and D is the single filament denier of the precursor fiber and the drawn fiber is subjected to flame-resisting treatment and carbonization treatment to obtain the objective carbon fiber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素繊維の製造法、特に前駆体繊維の耐炎化
処理において、最終的に得られる炭素繊維または黒鉛繊
維としての品位および強度2弾性率などの力学的物性を
向上させると共に、炭素繊維製造プロセス全体としての
処理時間の短縮化に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to a method for producing carbon fibers, particularly in flame-retardant treatment of precursor fibers, to improve the quality and strength of the final carbon fibers or graphite fibers. This invention relates to improving mechanical properties such as elastic modulus and shortening the processing time of the entire carbon fiber manufacturing process.

[従来の技術] 従来、炭素繊維の製造方法としては前駆体繊維を酸化性
ガス雰囲気中、200〜300’Cで耐炎化(ピッチ系
繊維では一般に不融化と称し、更に高温の450’C程
度までの処理を行う)し、次いで窒素やアルゴン等の不
活性雰囲気中にて800〜2000’Cで炭化するのが
一般的である。またこのような炭素繊維を、さらに20
00’C以上の不活性ガス雰囲気中で黒鉛化し2弾性率
が一段と高い黒鉛繊維とすることも行なわれている。
[Prior Art] Conventionally, as a method for producing carbon fibers, precursor fibers are made flame resistant at 200 to 300'C in an oxidizing gas atmosphere (generally called infusible for pitch-based fibers, and further heated to a higher temperature of about 450'C). It is common practice to carry out the above treatments) and then carbonize at 800 to 2000'C in an inert atmosphere such as nitrogen or argon. In addition, 20 more such carbon fibers
Graphite fibers having a higher modulus of elasticity 2 are produced by graphitizing in an inert gas atmosphere at 00'C or higher.

ところで、上記炭素繊維は需要が拡大する一方で、その
力学的物性の一層の向上が要望されてきた。これに対応
して、これまで種々の改良手段が提案されている。その
一つとしてアクリル系炭素繊維に例をとれば、前駆体繊
維であるアクリル繊維の繊維配向度を高めることで炭素
繊維の前記力学的物性が改良できることから、その前駆
体繊維の製造段階、即ち、紡糸−延伸−乾燥緻密化後の
アクリル系糸条に対して、加圧水蒸気中での延伸(二次
延伸)を施す方法がある(例えば、特公昭48−276
10号公報)。
By the way, while the demand for the above-mentioned carbon fiber is increasing, there has been a demand for further improvement in its mechanical properties. In response to this, various improvement means have been proposed so far. Taking acrylic carbon fiber as an example, the mechanical properties of carbon fiber can be improved by increasing the degree of fiber orientation of the acrylic fiber, which is the precursor fiber. There is a method in which the acrylic yarn after spinning, drawing, drying and densification is subjected to drawing in pressurized steam (secondary drawing) (for example, Japanese Patent Publication No. 48-276
10).

しかし、上記の二次延伸法では、高物性の炭素繊維を得
るために高度の延伸を施ず必要から、通常スチーム加圧
したデユープ内で延伸するが、この延伸では伝熱が律速
になるため衣料用アクリル繊維のような数万〜数十万フ
ィラメン]・からなるトウの延伸は不可能である。また
チューブの太さから一定の設備幅に対してたとえ立体的
に配置したとしても本数をふやすことは困難である。す
なわち、このような二次延伸によって炭素繊維の力学的
物性はある程度向上するものの、この工程を付加するこ
とが炭素繊維の生産効率を上げる上での阻害要因となる
可能性があった。
However, in the above-mentioned secondary drawing method, in order to obtain carbon fiber with high physical properties, a high degree of drawing is not necessary, so drawing is usually carried out in a duplex pressurized with steam, but heat transfer is rate-limiting in this drawing. It is impossible to stretch a tow consisting of tens of thousands to hundreds of thousands of filaments, such as acrylic fibers for clothing. Furthermore, due to the thickness of the tubes, it is difficult to increase the number of tubes for a given equipment width even if they are arranged three-dimensionally. That is, although the mechanical properties of carbon fibers are improved to some extent by such secondary drawing, the addition of this step may become an impediment to increasing the production efficiency of carbon fibers.

一方、前駆体繊維を酸化性ガス雰囲気中で焼成する耐炎
化工程は、酸化と環化を伴なう反応であり、高温で処理
するほど反応速度が上がり、耐炎化に必要な処理時間が
短縮できる。しかし、反応発熱が該繊維内に蓄熱して単
糸間の融着や糸切れ、場合によっては発火現象を生ずる
。そのため耐炎化工程での生産効率を上げるためには、
該繊維の反応発熱を効率良く除去しつつ、可能な限り高
温で処理するプロセスでおることが肝要である。
On the other hand, the flameproofing process in which precursor fibers are fired in an oxidizing gas atmosphere is a reaction that involves oxidation and cyclization, and the higher the temperature, the faster the reaction rate and the shorter the treatment time required for flameproofing. can. However, the heat generated by the reaction accumulates within the fibers, causing fusion between single yarns, yarn breakage, and, in some cases, ignition. Therefore, in order to increase production efficiency in the flameproofing process,
It is important that the process be carried out at as high a temperature as possible while efficiently removing the heat generated by the reaction of the fibers.

このような目的に合致した耐炎化方法としては、前駆体
繊維に熱風を吹ぎ付けて、アクリル系前駆体繊維の場合
には処理時間20〜120分稈度で耐炎化処理する方法
(以下、A−ブン方式という)が市る。しかし、この方
法には前駆体繊維の加熱効率2反応熱の除去効率に限界
があるため、処理時間を現状以上に短縮させることが困
難であるという問題、並びに前駆体繊維が人物になると
該繊維内部の効果的な加熱おるいは除熱が難しくなるた
め、前駆体繊維の人物化、ひいては処理密度の増大が困
難であるという問題があった。
A flame-retardant method that meets this purpose is a method in which hot air is blown onto the precursor fibers, and in the case of acrylic precursor fibers, the flame-retardant treatment is carried out for 20 to 120 minutes at a culm level (hereinafter referred to as The A-bun method) became popular. However, this method has the problem that it is difficult to shorten the processing time more than the current level because there are limits to the heating efficiency of the precursor fibers and the removal efficiency of the heat of reaction. Since it becomes difficult to effectively heat or remove the heat inside, there is a problem in that it is difficult to make the precursor fibers into human figures, and thus it is difficult to increase the processing density.

一方、前駆体i維を流動層中での耐炎化処理する方法(
以下、流動層方式という)かある(例えば、特公昭44
−25375@公報)。すなわち、第1図に示すように
固体熱媒粒子を気体で流動化した状態下で前駆体繊維を
加熱処理する方式である。図において、1は耐炎化炉、
2は熱媒粒子、3は第1段目の加熱域、4は第2段目の
加熱域、5,5′はヒータ、6,6′ は分散板、7,
7′ は給気孔、8は排気孔、9,9−は加圧シール室
、10は仕切板、11.11’ は給気孔、12は熱媒
除去手段、Aは前駆体繊維である。
On the other hand, a method of flame-retardant treatment of precursor i-fibers in a fluidized bed (
(hereinafter referred to as the fluidized bed method) (for example,
-25375@publication). That is, as shown in FIG. 1, this is a method in which precursor fibers are heat-treated in a state in which solid heat transfer particles are fluidized with gas. In the figure, 1 is a flameproofing furnace;
2 is a heating medium particle, 3 is a first stage heating region, 4 is a second stage heating region, 5, 5' are heaters, 6, 6' are dispersion plates, 7,
7' is an air supply hole, 8 is an exhaust hole, 9, 9- are pressurized seal chambers, 10 is a partition plate, 11.11' is an air supply hole, 12 is a heating medium removal means, and A is a precursor fiber.

この方式によれば、アクリル系前駆体繊維の場合、耐炎
化処理時間が約0.5〜1時間と、前記オーブン方式に
比べれば処理時間が若干短縮されるとは言え、決して充
分とは言えない。しかも、最終的に得られる炭素繊維は
強度や弾性率などの力学的物性が充分とは言えず、むし
ろ、通常のオブン方式に比べて低下傾向にあるという問
題があった。
According to this method, in the case of acrylic precursor fibers, the flame-retardant treatment time is about 0.5 to 1 hour, which is slightly shorter than the oven method, but it is by no means sufficient. do not have. Moreover, the mechanical properties of the carbon fibers finally obtained cannot be said to be sufficient, such as strength and elastic modulus, and on the contrary, there is a problem that they tend to be lower than those obtained using the ordinary oven method.

[発明が解決しようとする課題] 本発明の解決課題は従来技術の上記問題点を解消し、流
動層方式による前駆体繊維の耐炎化処理においで、最終
的に得られる炭素繊維または黒鉛繊維の力学的物性、特
に強度や弾性率を一層向上させると共に、炭素繊維製造
プロセス全体としての処理時間の短縮化を図ることにあ
る。
[Problems to be Solved by the Invention] The problem to be solved by the present invention is to solve the above-mentioned problems of the prior art, and to solve the problems of the carbon fibers or graphite fibers finally obtained in the flame-retardant treatment of precursor fibers using a fluidized bed method. The objective is to further improve mechanical properties, particularly strength and elastic modulus, and to shorten the processing time of the entire carbon fiber manufacturing process.

[課題を解決するための手段] 本発明の上記課題は、前駆体繊維を分散手段上の流動層
中で加熱処理して耐炎化した後、炭素化する方法におい
て、前記流動層中で延伸倍率DR(倍)と前駆体繊維の
単糸デニールD(デニール)が下記に示す範囲内で延伸
することによって解決できる。
[Means for Solving the Problems] The above object of the present invention is to provide a method in which a precursor fiber is heat-treated in a fluidized bed on a dispersing means to make it flame resistant, and then carbonized. This problem can be solved by drawing the DR (times) and the single yarn denier D (denier) of the precursor fiber within the ranges shown below.

DR≧1.1 0.7−≦D/DR≦1.4 D≦5.0 すなわち、本発明における前駆体繊維とは、ポリアクリ
ロニ]〜リル系、再生セルローズ系、フェノール系など
に代表される有機重合体を紡糸して得られるフィラメン
ト、ス1〜ランド、トウ状の連続体もしくは不連続体、
およびその紡績糸、織物。
DR≧1.1 0.7-≦D/DR≦1.4 D≦5.0 In other words, the precursor fiber in the present invention is typified by polyacryloni-lyl type, regenerated cellulose type, phenol type, etc. Filaments, strands, tow-like continuous bodies or discontinuous bodies obtained by spinning organic polymers,
and its spun yarns and textiles.

布帛などを言い、特にその形態を問わない。Refers to cloth, etc., and does not particularly care about its form.

これらの前駆体繊維のうち、アクリル系繊維を例にとっ
て具体的に説明すれば、先ず、アクリル系繊維の共重合
成分としてはアクリル酸、メタクリル酸、イタコン酸等
の不飽和カルボン酸、これらの酸のエステル類およびア
クリルアミド、メタクリルアミド等か例示てぎる。これ
らの単量体はアクリロニ1へツルとの二元または三元共
重合体として用いる。このような共重合体を得る方法と
しては均一溶液重合、水溶液におけるレドックス重合、
不均一系におりる懸濁重合、あるいは乳化重合等を用い
ることができる。また該共重合成分量は、好ましくは0
.5モル%以上10モル%以下である。さらに好ましく
は1モル%以上6モル%以下である。共重合成分量が0
.5モル%以下であると、前駆体を製造する際に浴延伸
性が低く。
Among these precursor fibers, taking acrylic fiber as an example, the copolymerization components of acrylic fiber include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid; Examples include esters, acrylamide, methacrylamide, etc. These monomers are used as a binary or tertiary copolymer with acrylonitrile. Methods for obtaining such copolymers include homogeneous solution polymerization, redox polymerization in aqueous solution,
Suspension polymerization in a heterogeneous system, emulsion polymerization, etc. can be used. Further, the copolymerization component amount is preferably 0.
.. It is 5 mol% or more and 10 mol% or less. More preferably, it is 1 mol% or more and 6 mol% or less. Copolymerization component amount is 0
.. If it is less than 5 mol %, bath stretchability will be low when producing a precursor.

生産性が低下する傾向にあり、更に流動層耐炎化炉にお
いて前駆体の延伸性も低下し2毛羽を発生し易くなる。
Productivity tends to decrease, and the drawability of the precursor also decreases in a fluidized bed flameproofing furnace, making it easy to generate fuzz.

また、10モル%以上でおると前駆体の単糸が接着を起
こし易く、炭素繊維の力学特性に好ましくない傾向とな
る。一般に、共重合成分を多くすればする程、延伸性が
向上する反面、単繊維相互の接着を起こし易くなる。し
かし、このような前駆体に対して更にシリコン油剤を付
与すると、流動層方式による耐炎化処理や炭化処理によ
って品位や力学的物性、いずれも優れた炭素繊維が得ら
れ易くなる。特に本発明の延伸耐炎イとては、その効果
が顕著である。
Furthermore, if the content is 10 mol % or more, the single fibers of the precursor tend to adhere, which tends to be unfavorable for the mechanical properties of the carbon fiber. Generally, as the copolymerization component increases, the stretchability improves, but on the other hand, it becomes easier for single fibers to adhere to each other. However, if a silicone oil is further added to such a precursor, it becomes easier to obtain carbon fibers with excellent quality and mechanical properties through flameproofing treatment and carbonization treatment using a fluidized bed method. In particular, the effect of the stretched flame-resistant film of the present invention is remarkable.

この場合のシリコン油剤としては、その耐熱性が重要で
あって2例えば特公昭60−47382号公報に示すよ
うな耐炎化繊維に融着を生じないシリコン系油剤を前駆
体繊維に対して0.1%以上用いることが好ましい。
Heat resistance is important for the silicone oil agent in this case, and a silicone oil agent that does not cause fusion to the flame-retardant fibers as shown in Japanese Patent Publication No. 60-47382, for example, should be used at a temperature of 0.00% relative to the precursor fibers. It is preferable to use 1% or more.

なお、前駆体の製造においては、上記以外に公知の製造
条件が採用できるし、また本発明の意図を損わぬ限り乾
燥緻密化後の糸条に対して適宜二次延伸を採用すること
もできる。
In addition, in the production of the precursor, known production conditions other than those described above can be employed, and secondary stretching may be employed as appropriate for the yarn after drying and densification as long as it does not impair the intent of the present invention. can.

次に、本発明における流動層とは、固体熱媒粒子を気体
で流動化した状態で加熱処理する手段であって、前記熱
媒粒子が酸化性気体で流動化された状態と、所定の温度
、好ましくは200’C以上。
Next, the fluidized bed in the present invention is a means for heat-treating solid heat transfer particles in a state in which they are fluidized with gas, and in which the heat transfer particles are in a state in which they are fluidized in an oxidizing gas and at a predetermined temperature. , preferably 200'C or higher.

より好ましくは240°C以上に加熱された状態がこの
流動層内で共存された状態をいう。
More preferably, it refers to a state in which a state heated to 240° C. or higher coexists within the fluidized bed.

本発明において酸化性気体とは、空気の信金硫黄気体等
、前記前駆体繊維に対して加熱時広義の酸化反応を生ず
る気体が含まれる。
In the present invention, the oxidizing gas includes gases that cause an oxidation reaction in a broad sense on the precursor fibers when heated, such as air sulfur gas.

本発明における熱媒粒子とは、気体で流動化された状態
で用いる固体粒子をいい、耐炎化に必要な加熱温度に耐
え得る耐熱性を有するもので、例えば、主成分として炭
素、アルミナ、炭化ケイ素。
The heating medium particles in the present invention refer to solid particles that are used in a gaseous fluidized state and have heat resistance that can withstand the heating temperature required for flame resistance. Silicon.

ジルコニア、シリカ等が単独あるいは共存して構成され
るセラミックやカラス等の無機物粒子を用いることがで
きる。特に前記熱媒粒子のうち、炭素を主成分とする粒
子であることが好ましく、さらには重量の80%以上が
28メツシユより小さい粒径の黒鉛粒子が好ましい。
Inorganic particles such as ceramic or glass that are composed of zirconia, silica, etc. alone or in combination can be used. Particularly, among the heat transfer particles, particles containing carbon as a main component are preferable, and graphite particles in which 80% or more of the weight of the particles have a particle size smaller than 28 meshes are particularly preferable.

次に、流動層は次の条件にて形成されるのが一般的であ
る。すなわち、上面レベルから分散手段までの熱媒粒子
の・静置時深さH[m]を下記の範囲として分散板上に
流動層を形成ゼしめ、前記流動層中で前駆体繊維を加熱
する。
Next, a fluidized bed is generally formed under the following conditions. That is, a fluidized bed is formed on the dispersion plate with the standing depth H [m] of the heating medium particles from the upper surface level to the dispersion means in the following range, and the precursor fibers are heated in the fluidized bed. .

20Mf/(ρυCp A ) 〈H< 500 /ρ
υここで、 Mf :流動層中に存在する前駆体繊維重量[K9 ]
ρυ:熱媒粒子の嵩密度[K3/Trl!]C1:熱媒
粒子の比熱[k cal/ Kg°CコA :流動層の
流動化面積[TIt] である。
20Mf/(ρυCp A) <H< 500/ρ
υHere, Mf: weight of precursor fibers present in the fluidized bed [K9]
ρυ: Bulk density of heat transfer particles [K3/Trl! ] C1: Specific heat of heating medium particles [k cal/Kg°C CoA: Fluidized area of fluidized bed [TIt].

本発明方法においては、前駆体繊維束のデニルと処理時
間との関係は前記繊維束を積極的に扁平化してその幅W
(m)と厚みd(#)の比W/dを少くとも5以上にし
た状態で処理することによって耐炎化処理時間をより短
縮させることができる。その際、前記厚み(d)を3#
以下に扁平化して前駆体繊維の走行方向を実質的に水平
方向とし、扁平化した幅方向を垂直に配列して連続処理
するのが好ましい。
In the method of the present invention, the relationship between the denyl of the precursor fiber bundle and the processing time is such that the fiber bundle is actively flattened and its width W
By performing the treatment with the ratio W/d of (m) and thickness d(#) set to at least 5, the flame resistance treatment time can be further shortened. At that time, the thickness (d) was changed to 3#
It is preferable that the precursor fibers are subsequently flattened so that the running direction of the precursor fibers is substantially horizontal, and that the flattened width direction is arranged vertically for continuous processing.

以上、本発明にあける耐炎化方法では、アクリル系前駆
体繊維束のデニールに対する処理温度の上限と耐炎化時
間の下限をまとめてみると第1表の如くなる。
As mentioned above, in the flame resistant method of the present invention, the upper limit of the treatment temperature and the lower limit of the flame resistant time for the denier of the acrylic precursor fiber bundle are summarized as shown in Table 1.

(以下、余白) 第1表 もらろん、処理温度をこれ以下に下げて耐炎化すること
は炭素繊維の力学特性を考慮する上で望ましいことであ
る。また好ましくは流動層で耐炎化する前に200’C
以上260’C以下の空気中で60秒以下の緊張前処理
を施してもよい。
(Hereinafter, blank space) As shown in Table 1, it is desirable to lower the treatment temperature below this range to make the carbon fiber flame resistant, considering the mechanical properties of the carbon fiber. It is also preferable to
A pre-stressing treatment may be performed for 60 seconds or less in air at a temperature of 260'C or less.

上記の流動層方式による耐炎化処理において、本発明方
法の要諦とするところは前駆体繊維を下記に示ず範囲内
で延伸することである。
In the above-mentioned flame-retardant treatment using the fluidized bed method, the key point of the method of the present invention is to draw the precursor fiber within a range not shown below.

DR≧1.1 0.7≦D/DR≦1.4 D≦5.0 ずなわら、DRが1.1未満では前駆体に対して十分な
配向を付与することが困難であり、良好な力学特性を有
する炭素繊維を得ることが期待できない。また延伸後の
前駆体の太さを表わすD/DRが1.4より大きくなる
と耐炎化において二層構造を生じ易く、炭素繊維のツノ
学特性を維持しながら短時間での耐炎化が困難になる。
DR≧1.1 0.7≦D/DR≦1.4 D≦5.0 However, if DR is less than 1.1, it is difficult to impart sufficient orientation to the precursor, resulting in poor quality. It cannot be expected to obtain carbon fibers with excellent mechanical properties. Furthermore, if D/DR, which represents the thickness of the precursor after stretching, is greater than 1.4, a two-layer structure is likely to occur when making it flame resistant, making it difficult to make it flame resistant in a short time while maintaining the horn properties of carbon fiber. Become.

一方、D/DRが0.7未満では毛羽の発生や糸切れを
招き安定生産が困難になる。また前駆体繊維として必要
な単糸デニールは5.0デニール以下である。
On the other hand, if D/DR is less than 0.7, fuzzing and thread breakage may occur, making stable production difficult. Further, the single yarn denier required as the precursor fiber is 5.0 denier or less.

すなわち、アクリル繊維の緻密化前と緻密化後のトータ
ルの延伸能力はほぼ一定であり、太デニールにする程、
緻密化前の延伸による配向を下げる必要がある。その結
果、製糸工程での水洗による溶媒除去性の低下、乾燥性
低下およびホイトの生成による失透なと好ましくない傾
向かある。また乾熱延伸での負荷が大きく、毛羽の発生
や糸切れを招き易くなり安定生産での大きな障害となる
In other words, the total drawing capacity of the acrylic fiber before and after densification is almost constant, and the thicker the denier, the more
It is necessary to reduce the orientation caused by stretching before densification. As a result, there are unfavorable tendencies such as a decrease in solvent removability due to water washing in the spinning process, a decrease in drying performance, and devitrification due to the formation of hoyte. In addition, the load during dry heat stretching is large, which tends to cause fluff and thread breakage, which is a major hindrance to stable production.

かかる理由から1、前駆体繊維の単糸デニールは好まし
くは1.1以上2.5以下、より好ましくは1.1以上
2.0以下として、できるだけ乾熱延伸での負荷を小さ
くするのが望ましい。
For these reasons, 1. It is desirable that the single filament denier of the precursor fiber is preferably 1.1 or more and 2.5 or less, more preferably 1.1 or more and 2.0 or less, to reduce the load during dry heat drawing as much as possible. .

このJ:うな延伸耐炎化条件を採択することによって、
得られる炭素繊維の力学的物性が著しく向上し、特に前
記前駆体繊維の二次延伸を採用することなく高物性の炭
素繊維が得られるため、炭素繊維製造プロセス全体とし
ての処理時間を大幅に短縮させることができる。
By adopting this J: eel stretching flame resistance condition,
The mechanical properties of the obtained carbon fibers are significantly improved, and in particular, carbon fibers with high physical properties can be obtained without employing secondary drawing of the precursor fibers, which significantly reduces the processing time for the entire carbon fiber manufacturing process. can be done.

なお、該延伸方法としては流動層耐炎化炉の入側と出側
での通常用いられるローラー延伸法をはじめとする種々
の延伸法を用いることができる。
As the stretching method, various stretching methods can be used, including a roller stretching method that is commonly used at the entrance and exit sides of a fluidized bed flameproofing furnace.

以上のようにして得られる耐炎化繊維は、引続き不活性
ガス雰囲気にて最高熱処理温度が800°C〜2000
 ’Cて炭化し炭素繊維とする。
The flame-resistant fiber obtained in the above manner is subsequently subjected to a maximum heat treatment temperature of 800°C to 2000°C in an inert gas atmosphere.
'C to carbonize and make carbon fiber.

この炭化工程でも適宜延伸を施すこともできるが、その
際の延伸倍率としては1.15倍以下が好ましい。また
必要とあれば該炭素繊維をさらに2000’C以上の不
活性カス雰囲気中で黒鉛化し黒鉛化繊維とすることもで
きる。
In this carbonization step, stretching can also be carried out as appropriate, but the stretching ratio at that time is preferably 1.15 times or less. Furthermore, if necessary, the carbon fibers can be further graphitized in an inert gas atmosphere at 2000'C or higher to obtain graphitized fibers.

[実施例] 以下、実施例により本発明を更に具体的に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 アクリロニトリル96モル%アクリル酸メチル3.0モ
ル%イタコン酸1モル%からなるポリマーをジメチルス
ルフオキシド中で溶液重合法により合成し、ポリマー濃
度22W1%、[η]1゜4の紡糸原液を作製した。こ
の紡糸原液を孔径0゜06a++J、孔数12,000
個の口金より押し出し湿式紡糸を行ない、引き続き湯浴
にて6倍に延伸し水洗後シリコン油剤を付与した。更に
乾燥緻密化を行ないワイングーにて巻き取り前駆体繊維
とした。
Example 1 A polymer consisting of 96 mol% acrylonitrile, 3.0 mol% methyl acrylate, 1 mol% itaconic acid was synthesized in dimethyl sulfoxide by a solution polymerization method, and the polymer was spun at a polymer concentration of 22W1% and [η]1°4. A stock solution was prepared. This spinning stock solution was prepared with a pore diameter of 0°06a++J and a number of pores of 12,000.
The fibers were extruded from a separate spinneret and subjected to wet spinning, then stretched 6 times in a hot water bath, washed with water, and then coated with a silicone oil. It was further dried and densified and wound up using a wine gourd to obtain a precursor fiber.

当該繊維は単糸デニール1.5デニール(d)、強度4
 q/d、伸度14%、油剤付着量1.8%であった。
The fiber has a single yarn denier of 1.5 denier (d) and a strength of 4.
q/d, elongation was 14%, and oil adhesion was 1.8%.

上記前駆体繊維を第1図に示す如く、流動層加熱炉内を
仕切板で夫々有効長が同じ二つの加熱域に分割した流動
層加熱炉内を粒径100〜200メツシユの黒鉛粉末を
静置熱媒深さ40#、風速2、ONcm/秒の圧空で流
動化した炉内にて延伸しながら耐炎化時間10分で耐炎
化し、更にN2ガス雰囲気にて1350’Cて炭化し炭
素繊維を得た。結果を第2表に示す。
As shown in Fig. 1, graphite powder with a particle size of 100 to 200 mesh is statically heated inside a fluidized bed heating furnace, which is divided into two heating zones with the same effective length by a partition plate. The carbon fiber is made flame resistant by stretching it in a furnace fluidized with a heating medium depth of 40 #, a wind speed of 2, and a pressure of ON cm/sec for 10 minutes, and then carbonized at 1350'C in a N2 gas atmosphere. I got it. The results are shown in Table 2.

(以下、余白) 実施例2 孔径0.06sJ2’、孔数50000個の口金より実
施例1と同様の条件にて、単糸デニール1゜5のトウを
得た。このトウを前記流動層加熱炉で温度250℃/2
70’C,耐炎化時間15分で1゜5倍に延伸しなから
耐炎化を行なった。次いで1350’Cで緊張下で炭化
し炭化糸を得た。トウを焼成する過程での通過性は良好
であり、1〜ラブルなく炭化できた。得られた炭化糸の
単糸強度をテンシロンを用いて試長25繭、引張り速度
1#/分の条件でトウから均等に50本の単糸をサンプ
リングして測定した平均値は強度347Ky/…m2弾
性率19.6t/mm2であった。
(Hereinafter, blank spaces) Example 2 A tow with a single yarn denier of 1°5 was obtained under the same conditions as in Example 1 from a die with a hole diameter of 0.06 sJ2' and a number of holes of 50,000. This tow was heated in the fluidized bed heating furnace at a temperature of 250°C/2.
The film was stretched 1°5 times at 70'C for 15 minutes before being flame resistant. Next, the carbonized yarn was carbonized at 1350'C under tension to obtain a carbonized thread. The passability during the process of firing the tow was good, and the tow could be carbonized without any trouble. The single fiber strength of the carbonized yarn obtained was measured using Tensilon by sampling 50 single yarns evenly from the tow under the conditions of a trial length of 25 cocoons and a pulling speed of 1#/min.The average value was 347 Ky/... The m2 elastic modulus was 19.6 t/mm2.

比較例1 実施例1で得た前駆体を2段階に区別される温度域のオ
ーブン式耐炎化炉にて耐炎化温度を第一段階を260’
C,第二段階を280°Cにて耐炎化時間10分で1.
5倍に延伸しなから耐炎化したが、耐炎化中に糸切れを
起こした。
Comparative Example 1 The precursor obtained in Example 1 was heated to a flameproofing temperature of 260' in the first stage in an oven-type flameproofing furnace with a temperature range divided into two stages.
C. 1. The second stage was 280°C and the flame resistance time was 10 minutes.
It was made flame resistant after being stretched 5 times, but thread breakage occurred during the flame resistant process.

比較例2 実施例2で得たトウを比較例1と同じオーブン式耐炎化
炉内にて第一段階を250℃、第二段階を270’C,
耐炎化時間15分で、1.5倍に延伸しなから耐炎化し
たが、耐炎化中に糸切れを起こした。
Comparative Example 2 The tow obtained in Example 2 was heated at 250°C in the first stage, at 270'C in the second stage, in the same oven-type flameproofing furnace as in Comparative Example 1.
After 15 minutes of flame resistance, the film was flame resistant after being stretched 1.5 times, but thread breakage occurred during flame resistance.

実施例3 実施例1における、孔径0.06mχ、孔数12.00
0個の口金からの吐出量を変更すると共に、湯浴中の延
伸倍率を2倍とした以外は、実施例1と同様の条件で単
糸デニールが4d 、5dおよび6dの前駆体繊維を得
た。
Example 3 In Example 1, hole diameter 0.06 mχ, number of holes 12.00
Precursor fibers with single yarn deniers of 4d, 5d, and 6d were obtained under the same conditions as in Example 1, except that the discharge amount from the nozzle was changed and the stretching ratio in the hot water bath was doubled. Ta.

上記前駆体繊維を実施例1と同様の流動層加熱炉内でD
/DR=1で耐炎化し、さらに実施例1と同条件で炭化
した。その結果を第3表に示す。
D in the same fluidized bed heating furnace as in Example 1.
/DR=1 to make it flame resistant, and then carbonize it under the same conditions as in Example 1. The results are shown in Table 3.

(以下、余白〉 第3表 [発明の効果] 本発明は前駆体繊維の耐炎化処理に、流動層方式と、そ
の際に特定条件下の延伸耐炎化を採択したことで、 ■繊維の物理的損傷の少ない、高品位の耐炎化繊維、さ
らに高物性の炭素繊維を短時間に、生産性良り、シかも
低コストで得られること■特に前駆体繊維について、前
記二次延伸を採用することなく高物性の炭素繊維か得ら
れるため、炭素繊維製造プロセス全体としての処理時間
が大巾に短縮でき、炭素繊維製品の]ス1へ低減が図れ
ること などの炭素繊維製造上、顕著な効果を奏する。
(The following is a blank space) Table 3 [Effects of the Invention] The present invention adopts a fluidized bed method for flame-retardant treatment of precursor fibers, and flame-retardant stretching under specific conditions at that time. ■Physics of fibers Able to obtain high-quality flame-resistant fibers with little physical damage and carbon fibers with high physical properties in a short time, with good productivity, and at low costs. ■Especially for precursor fibers, the above-mentioned secondary drawing is adopted. Since carbon fibers with high physical properties can be obtained without any waste, the processing time for the entire carbon fiber manufacturing process can be greatly shortened, and the carbon fiber manufacturing process has remarkable effects such as reducing the amount of carbon fiber products. play.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る流動層中での前駆体繊維の耐炎化
方法の一実施例を示す概略断面図である。 1:耐炎化炉 2:熱媒粒子 3:第1段目の加熱域 4:第2段目の加熱域 5.5’  :ヒータ 6、6’  :分散板 7、7’  :給気孔 8:排気孔 9.9−:加圧シール室 10:仕切板 11.11’  :給気孔 12:熱媒除去手段 A:前駆体繊維
FIG. 1 is a schematic cross-sectional view showing an embodiment of the method for flame-proofing precursor fibers in a fluidized bed according to the present invention. 1: Flameproofing furnace 2: Heat medium particles 3: 1st stage heating zone 4: 2nd stage heating zone 5.5': Heater 6, 6': Dispersion plate 7, 7': Air supply hole 8: Exhaust hole 9.9-: Pressure seal chamber 10: Partition plate 11.11': Air supply hole 12: Heat medium removal means A: Precursor fiber

Claims (1)

【特許請求の範囲】 前駆体繊維を分散手段上の流動層中で加熱処理して耐炎
化した後、炭素化する方法において、前記流動層中で延
伸倍率DR(倍)と前駆体繊維の単糸デニールD(デニ
ール)が下記に示す範囲内で延伸することを特徴とする
炭素繊維の製造法。 DR≧1.1 0.7≦D/DR≦1.4 D≦5.0
[Scope of Claims] A method in which a precursor fiber is heat-treated in a fluidized bed on a dispersing means to make it flame resistant, and then carbonized, wherein the draw ratio DR (times) and the monotony of the precursor fiber are determined in the fluidized bed. A method for producing carbon fiber, characterized in that the yarn denier D (denier) is drawn within the range shown below. DR≧1.1 0.7≦D/DR≦1.4 D≦5.0
JP7308989A 1988-03-31 1989-03-23 Production of carbon fiber Pending JPH026629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7308989A JPH026629A (en) 1988-03-31 1989-03-23 Production of carbon fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-80546 1988-03-31
JP8054688 1988-03-31
JP7308989A JPH026629A (en) 1988-03-31 1989-03-23 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPH026629A true JPH026629A (en) 1990-01-10

Family

ID=26414218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7308989A Pending JPH026629A (en) 1988-03-31 1989-03-23 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPH026629A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05162295A (en) * 1991-11-20 1993-06-29 Baldwin Printing Controls Ltd Cylinder washing apparatus for printing machine
JPH05345409A (en) * 1992-06-16 1993-12-27 Miyazawa Kogyo Kk Wiping-out apparatus for blanket cylinder
US5404819A (en) * 1993-08-04 1995-04-11 Nikka Limited Apparatus for cleaning printing press blanket cylinder and method for manufacturing the same
JPH07156371A (en) * 1993-12-03 1995-06-20 Nippon Baldwin Kk Cylinder cleaning device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05162295A (en) * 1991-11-20 1993-06-29 Baldwin Printing Controls Ltd Cylinder washing apparatus for printing machine
JPH05345409A (en) * 1992-06-16 1993-12-27 Miyazawa Kogyo Kk Wiping-out apparatus for blanket cylinder
JPH0775887B2 (en) * 1992-06-16 1995-08-16 宮澤工業株式会社 Blanket cylinder wiping device
US5404819A (en) * 1993-08-04 1995-04-11 Nikka Limited Apparatus for cleaning printing press blanket cylinder and method for manufacturing the same
JPH07156371A (en) * 1993-12-03 1995-06-20 Nippon Baldwin Kk Cylinder cleaning device

Similar Documents

Publication Publication Date Title
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
KR870000533B1 (en) Carbon fiber&#39;s making method
JP2011046942A (en) Polyacrylonitrile copolymer, polyacrylonitrile precursor fiber for carbon fiber, and manufacturing method for carbon fiber
JPS6211089B2 (en)
JPH026629A (en) Production of carbon fiber
JP4875238B2 (en) Method for producing carbon fiber and precursor thereof, and method for attaching oil agent
JP4088500B2 (en) Carbon fiber manufacturing method
JP2004060126A (en) Carbon fiber and method for producing the same
JPS5920004B2 (en) Carbon fiber manufacturing method
JP2017137602A (en) Manufacturing method of polyacrylonitrile fiber bundle
JP5811529B2 (en) Carbon fiber bundle manufacturing method
WO1987002391A1 (en) Process for producing carbon fibers
JP2869085B2 (en) Precursor for carbon fiber production
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JP3002614B2 (en) Acrylonitrile fiber and method for producing the same
JPS6317929B2 (en)
KR102674488B1 (en) Method for preparing acrylonitrile based fiber precursor
JP2007332498A (en) Method for producing carbon fiber bundle
KR20240071429A (en) Manufacturing method of high modulus graphite fiber
JPS59125912A (en) Production of carbon yarn
JPS58214518A (en) Acrylic precursor yarn bundle
JPS6111323B2 (en)
JPS58214519A (en) Production of precursor for carbon fiber