JPH0680617A - 光学活性ジヒドロスフィンゴシン類の製造方法 - Google Patents

光学活性ジヒドロスフィンゴシン類の製造方法

Info

Publication number
JPH0680617A
JPH0680617A JP4255443A JP25544392A JPH0680617A JP H0680617 A JPH0680617 A JP H0680617A JP 4255443 A JP4255443 A JP 4255443A JP 25544392 A JP25544392 A JP 25544392A JP H0680617 A JPH0680617 A JP H0680617A
Authority
JP
Japan
Prior art keywords
group
optically active
binap
formula
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4255443A
Other languages
English (en)
Other versions
JP2976214B2 (ja
Inventor
Hiroyuki Matsuda
洋幸 松田
Takeshi Yamamoto
健 山本
Toshiya Sato
敏弥 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago International Corp
Original Assignee
Takasago International Corp
Takasago Perfumery Industry Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago International Corp, Takasago Perfumery Industry Co filed Critical Takasago International Corp
Priority to JP4255443A priority Critical patent/JP2976214B2/ja
Publication of JPH0680617A publication Critical patent/JPH0680617A/ja
Application granted granted Critical
Publication of JP2976214B2 publication Critical patent/JP2976214B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】 (修正有) で表わされる2−N−アシルアミノ−高級アシル酢酸エ
ステル化合物を、ルテニウム−光学活性ホスフィン錯体
を触媒として不斉水素化を行い、次式(2) で表わされる光学活性2−N−アシルアミノ−3−ヒド
ロキシ高級カルボン酸誘導体を得、必要に応じて3位水
酸基の立体配置を反転した後、加水分解及び還元してな
る次式(3) で表わされる光学活性ジヒドロスフィンゴシン類の製造
方法。(式中、Rは高級アルキル基を示し、Rは低
級アルキル基、フェニル基、またはベンジル基を示し、
は水素原子、低級アルキル基、低級アルコキシ基、
フェニル基、ベンジルオキシ基を示し、*印は光学活性
であることを示す) 【効果】 特定の光学活性ジヒドロスフィンゴシン類を
簡便に、高収率、高光学収率で得ることができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、次の一般式(3)
【0002】
【化5】
【0003】(式中、R1 は炭素原子数が11−21個
の高級アルキル基を示し、*印は光学活性であることを
示す)で表わされる光学活性ジヒドロスフィンゴシン類
の製造方法に関する。本発明の光学活性ジヒドロスフィ
ンゴシン類(3)は、セラミド類、セレブロシド及びガ
ングリオシドの重要な構成部分である。
【0004】
【従来の技術】光学活性ジヒドロスフィンゴシン類は、
角質層保湿作用の鍵分子であるセラミド類の基本骨格で
あり、また、生理活性を示すセレブロシド及びガングリ
オシドの骨格部分でもある。例えば、Ca2+−ATPア
ーゼ活性及び抗白血病活性を有するシンビオールアミド
(symbioramide)(J.Kobayash
iら、Experientia 1988、44、80
0頁)、また、マウスの破傷風やうさぎの脳脊髄炎の予
防等に有効である生理活性セレブロシド及びガングリオ
シド(J.Mellanbyら、J.Gen.Micr
obiol.1969、54、161頁、B.Nied
ieckら、Z.Immunitaetsforsh.
Allerg.Klin.Immunol.1967、
133、43頁)が挙げられる。
【0005】ところで、このような活性をもつセラミド
類、セレブロシド及びガングリオシドは、そのスフィン
ゴシン部分に通常2つの不斉炭素原子を有する。前述の
例中、前者のシンビオールアミドおよび後者の生理活性
セレブロシド及びガングリオシドは、いずれも(2S、
3R)の活性体である。したがって、かかるジヒドロス
フィンゴシンを製造するにあたっては、2つの不斉部分
が制御された光学活性体を得ることが要求される。
【0006】従来の光学活性ジヒドロスフィンゴシン類
の製造方法は、次の(a)−(c)に大別できる。 (a)ラセミ体のジヒドロスフィンゴシン類を光学分割
する方法。 (b)光学活性天然物を原料として製造する方法。 (c)不斉反応で生じた不斉点を利用して合成する方
法。
【0007】(a)の方法としては、例えば、ラセミ体
のジヒドロスフィンゴシンとL−グルタミン酸をエタノ
−ル中で攪拌して(+)−D−ジヒドロスフィンゴシン
・L−グルタミン酸塩を析出させ、そしてこれを分離し
た後、塩基性条件下で脱塩することにより光学活性な
(+)−D−ジヒドロスフィンゴシンを得ている例[C.
A.Grob ら、Helv. Chim. Acta, 35, 2106 (1952); D.Sh
apiroら、J. Am. Chem. Soc., 75, 5131 (1953)] が挙
げられる。しかし、この方法はラセミ体の製造自体は簡
便な方法であるが、目的物と同量の不要な鏡像体を分割
する操作が必要であるという欠点を持っていた。
【0008】(b)の方法としては、例えば、光学活性
な保護アミノ糖( 3-amino-3-deoxy-1,2:5,6-di-O-isop
ropylidene- α-D-allofuranose )を原料として、2回
にわたるメタ過ヨウ素酸ナトリウムを用いた開裂反応お
よび臭化テトラデシルトリフェニルホスホニウム塩との
ウィッティヒ反応等を経て、計6工程で光学活性な
(+)−D−ジヒドロスフィンゴシンを得る方法[E.J.R
eistら、J. Org. Chem., 35, 3521 (1970)] が報告され
ている。しかし、この方法では多工程を要し、メタ過ヨ
ウ素酸ナトリウムを用いる工程が2回あって安全性上好
ましくなく、またウィッティヒ反応での収率が30%と
満足できるものではなかった等の欠点を持っている。
【0009】また、L−セリンを原料としてその官能基
を保護し、メチルエステルとした後、カルボン酸エステ
ル部をアルデヒドに変換し、長鎖アルキンの付加、還元
等の工程を経て7工程で光学活性な(+)−D−ジヒド
ロスフィンゴシンを得る方法[T.Hino ら、Chem. Lett.,
1407 (1990)] が報告されている。しかし、官能基保護
の際に使用するジ−tert−ブチル ジカーボネート
が高価であるうえ、長鎖アルキニル化におけるエリトロ
選択性が90%であって、満足できるものではなかっ
た。
【0010】(c)の方法としては、パルミチルアルデ
ヒドからホーナー−エモンス(Horner-Emmons )反応に
より(2E)−オクタデカン−2−エン−1−オ−ルを
合成し、次いでtert−ブチルヒドロペルオキシドを
用いたシャープレスの不斉エポキシ化反応により、光学
活性エポキシドを得、これと窒素求核種との反応により
エポキシ開環反応を行って光学活性な(+)−D−ジヒ
ドロスフィンゴシンを得る方法(K.Moriら、Tetrahedro
n Lett., 22, 4433 (1981), W.R.Roush ら、J.Org. Che
m., 50, 3752 (1985))が報告されている。しかし、上
述の方法では、光学純度の高いエポキシドを得るために
は高純度のオクタデカン−2−エン−1−オールのトラ
ンス体が必要であるうえ、酸化剤として安全性上好まし
くないtert−ブチルヒドロペルオキシド等の過酸を
過剰量使用しなければならず、満足できるものではなか
った。以上のようにさまざまな方法で光学活性ジヒドロ
スフィンゴシンの合成が試みられているにもかかわら
ず、光学純度、大量合成に優れた工業的な方法としては
いずれも満足できるものではなかった。
【0011】一方、特開平1−165561号公報に
は、ルテニウム−光学活性ホスフィン錯体を触媒として
2−N−アシルアミノアセト酢酸エステル類に不斉水素
化を行い、光学活性スレオニンを製造する方法が報告さ
れている。
【0012】
【化6】
【0013】(式中、R2 は低級アルキル基、低級アル
キル基もしくは低級アルコキシ基で置換されていてもよ
いフェニル基、または低級アルキル基もしくは低級アル
コキシ基で置換されていてもよいベンジル基を示し、R
3 は水素原子、低級アルキル基、低級アルコキシ基、低
級アルキル基もしくは低級アルコキシ基で置換されてい
てもよいフェニル基、または低級アルキル基もしくは低
級アルコキシ基で置換されていてもよいベンジルオキシ
基を示す。)
【0014】
【発明が解決しようとする課題】よって、本発明の目的
は、現在及び将来的なスフィンゴシン類の需要に応え、
現実的に大量生産を可能にすべく、安全で簡便に目的の
光学活性ジヒドロスフィンゴシン類を高い光学純度で得
る方法を提供することにある。
【0015】
【課題を解決するための手段】このような実情におい
て、本発明者らは鋭意研究を行った結果、次の一般式
(1)
【0016】
【化7】
【0017】(式中、R1 は炭素原子数が11個から2
1個までの高級アルキル基を示し、R2 は低級アルキル
基、低級アルキル基もしくは低級アルコキシ基で置換さ
れていてもよいフェニル基、または低級アルキル基もし
くは低級アルコキシ基で置換されていてもよいベンジル
基を示し、R3 は水素原子、低級アルキル基、低級アル
コキシ基、低級アルキル基もしくは低級アルコキシ基で
置換されていてもよいフェニル基、または低級アルキル
基もしくは低級アルコキシ基で置換されていてもよいベ
ンジルオキシ基を示す)で表わされる2−N−アシルア
ミノ−高級アシル酢酸エステル化合物を、ルテニウム−
光学活性ホスフィン錯体を触媒として不斉水素化を行
い、次の一般式(2)
【0018】
【化8】
【0019】(式中、R1 、R2 及びR3 は上記と同じ
意義を有し、*印は光学活性であることを示す)で表わ
される光学活性2−N−アシルアミノ−3−ヒドロキシ
高級カルボン酸誘導体を得、ついでこれを必要に応じて
3位水酸基の立体配置を反転した後、加水分解及び還元
することにより、次の一般式(3)
【0020】
【化9】
【0021】(式中、R1 及び*印は上記と同じ意義を
有する)で表わされる光学活性ジヒドロスフィンゴシン
類を簡便に、高収率、高光学収率で得られることを見出
し、本発明を完成した。
【0022】(原料)本発明方法の原料となる2−N−
アシルアミノ−高級アシル酢酸エステル化合物は、[Sh
apiro ら、J. Am. Chem. Soc., 75, 4705 (1953); J. A
m. Chem. Soc., 80, 2170 (1957)]に従って、例えば以
下のようにして得ることができる。
【0023】
【化10】
【0024】(式中、R1 及びR2 は上記と同じ意義を
有し、Phはフェニル基を示す。)2−N−アシルアミ
ノ高級アシル酢酸エステル化合物(1)のR1 は炭素原
子数が11−21個の高級アルキル基を示すが、具体的
にはn−ウンデカニル基、n−ドデカニル基、n−トリ
デカニル基、n−テトラデカニル基、n−ペンタデカニ
ル基、n−ヘキサデカニル基、n−ヘプタデカニル基、
n−オクタデカニル基、n−ノナデカニル基、n−イコ
サニル基、n−ヘンイコサニル基等が挙げられ、特にn
−トリデカニル基、n−ペンタデカニル基、n−ヘプタ
デカニル基が好ましい。また、R2 の低級アルキル基と
してはメチル基、エチル基、n−プロピル基、n−ブチ
ル基等が挙げられ、低級アルキル基もしくは低級アルコ
キシ基で置換されたフェニル基としては、o−トリル
基、m−トリル基、p−トリル基、o−エチルフェニル
基、m−エチルフェニル基、p−エチルフェニル基、o
−メトキシフェニル基、m−メトキシフェニル基、p−
メトキシフェニル基、m−エトキシフェニル基、p−エ
トキシフェニル基等が挙げられ、さらに低級アルキル基
もしくは低級アルコキシ基で置換されたベンジル基とし
ては、o−メチルベンジル基、m−メチルベンジル基、
p−メチルベンジル基、o−メトキシベンジル基、p−
メトキシベンジル基等が挙げられるが、R2 としては特
に低級アルキル基が好ましい。R3 の低級アルコキシ基
としては、メトキシ基、エトキシ基、n−プロピル基、
n−ブトキシ基等が挙げられ、R3 の低級アルキル基及
び低級アルキル基もしくは低級アルコキシ基で置換され
たフェニル基としては、R2 として例示したものが挙げ
られる。また、低級アルキル基もしくは低級アルコキシ
基で置換されたベンジルオキシ基としては、そのフェニ
ル基の部分が前述したような置換フェニル基にあたるも
のが挙げられる。かかる2−N−アシルアミノ−高級ア
シル酢酸エステル化合物としては、例えば、2−N−ア
セトアミド−ヘキサデカノイル酢酸メチルエステル、2
−N−アセトアミド−ヘキサデカノイル酢酸エチルエス
テル、2−N−アセトアミド−ヘキサデカノイル酢酸ブ
チルエステル、2−N−アセトアミド−ヘキサデカノイ
ル酢酸フェニルエステル、2−N−アセトアミド−ヘキ
サデカノイル酢酸p−メチルフェニルエステル、2−N
−アセトアミド−ヘキサデカノイル酢酸p−メトキシフ
ェニルエステル、2−N−アセトアミド−ヘキサデカノ
イル酢酸ベンジルエステル、2−N−アセトアミド−ヘ
キサデカノイル酢酸p−メチルベンジルエステル、2−
N−アセトアミド−ヘキサデカノイル酢酸p−メトキシ
ベンジルエステル、2−N−ホルムアミド−ヘキサデカ
ノイル酢酸メチルエステル、2−N−ホルムアミド−ヘ
キサデカノイル酢酸エチルエステル、2−N−ホルムア
ミド−ヘキサデカノイル酢酸フェニルエステル、2−N
−ホルムアミド−ヘキサデカノイル酢酸o−メチルフェ
ニルエステル、2−N−ホルムアミド−ヘキサデカノイ
ル酢酸ベンジルエステル、2−N−ホルムアミド−ヘキ
サデカノイル酢酸p−メトキシベンジルエステル、2−
N−ベンズアミド−ヘキサデカノイル酢酸メチルエステ
ル、2−N−ベンズアミド−ヘキサデカノイル酢酸フェ
ニルエステル、2−N−ベンズアミド−ヘキサデカノイ
ル酢酸m−メトキシフェニルエステル、2−N−ベンズ
アミド−ヘキサデカノイル酢酸ベンジルエステル、2−
N−ベンズアミド−ヘキサデカノイル酢酸p−メチルベ
ンジルエステル、2−N−アセトアミド−テトラデカノ
イル酢酸メチルエステル、2−N−アセトアミド−テト
ラデカノイル酢酸n−ブチルエステル、2−N−アセト
アミド−テトラデカノイル酢酸p−メトキシフェニルエ
ステル、2−N−アセトアミド−テトラデカノイル酢酸
ベンジルエステル、2−N−アセトアミド−テトラデカ
ノイル酢酸p−メトキシベンジルエステル、2−N−ア
セトアミド−オクタデカノイル酢酸エチルエステル、2
−N−アセトアミド−オクタデカノイル酢酸フェニルエ
ステル、2−N−アセトアミド−オクタデカノイル酢酸
p−メトキシフェニルエステル、2−N−アセトアミド
−オクタデカノイル酢酸p−メチルベンジルエステル、
2−N−ホルムアミド−ドデカノイル酢酸メチルエステ
ル、2−N−ホルムアミド−トリデカノイル酢酸エチル
エステル、2−N−ホルムアミド−ペンタデカノイル酢
酸フェニルエステル、2−N−ホルムアミド−ヘプタデ
カノイル酢酸o−メチルフェニルエステル、2−N−ホ
ルムアミド−ノナデカノイル酢酸p−メトキシフェニル
エステル、2−N−ホルムアミド−イコサノイル酢酸ベ
ンジルエステル、2−N−ホルムアミド−ヘンイコサノ
イル酢酸p−メトキシベンジルエステル、2−N−ベン
ジルオキシカルボニルアミノ−ヘキサデカノイル酢酸エ
チルエステル、2−N−ベンジルオキシカルボニルアミ
ノ−ヘキサデカノイル酢酸フェニルエステル、2−N−
ベンジルオキシカルボニルアミノ−ヘキサデカノイル酢
酸ベンジルエステル、2−N−エトキシカルボニルアミ
ノ−ヘキサデカノイル酢酸メチルエステル、2−N−エ
トキシカルボニルアミノ−ヘキサデカノイル酢酸フェニ
ルエステル、2−N−エトキシカルボニルアミノ−ヘキ
サデカノイル酢酸ベンジルエステル、2−N−tert
−ブトキシカルボニルアミノ−ヘキサデカノイル酢酸メ
チルエステル、2−N−tert−ブトキシカルボニル
アミノ−ヘキサデカノイル酢酸p−メチルフェニルエス
テル、2−N−tert−ブトキシカルボニルアミノ−
ヘキサデカノイル酢酸ベンジルエステル等が挙げられる
が、これらに限られるものではない。
【0025】(触媒)本発明で使用するルテニウム−光
学活性ホスフィン錯体としては、例えば特開昭61−6
3690号公報に記載の次の一般式(4) Ruxy Clz (R4 −BINAP)2 (S)p (4) (式中、R4 −BINAPは次の一般式(5)
【0026】
【化11】
【0027】で表わされる光学活性三級ホスフィンを示
し、R4 は水素原子、メチル基又はtert−ブチル基
を示し、Sは三級アミンを示し、yが0のときxは2、
zは4、pは1を示し、yが1のときxは1、zは1、
pは0を示す)で表わされるものが挙げられる。その
他、特開昭63−41487号公報、特開平1−683
87号公報、特開平1−165561号公報等に報告さ
れている類似のルテニウム−光学活性ホスフィン錯体が
挙げられるが、これらに限定されるものではない。次に
その具体例を示す。 Ru2 Cl4 (BINAP)2 (NEt3 ) [BINAPは、2、2’−ビス(ジフェニルホスフィ
ノ)−1、1’−ビナフチルを意味し、Etはエチル基
を意味する。] Ru2 Cl4 (T−BINAP)2 (NEt3 ) [T−BINAPは、2、2’−ビス(ジ−p−トリル
ホスフィノ)−1、1’−ビナフチルを意味する。] Ru2 Cl4 (t−Bu−BINAP)2 (NEt3 ) [t−Bu−BINAPは、2、2’−ビス(ジ−p−
tert−ブチルフェニルホスフィノ)−1、1’−ビ
ナフチルを意味する。] RuHCl(BINAP)2 RuHCl(T−BINAP)2 RuHCl(t−Bu−BINAP)2 [Ru(BINAP)](ClO42 [Ru(T−BINAP)](ClO42 [Ru(t−Bu−BINAP)](ClO42 [Ru(BINAP)](BF42 [Ru(T−BINAP)](BF42 [Ru(t−Bu−BINAP)](BF42 [Ru(BINAP)](PF62 [Ru(T−BINAP)](PF62 [RuH(BINAP)2 ]ClO4 [RuH(T−BINAP)2 ]ClO4 [RuH(BINAP)2 ]BF4 [RuH(T−BINAP)2 ]BF4 [RuH(BINAP)2 ]PF6 [RuH(T−BINAP)2 ]PF6 Ru(BINAP)(OCOCH32 Ru(BINAP)(OCOCF32 Ru(T−BINAP)(OCOCH32 Ru(BINAP)(OCO−t−Bu)2 (t−Buはtert−ブチル基を意味する。) Ru(T−BINAP)(OCOCF32 Ru(t−Bu−BINAP)(OCOCH32 [Ru(BINAP)ZnCl42 (NEt3 ) [Ru(BINAP)AlCl52 (NEt3 ) [Ru(BINAP)SnCl62 (NEt3 ) [Ru(BINAP)TiCl62 (NEt3 ) [Ru(T−BINAP)ZnCl42 (NEt3 ) [Ru(T−BINAP)AlCl52 (NEt3 ) [Ru(T−BINAP)SnCl62 (NEt3 ) [Ru(T−BINAP)TiCl62 (NEt3 ) [Ru(BINAP)ZnCl2 ](OCOCH32 [Ru(BINAP)AlCl3 ](OCOCH32 [Ru(BINAP)SnCl4 ](OCOCH32 [Ru(BINAP)TiCl4 ](OCOCH32 [Ru(T−BINAP)ZnCl2 ](OCOCH
32 [Ru(T−BINAP)AlCl3 ](OCOCH
32 [Ru(T−BINAP)SnCl4 ](OCOCH
32 [Ru(BINAP)TiCl4 ](OCOCH32
【0028】(操作手順)本発明を実施するには、まず
窒素気流下にあるオートクレーブに、2−N−アシルア
ミノ−高級アシル酢酸エステル化合物(1)をこれと等
量〜100倍量の塩化メチレン、メタノール、エタノー
ル、イソプロパノール等の溶媒に溶解したものを入れ、
続いて基質(1)に対して50分の1〜1000分の1
モルのルテニウム−光学活性ホスフィン錯体を加える。
これを水素圧10〜100atm、温度25〜50℃で
12〜48時間反応させることにより、光学活性2−N
−アシルアミノ−3−ヒドロキシ−高級カルボン酸誘導
体(2)を得ることができる。このものを必要に応じて
常法により塩化チオニルを用いて3位水酸基を分子内反
転させる。次いで、塩酸等でアミド基を加水分解した
後、水素化ホウ素リチウムや水素化リチウムアルミニウ
ム等の還元剤によりエステルを還元して、目的とする光
学活性ジヒドロスフィンゴシン類(3)を得ることがで
きる。
【0029】ここで、使用するルテニウム−光学活性ホ
スフィン錯体の配位子の絶対配置を選択し、及び必要に
応じて3位水酸基を反転させることで、所望の絶対配置
の天然型又は非天然型ジヒドロスフィンゴシン類を作り
分けることができる。すなわち、例えば、使用するルテ
ニウム−光学活性ホスフィン錯体(4)の光学活性三級
ホスフィンとして(−)−体を用いて水素化した場合、
(2R,3S)のシン体(6)が得られ、最終的に、反
転操作をすれば(2S,3R)のアンチ体(7)、反転
操作をしなければ(2S,3S)のシン体(8)が得ら
れる。一方、(+)−体を用いて水素化した場合には、
(2S,3R)のシン体(9)が得られる。
【0030】
【化12】
【0031】
【実施例】以下、実施例および参考例により本発明をさ
らに詳細に説明するが、本発明はこれらの実施例に限定
されるものではない。
【0032】参考例1 Ru2Cl4[(-)-T-BINAP]2(NEt3)の合成 [RuCl2(COD)]n1g(3.56mmol)(式中、CO
Dは1,5−シクロオクタジエンを示す)、(−)−T
−BINAP 2.9g(4.27mmol)(式中、
T−BINAPは2,2’−ビス[ジ−(p−トリル)
ホスフィノ]−1,1’−ビナフチルを示す)及びトリ
エチルアミン1.5gを50mlのトルエン中に窒素雰
囲気下に加えた。加熱攪拌をトルエン還流下に行ない、
6時間反応せしめた後、冷却し、析出した結晶をろ別し
た。この結晶をトルエンに溶解し、この中にジエチルエ
ーテルを徐々に加えて再結晶化を行ない、Ru2Cl4[(-)-T
-BINAP]2(NEt3)の結晶2.24gを得た。 参考例2 Ru2Cl4[(+)-T-BINAP]2(NEt3)の合成 (−)−T−BINAPの代わりに(+)−T−BIN
APを用いた外は参考例1と同様に操作を行ない、Ru2C
l4[(+)-T-BINAP]2(NEt3)を得た。 実施例1 (2S,3R)−ジヒドロスフィンゴシンの合成 あらかじめ窒素置換を行った300mlのステンレスオ
ートクレーブに、2−N−アセトアミド−ヘキサデカノ
イル酢酸メチルエステル8.4g(22.7mmol)
及び参考例1に準じて合成したルテニウム−光学活性ホ
スフィン錯体Ru2Cl4[(-)-T-BINAP ]2(NEt3) (T-BINA
P は2,2’−ビス[ジ(p−トリル)ホスフィノ]−
1,1’−ビナフチルを示す。)102mg(0.05
7mmol)を二塩化メチレン40mlに溶かしたもの
を加え、50℃、水素圧50atmで45時間攪拌して
反応させた。水添反応物の溶媒を留去し、残留物をn−
ヘキサンと酢酸エチル80:1の混合溶媒から結晶化し
て8.4gの結晶を得た。この結晶をシリカゲルカラム
クロマトグラフィー(n−ヘキサン/酢酸エチル=5/
1〜1/4(容量比))にて精製し8.0gの(2R,
3S)−2−N−アセトアミド−3−ヒドロキシオクタ
デカン酸メチルエステルを得た。収率95%、融点95
〜96℃、 [α]D 28=−11.1°(C=1.05,CH
Cl3)、光学純度98%e.e.。
【0033】光学純度は、得られた(2R,3S)−2
−N−アセトアミド−3−ヒドロキシオクタデカン酸メ
チルエステルをピリジン溶媒中(+)及び(−)−メト
キシ−トリフルオロメチル−フェニル酢酸クロライド
(MTPAクロライド)を用いて、3位の水酸基のエス
テル化を行ない、400MHz NMRによりメチルエ
ステル基、アセトアミド基のシングレットピークあるい
はアミド基のダブレットピークのジアステレオマー比か
ら決定した。以下の実施例においても同様に光学純度を
決定した。
【0034】1H-NMR(400 MHz, CDCl3,δ) ; 0.88 (t, 3
H, J=6.9 Hz, CH3), 1.26 (br.s, 24H), 1.32-1.52 (m,
4H), 1.95 (br.s, 1H, OH), 2.08 (s, 3H, AcN), 3.77
(s,3H, CO2Me), 4.12 (dt, 1H, J=6.6 Hz, J=2.1 Hz,C
H-O), 4.66 (dd, 1H, J=9.0Hz, J=2.1 Hz, CH-N), 6.24
(d, 1H, J=9.0 Hz, NH). IR(KBr,νcm-1); 3400 (s,OH), 3310 (s, NH), 173
5 (s, CO2Me), 1710 (s, CO2Me), 1655 (s, CON), 1545
(s, NH), 1285 (s, C-O). Mass(m/z) ;373 (15), 371 (1), 354 (7), 311 (20),
295 (90), 271 (15),252 (10), 222 (10), 196 (10), 1
60 (10), 131 (100), 99 (80), 82 (92), 57(50), 43
(57), 28 (80).
【0035】次に(2R,3S)−2−N−アセトアミ
ド−3−ヒドロキシオクタデカン酸メチルエステル7.
59g(22.1mmol)の乾燥ベンゼン(200m
l)溶液に、氷冷下塩化チオニル16.5ml(0.2
26mol)を30分間で滴下し、室温下4時間攪拌
後、氷冷下で水(200ml)を加え室温下14時間攪
拌した。有機層を分離後、水層をジエチルエーテル(2
00ml)で抽出し、合わせた有機層を減圧下溶媒を留
去し粗反転生成物(2R,3R)−体8.89gを得
た。結晶をシリカゲルカラムクロマトグラフィ−(n−
ヘキサン/酢酸エチル=5/1〜1/4(容量比))に
て精製し7.0gの(2R,3R)−2−N−アセトア
ミド−3−ヒドロキシオクタデカン酸メチルエステルを
得た。収率92%、融点82〜84℃、[α]D 25=−2
4.2°(c=0.53, CHCl3)。
【0036】1H-NMR(400 MHz, CDCl3 ,δ); 0.88
(t, 3H, J=6.9 Hz, CH3), 1.26 (br.s, 24H), 1.32-1.
52 (m, 4H), 2.07 (s, 3H, AcN), 3.79 (s, 3H, CO2M
e), 3.90-3.94 (m, 1H, CH-O), 4.68 (dd, 1H, J=7.2 H
z, J=3.2 Hz, CH-N), 6.45 (d, 1H, J=7.2 Hz, NH). IR(KBr,ν cm-1) 3300(s, OH, NH), 1735 (s, CO2M
e), 1655 (s, CON), 1550 (s, NH), 1255 (s, C-O). Mass(m/z) ; 373 (40), 371 (2), 354 (15), 312 (5
0), 295 (98), 270 (25), 253 (100), 160 (10), 131
(98), 99 (50), 89 (98), 57 (25), 43 (70), 28(20).
【0037】粗(2R,3R)−体8.89gを5%塩
酸水(100ml)と1,4−ジオキサン(100m
l)の混合溶媒に加え、4時間加熱還流下攪拌した。氷
冷下6N塩酸(100ml)を加え、冷所にて16時間放
置してアミンの塩酸塩を析出させ、結晶を濾過後乾燥し
て塩酸塩9.82gを得た。融点133〜136℃。塩
酸塩9.82gを乾燥テトラヒドロフラン(THF)
(300ml)に加え、氷冷攪拌下で水素化リチウムア
ルミニウム(5.04g,0.133mol)を加えた
後、30分間加熱還流下攪拌した。反応溶液を氷冷下1
0%水酸化ナトリウム水(2000ml)で処理した
後、ジエチルエーテル(2000ml×2回) で抽出
し、合わせた有機層を飽和食塩水で洗浄し、無水硫酸ナ
トリウムで乾燥後、減圧下溶媒を留去し粗ジヒドロスフ
ィンゴシン6.45gを得た。これをn−ヘキサン(3
00ml)から再結晶化し、濾過後結晶をn−ペンタン
で洗浄して4.95gの光学活性(2S,3R)−ジヒ
ドロスフィンゴシンを得た。収率74%(水添化合物か
ら)、融点84〜86℃、 [α]D 24=+2.9°(c=0.
28, CHCl3).
【0038】1H-NMR[400 MHz, CDCl3/CD3OD(容量比5/
1),δ] ; 0.88 (t, 3H, J=6.9Hz, CH3), 1.27 (br.s,
26H), 1.42-1.55 (m, 2H), 2.78 (ddd, 1H, J=6.7Hz,
J=4.4Hz, J=3.9Hz, CH-N), 3.56-3.62 (m, 1H, CH-O),
3.62 (dd, 1H, J=11.2Hz, J=6.7Hz, CH-O), 3.70 (dd,
1H, J=11.2Hz, J=3.9Hz, CH-O). IR(KBr,νcm-1); 3600-3100 (s, OH,NH), 1600 (w,
NH), 1100-1000 (m,C-O,C-N). Mass(m/z): 303 (15), 301 (2), 271 (100), 252 (6),
176 (6), 90 (20), 60(98), 43 (95), 28 (48).
【0039】実施例2 (2R,3R)−2−アミノヘキサデカン−1,3−ジ
オールの合成 あらかじめ窒素置換を行った100mlのステンレスオ
ートクレーブに、2−N−アセトアミド−テトラデカノ
イル酢酸メチルエステル 0.80g(2.34mmo
l)及び参考例2に準じて合成したルテニウム−光学活
性ホスフィン錯体Ru2Cl4[(+)-T-BINAP ]2(NEt3) 2
9.5mg(0.016mmol)を二塩化メチレン8
mlに溶かしたものを加え、50℃、水素圧50atm
で20時間攪拌して反応させた。水添反応物の溶媒を留
去し、残留物をn− ヘキサンと酢酸エチル20:1の
混合溶媒から結晶化して0.75gの結晶を得た。この
結晶をシリカゲルカラムクロマトグラフィー(n−ヘキ
サン/ 酢酸エチル=5/1〜1/4(容量比))にて
精製し 0.73gの(2S,3R)−2−N−アセト
アミド−3−ヒドロキシヘキサデカン酸メチルエステル
を得た。収率90%、融点92〜94℃、[α]D 25=+
13.1°(c=0.29,CHCl3)、光学純度98%e.e.。
【0040】1H-NMR(400 MHz, CDCl3 ,δ); 0.88
(t, 3H, J=6.9 Hz, CH3), 1.26 (br.s, 20H), 1.32-1.5
2 (m, 4H), 1.95 (br.s, 1H, OH), 2.08 (s, 3H, AcN),
3.77(s, 3H, CO2Me), 4.12 (dt, 1H, J=6.6 Hz, J=2.1
Hz,CH-O), 4.66 (dd, 1H, J=9.0 Hz, J=2.1 Hz, CH-
N), 6.24 (d, 1H, J=9.0 Hz, NH). IR(KBr,ν cm-1);3400(s,OH), 3310 (s, NH), 1735
(s, CO2Me), 1710 (s,CO2Me), 1655 (s, CON), 1545
(s, NH), 1285 (s, C-O). Mass(m/z): 344 (30), 325 (5), 312 (5), 293 (8), 28
4 (30), 266 (25), 242 (40), 224 (10), 160 (25), 13
1 (100), 99 (100), 89 (100), 82 (35), 72 (30), 57
(40), 43 (35), 28 (46).
【0041】(2S,3R)−体0.73gを5%塩酸
水(8ml)と1,4−ジオキサン(8ml)の混合溶
媒に加え、2.5時間加熱還流下攪拌した。氷冷下6N塩
酸(8ml)を加え、冷所にて16時間放置してアミン
の塩酸塩を析出させ、結晶を濾過後、乾燥して塩酸塩
0.49gを得た。融点188〜190℃。
【0042】塩酸塩0.49gを乾燥THF(50m
l)に加え、氷冷攪拌下に水素化リチウムアルミニウム
(1.4g、0.036mol)を加えた後、3時間加
熱還流下に攪拌した。反応溶液を氷冷下に10%水酸化
ナトリウム水(200ml)で処理した後、ジエチルエ
ーテル(200ml×2回)で抽出し、あわせた有機層
を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、
減圧下に溶媒を留去して粗生成物0.32gを得た。こ
れを酢酸エチルから再結晶化し、濾過後、結晶をn−ペ
ンタンで洗浄して0.28gの光学活性(2R,3R)
−2−アミノヘキサデカン−1,3−ジオールを得た。
収率68%(水添化合物から)、融点104〜106
℃、[α]D 24=+8.0°(c=0.075, CHCl3)。
【0043】1H-NMR[400 MHz, CDCl3/CD3OD(容量比5/
1),δ]; 0.88 (t, 3H, J=6.9Hz, CH3), 1.27 (br.s,
22H), 1.43-1.53 (m, 2H), 2.73-2.79 (m, 1H, CH-N),
3.55 (dd, 1H, J=11.1Hz, J=5.5Hz, CH-O), 3.54-3.60
(m, 1H, CH-O), 3.67 (dd, 1H,J=11.1Hz, J=4.4Hz, -CH
-O). IR(KBr,ν cm-1 ); 3380(s, OH), 3360 (m, NH), 33
10 (m,NH), 1580 (m,N-H), 1470 (m, CH2), 1130 (s, C
-O). Mass(m/z): 274 (25), 242 (100), 224 (8), 214 (6),
90 (90), 60 (100), 43 (100), 28 (70).
【0044】実施例3 (2R,3S)−2−アミノヘキサデカン−1,3−ジ
オールの合成 実施例2中で得られた(2S,3R)− 2−N−アセ
トアミド−3−ヒドロキシヘキサデカン酸メチルエステ
ル 0.73g(2.00mmol)の乾燥ベンゼン
(20ml)溶液に、氷冷下に塩化チオニル 1.6m
l(0.023mol)を30分間で滴下し、室温下に
4時間攪拌後、氷冷下に水(20ml)を加え、室温下
に14時間攪拌した。有機層を分離後、水層をジエチル
エーテル(20ml×2回) で抽出し、合わせた有機層
を減圧下に溶媒を留去し、粗反転生成物(2S,3S)
−体0.89gを得た。結晶をシリカゲルカラムクロマ
トグラフィ−(n−ヘキサン/ 酢酸エチル=5/1〜
1/4(容量比))にて精製し0.72gの(2S,3
S)−2−N−アセトアミド−3−ヒドロキシヘキサデ
カン酸メチルエステルを得た。収率92%、融点80〜
82℃、[α]D 25=−24.2°(c=0.53, CHCl3) 。さ
らに(2S,3S)−体0.72gを5%塩酸水(8m
l)と1,4-ジオキサン(8ml)の混合溶媒に加え、
2.5時間加熱還流下に攪拌した。氷冷下に6N塩酸
(8ml)を加え、冷所にて16時間放置してアミンの
塩酸塩を析出させ、結晶を濾過後、乾燥して塩酸塩0.
49gを得た、融点130〜133℃。
【0045】塩酸塩0.49gを乾燥THF(50m
l)に加え、氷冷攪拌下、水素化リチウムアルミニウム
(1.4g、0.036mol)を加えた後、3時間加
熱還流下に攪拌した。反応溶液を氷冷下に10%水酸化
ナトリウム水(200ml)で処理した後、ジエチルエ
ーテル(200ml×2回)で抽出し、あわせた有機層
を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、
減圧下に溶媒を留去して粗生成物0.32gを得た。こ
れをn−ヘキサンから再結晶化し、濾過後、結晶をn−
ペンタンで洗浄して0.28gの非天然型光学活性(2
R,3S)−2−アミノヘキサデカン−1,3−ジオー
ルを得た。収率68%(水添化合物から)、融点81〜
83℃、 [α]D 24=−3.0°(c=0.265, CHCl3)。
【0046】1H-NMR( 400 MHz, CDCl3/CD3OD( 容量比5/
1),δ]; 0.88 (t, 3H, J=6.9Hz,CH3), 1.27 (br.s, 2
2H), 1.42-1.55 (m, 2H), 2.78 (ddd, 1H, J=6.7Hz, J=
4.4Hz, J=3. 9Hz, CH-N), 3.56-3.62 (m, 1H, CH-O),
3.62 (dd, 1H, J=11.2Hz, J=6.7Hz, CH-O), 3.70 (dd,
1H, J=11.2Hz, J=3.9Hz, CH-O). IR(KBr,νcm-1); 3600-3100 (s, OH,NH), 1600 (w,
NH), 1100-1000 (m,C-O ,C-N). Mass(m/z): 274 (40), 242 (100), 224 (6), 252 (6),
109 (4), 90 (40), 60(100), 43 (100), 28 (58).
【0047】参考例3 (2R,3S)−2−N−ベンズアミド−3−ヒドロキ
シオクタデカン酸メチルエステルの合成 あらかじめ窒素置換を行った300mlのステンレスオ
ートクレ−ブに、2−N−ベンズアミド−ヘキサデカノ
イル酢酸メチルエステル9.60g(23.7mmo
l) 及び参考例1に準じて合成したルテニウム−光学活
性ホスフィン錯体Ru2Cl4[(-)T-BINAP]2(NEt3) 107
mg(0.060mmol)を二塩化メチレン50ml
に溶かしたものを加え、50℃、水素圧50atmで8
4時間攪拌して反応させた。水添反応物の溶媒を留去
し、残留物をN−ヘキサンから結晶化して9.26gの
結晶を得た。この結晶をシリカゲルカラムクロマトグラ
フィー(n−ヘキサン/酢酸エチル=5/1〜1/4
(容量比))にて精製し9.20gの(2R,3S)−
2−N−ベンズアミド−3−ヒドロキシオクタデカン酸
メチルエステルを得た。収率95%、融点76〜78
℃、[α]D 25=−4.9°(c=0.265,CHCl3) 、光学純度
74%e.e.。
【0048】1H-NMR(400 MHz,CDCl3,δ); 0.88 (t,
3H, J=6.9Hz, CH3), 1.25 (br.s, 24H), 1.35-1.65 (m,
4H), 3.80 (s, 3H, CO2CH3), 4.22-4.28 (m, 1H, CH-
O), 4.88 (dd, 1H, J=8.9Hz, J=2.0Hz, CH-N), 6.87
(d, 1H, J=8.9Hz, NH), 7.42-7.56 (m, 3H, m-2H, p-1
H), 7.82-7.88 (m, 2H, o-2H). IR(KBr,ν cm-1 ); 3370(s, OH, NH), 1750 (s, CO2
Me), 1635 (s, CON),1545 (s, NH). Mass(m/z): 434 (10), 433 (2), 415 (40), 356 (22),
310 (20), 252 (6), 222 (6), 193 (98), 161 (100), 1
34 (55), 105 (98), 96 (58), 83 (90), 68 (45), 57
(45), 31(98), 28(98)
【0049】参考例4 (2R,3S)−2−N−アセトアミド−3−ヒドロキ
シオクタデカン酸エチルエステルの合成 あらかじめ窒素置換を行った300mlのステンレスオ
ートクレーブに、2−N−アセトアミド−ヘキサデカノ
イル酢酸エチルエステル9.90g(25.8mmo
l) 及び参考例1に準じて合成したルテニウム−光学
活性ホスフィン錯体Ru2Cl4[(-)T-BINAP]2(NEt3)11
7mg(0.065mmol)を二塩化メチレン40m
lに溶かしたものを加え、50℃、水素圧50atmで
29時間攪拌して反応させた。水添反応物の溶媒を留去
し、残留物をn−ヘキサンと酢酸エチルの20:1の混
合溶媒から結晶化して8.2gの結晶を得た。この結晶
をシリカゲルカラムクロマトグラフィ−(n−ヘキサン
/ 酢酸エチル=5/1〜1/4(容量比))にて精製
し8.0gの(2R,3S)−2−N−アセトアミド−
3−ヒドロキシオクタデカン酸エチルエステルを得た。
収率81%、融点86〜88℃、[α]D 25=−12.3
°(c=0.235,CHCl3)、光学純度92%e.e.。
【0050】1H-NMR(400 MHz,CDCl3,δ); 0.88 (t,
3H, J=6.9Hz, CH3), 1.26 (br.s, 26H), 1.30 (t, 3H,
J=7.2Hz, O-C-CH3),1.45-1.52 (m, 2H), 2.07 (s, 3H,
AcN), 4.08-4.14 (m, 1H, CH-O), 4.23 (dq, 2H, J=7.2
Hz, J=2.1Hz, CO2CH3), 4.64(dd, 1H, J=9.0Hz, J=2.2H
z, CH-N), 6.17 (d, 1H, J=9.0Hz, NH). IR(KBr,ν cm-1);3510(s, OH), 3290 (s, NH), 1720
(s, CO2Et), 1655 (s, CON), 1555 (s, NH), 1290 (s,
C-O). Mass(m/z): 386 (6), 367 (8), 324 (20), 312 (40), 2
94 (92), 270 (35),252 (10), 222 (6), 196 (8), 174
(20), 145 (100), 124 (12), 110 (20), 103(100), 99
(100), 82 (99), 72 (66), 56 (52), 32 (100), 28 (10
0).
【0051】
【発明の効果】本発明は、安全で簡便に光学活性ジヒド
ロスフィンゴシン類を高い光学純度で得ることを可能に
する。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 次の一般式(1) 【化1】 (式中、R1 は炭素原子数が11個〜21個の高級アル
    キル基を示し、R2 は低級アルキル基、低級アルキル基
    もしくは低級アルコキシ基で置換されていてもよいフェ
    ニル基、または低級アルキル基もしくは低級アルコキシ
    基で置換されていてもよいベンジル基を示し、R3 は水
    素原子、低級アルキル基、低級アルコキシ基、低級アル
    キル基もしくは低級アルコキシ基で置換されていてもよ
    いフェニル基、または低級アルキル基もしくは低級アル
    コキシ基で置換されていてもよいベンジルオキシ基を示
    す)で表わされる2−N−アシルアミノ−高級アシル酢
    酸エステル化合物を、ルテニウム−光学活性ホスフィン
    錯体を触媒として不斉水素化を行い、次の一般式(2) 【化2】 (式中、*印は光学活性であることを示し、R1 ,R2
    及びR3 は上記と同じ意義を有する)で表わされる光学
    活性2−N−アシルアミノ−3−ヒドロキシ高級カルボ
    ン酸誘導体を得、ついでこれを必要に応じて3位水酸基
    の立体配置を反転した後、加水分解及び還元することを
    特徴とする次の一般式(3) 【化3】 (式中、R1 及び*印は上記と同じ意義を有する)で表
    わされる光学活性ジヒドロスフィンゴシン類の製造方
    法。
  2. 【請求項2】 ルテニウム−光学活性ホスフィン錯体が
    次の一般式(4) Ruxy Clz (R4 −BINAP)2 (S)p (4) (式中、R4 −BINAPは次の一般式(5) 【化4】 で表わされる光学活性三級ホスフィンを示し、R4 は水
    素原子、メチル基又はtert−ブチル基を示し、Sは
    三級アミンを示し、yが0のときxは2、zは4、pは
    1を示し、yが1のときxは1、zは1、pは0を示
    す)で表わされるものである請求項1記載の製造方法。
JP4255443A 1992-09-01 1992-09-01 光学活性ジヒドロスフィンゴシン類の製造方法 Expired - Fee Related JP2976214B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4255443A JP2976214B2 (ja) 1992-09-01 1992-09-01 光学活性ジヒドロスフィンゴシン類の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4255443A JP2976214B2 (ja) 1992-09-01 1992-09-01 光学活性ジヒドロスフィンゴシン類の製造方法

Publications (2)

Publication Number Publication Date
JPH0680617A true JPH0680617A (ja) 1994-03-22
JP2976214B2 JP2976214B2 (ja) 1999-11-10

Family

ID=17278843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4255443A Expired - Fee Related JP2976214B2 (ja) 1992-09-01 1992-09-01 光学活性ジヒドロスフィンゴシン類の製造方法

Country Status (1)

Country Link
JP (1) JP2976214B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184008B1 (en) 1997-03-03 2001-02-06 Sumitomo Chemical Company Ltd. Production of optically active sphingoid compound
EP1146037A1 (en) * 1999-01-18 2001-10-17 Nippon Soda Co., Ltd. Process for the preparation of optically active amino alcohols
WO2002004401A1 (fr) * 2000-07-10 2002-01-17 Nippon Soda Co., Ltd. Procede de preparation de ?-amino-alcools dans une configuration syn
JP2002020359A (ja) * 2000-07-10 2002-01-23 Nippon Soda Co Ltd アンチ立体配置を有する光学活性β−アミノアルコール類の製造方法
WO2004076391A1 (ja) * 2003-02-28 2004-09-10 Japan Science And Technology Agency 光学活性化合物の製造方法
WO2005005371A1 (ja) 2003-07-10 2005-01-20 Nissan Chemical Industries, Ltd. 光学活性β−ヒドロキシ−α−アミノカルボン酸誘導体の製造方法
JP2005536556A (ja) * 2002-08-27 2005-12-02 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング アミノアルコールのエナンチオ選択的水素化法
WO2006075651A1 (ja) 2005-01-12 2006-07-20 Nissan Chemical Industries, Ltd. 光学活性β-ヒドロキシ-α-アミノカルボン酸誘導体の製造法
WO2008041571A1 (fr) * 2006-09-26 2008-04-10 Kaneka Corporation Procédé de fabrication d'un ester d'acide bêta-hydroxy-alpha-aminocarboxylique optiquement actif

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184008B1 (en) 1997-03-03 2001-02-06 Sumitomo Chemical Company Ltd. Production of optically active sphingoid compound
EP1146037A1 (en) * 1999-01-18 2001-10-17 Nippon Soda Co., Ltd. Process for the preparation of optically active amino alcohols
EP1146037A4 (en) * 1999-01-18 2002-07-17 Nippon Soda Co PROCESS FOR THE PREPARATION OF OPTICALLY ACTIVE AMINO ALCOHOLS
JP4746749B2 (ja) * 1999-01-18 2011-08-10 日本曹達株式会社 光学活性アミノアルコール類の製造方法
WO2002004401A1 (fr) * 2000-07-10 2002-01-17 Nippon Soda Co., Ltd. Procede de preparation de ?-amino-alcools dans une configuration syn
JP2002020359A (ja) * 2000-07-10 2002-01-23 Nippon Soda Co Ltd アンチ立体配置を有する光学活性β−アミノアルコール類の製造方法
JP5042438B2 (ja) * 2000-07-10 2012-10-03 日本曹達株式会社 シン立体配置を有するβ−アミノアルコール類の製造方法
JP2012116853A (ja) * 2000-07-10 2012-06-21 Nippon Soda Co Ltd シン立体配置を有するβ−アミノアルコール類の製造方法
JP4658293B2 (ja) * 2000-07-10 2011-03-23 日本曹達株式会社 アンチ立体配置を有する光学活性β−アミノアルコール類の製造方法
JP2005536556A (ja) * 2002-08-27 2005-12-02 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング アミノアルコールのエナンチオ選択的水素化法
WO2004076391A1 (ja) * 2003-02-28 2004-09-10 Japan Science And Technology Agency 光学活性化合物の製造方法
US7619003B2 (en) 2003-02-28 2009-11-17 Japan Science And Technology Agency Process for producing optically active compound
US7799941B2 (en) 2003-07-10 2010-09-21 Nissan Chemical Industries, Ltd. Process for producing optically active β-hydroxy-α-aminocarboxylic acid derivative
WO2005005371A1 (ja) 2003-07-10 2005-01-20 Nissan Chemical Industries, Ltd. 光学活性β−ヒドロキシ−α−アミノカルボン酸誘導体の製造方法
US7781609B2 (en) 2005-01-12 2010-08-24 Nissan Chemical Industries, Ltd. Process for producing optically active β-hydroxy-α-aminocarboxylic acid derivative
WO2006075651A1 (ja) 2005-01-12 2006-07-20 Nissan Chemical Industries, Ltd. 光学活性β-ヒドロキシ-α-アミノカルボン酸誘導体の製造法
WO2008041571A1 (fr) * 2006-09-26 2008-04-10 Kaneka Corporation Procédé de fabrication d'un ester d'acide bêta-hydroxy-alpha-aminocarboxylique optiquement actif
US8207370B2 (en) 2006-09-26 2012-06-26 Kaneka Corporation Process for producing optically active beta-hydroxy-alpha-aminocarboxylic acid ester
JP5274256B2 (ja) * 2006-09-26 2013-08-28 株式会社カネカ 光学活性β−ヒドロキシ−α−アミノカルボン酸エステルの製造方法

Also Published As

Publication number Publication date
JP2976214B2 (ja) 1999-11-10

Similar Documents

Publication Publication Date Title
US7388023B2 (en) Amino acids with affinity for the α2δ-protein
JP3171931B2 (ja) (R)−(−)−4−シアノ−3−ヒドロキシ酪酸t−ブチルエステル及びその製造方法
JP3012325B2 (ja) (2R,3R)―シス―β―フエニルグリシド酸の製造方法
EA023266B1 (ru) Способы синтеза 2(s),4(s),5(s),7(s)-2,7-диалкил-4-гидрокси-5-амино-8-арилоктаноил амидов
JP2976214B2 (ja) 光学活性ジヒドロスフィンゴシン類の製造方法
JP2733583B2 (ja) セラミドの製造方法
EP1008590B1 (en) Process for preparing optically active oxazolidinone derivatives
US5523458A (en) Process for producing optically active diaminohexanone derivative
KR900001006B1 (ko) α-나프틸 프로피온산 라세미 혼합물의 광학분할방법
JPH05246967A (ja) α−ナフチルプロピオン酸アミドのジアステレオアイソマー
JP3184758B2 (ja) 光学活性4−ヒドロキシ−2−ピロリドンの製造方法
JPH06184069A (ja) α−ヒドロキシ−β−アミノカルボン酸の製造方法
US6479702B1 (en) 3-amino-1-indanole, method of synthesizing the same and method of optical resolution
WO2003051852A1 (fr) Produit intermediaire et procede permettant de produire un compose a activite optique a partir de ce produit intermediaire
EP1926709A1 (en) Process for the preparation of chiral 3-hydroxy pyrrolidine compound and derivatives thereof having high optical purity
JPH07107033B2 (ja) 光学活性な3−アミノ−4−シクロヘキシル−2−ヒドロキシ酪酸塩酸塩およびその製造方法
Charvillon et al. Synthesis of 3-Hydroxylated analogues of D-Aspartic acid β-Hydroxamate
US5998668A (en) Optically active compound and process for producing the same
FR2777780A1 (fr) Derives d'(alpha-aminophosphino) peptides, leur procede de preparation et les compositions qui les contiennent
JP2825608B2 (ja) 光学活性トレオ―3―アミノ―2―ヒドロキシペンタン酸及びその製造法
JPH0417938B2 (ja)
JP3550933B2 (ja) ジアステレオマーヒドロキシカルボン酸アミド類の 製造方法と光学活性なδ−ラクトン類の製造方法
JP4187822B2 (ja) 光学活性4−ヒドロキシ−2−ピロリドンの製造方法
JP3396097B2 (ja) 4−イソプロピルシクロヘキサンカルボン酸エステル誘導体の製法
JPH04198153A (ja) 光学活性化合物およびその製造方法、並びに液晶化合物の製造方法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees