JPH0679489B2 - Nickel electrode for alkaline secondary battery - Google Patents

Nickel electrode for alkaline secondary battery

Info

Publication number
JPH0679489B2
JPH0679489B2 JP60039844A JP3984485A JPH0679489B2 JP H0679489 B2 JPH0679489 B2 JP H0679489B2 JP 60039844 A JP60039844 A JP 60039844A JP 3984485 A JP3984485 A JP 3984485A JP H0679489 B2 JPH0679489 B2 JP H0679489B2
Authority
JP
Japan
Prior art keywords
nickel
electrode
secondary battery
nickel electrode
methacrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60039844A
Other languages
Japanese (ja)
Other versions
JPS61198561A (en
Inventor
昇 小谷
尚伸 美甘
明夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP60039844A priority Critical patent/JPH0679489B2/en
Publication of JPS61198561A publication Critical patent/JPS61198561A/en
Publication of JPH0679489B2 publication Critical patent/JPH0679489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はアルカリ二次電池用のニッケル電極に関す
る。さらに詳しくは、ニッケル−カドミウム二次電池、
ニッケル−亜鉛二次電池などのアルカリ二次電池の正極
として用いられる低コストでかつ特性の優れたニッケル
電極に関する。
TECHNICAL FIELD The present invention relates to a nickel electrode for an alkaline secondary battery. More specifically, nickel-cadmium secondary battery,
The present invention relates to a nickel electrode that is used as a positive electrode of an alkaline secondary battery such as a nickel-zinc secondary battery and has low cost and excellent characteristics.

〔従来の技術〕[Conventional technology]

従来、アルカリ二次電池用のニッケル電極は、ニッケル
粉末を焼結して作製した多孔性のニッケル焼結体を電極
基体に用い、これを硝酸ニッケル溶液に浸漬し、その
後、熱分解して活物質とする焼結式で製造されていた
(たとえばS.U.Falk & A.J.Salkind “Alkaline Stora
ge Batteries" John Wiley & Sons Inc.(1969))。
Conventionally, a nickel electrode for an alkaline secondary battery uses a porous nickel sintered body produced by sintering nickel powder as an electrode substrate, soaking it in a nickel nitrate solution, and then thermally decomposing it for activation. Manufactured by sintering method as material (eg SUFalk & AJSalkind “Alkaline Stora
ge Batteries "John Wiley & Sons Inc. (1969)).

この焼結式で製造された電極は、高率放電などに良好な
特性を有するものの、コストが高いという欠点があっ
た。その理由は、電極基体として用いるニッケル焼結体
を作るために高温還元雰囲気炉が必要なこと、さらに活
物質充填工程を数回繰り返す必要があることなどから、
設備費、光熱費、人件費などを多く要することにあっ
た。
The electrode manufactured by this sintering method has good characteristics such as high rate discharge, but has a drawback of high cost. The reason is that a high temperature reducing atmosphere furnace is required to make a nickel sintered body used as an electrode substrate, and further, the active material filling step needs to be repeated several times.
There were many equipment costs, utility costs, and labor costs.

そのため、現在はまだ実用化にいたってないが、焼結式
電極の特性を維持しながら、コストの安いニッケル電極
を得る目的で、活物質と導電助剤と結着剤を適当量混合
し、ペースト状にして、これをパンチングメタルなどの
集電体に塗布するペースト式が提案され、注目を集めて
いる。しかしながら、良好な結着剤が見出されていない
ため、電極強度が充分なものや、充放電サイクルを繰り
返しても活物質の脱落がないものは得られていない。
Therefore, although it has not yet been put into practical use at present, while maintaining the characteristics of the sintered electrode, in order to obtain a nickel electrode at low cost, an active material, a conductive auxiliary agent, and a binder are mixed in appropriate amounts, A paste method of forming a paste and applying it to a current collector such as a punching metal has been proposed and attracted attention. However, since a good binder has not been found, neither one having sufficient electrode strength nor one in which the active material does not fall off even when the charge / discharge cycle is repeated is not obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上のように、焼結式による場合は電極性能面で優れて
いるものの、製造面、コスト面で問題があり、一方、ペ
ースト式による場合は低コストに製造できるという利点
を有するものの、電極性能面で問題があり、現在のとこ
ろ、いずれの方式によっても満足すべきものは得られて
いない。
As described above, when the sintering method is used, the electrode performance is excellent, but there are problems in terms of manufacturing and cost. On the other hand, when the paste method is used, the manufacturing cost is low, but the electrode performance is low. There is a problem in terms of quality, and at present, no satisfactory method has been obtained by any of the methods.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述した従来技術の問題点を解決するもので、
ペースト状配合剤の結着剤としてメタクリル酸エステル
を特定割合で用いることによってペースト式で安価に製
造でき、しかも電極強度が大で、かつ充放電サイクルを
繰り返しても活物質の脱落がない電極性能の優れたニッ
ケル電極を提供したものである。
The present invention solves the above-mentioned problems of the prior art,
By using methacrylic acid ester as a binder of pasty compounding agent in a specific ratio, it can be manufactured at a low cost by the paste method, the electrode strength is large, and the active material does not drop even after repeated charge / discharge cycles. The excellent nickel electrode of

本発明において結着剤として用いるメタクリル酸エステ
ルとしては、たとえばメタクリル酸メチル、メタクリル
酸エチル、メタクリル酸ブチル、アクリル酸メチル、ア
クリル酸エチル、アクリル酸ブチルなどが用いられる。
これらメタクリル酸エステルはペースト状配合剤の調製
時はモノマー状態であって液状を呈するが、これらを配
合して調製したペースト状配合剤を電極基体に塗布また
は充填し、乾燥すると、メタクリル酸エステルが高分子
化して被膜を形成する。そして、配合に際しては粘度調
整のため、メタクリル酸エステルをベンゼン、キシレ
ン、トルエン、メチルエチルケトンその他の適宜のシン
ナーに溶かしておいてもよい。
Examples of the methacrylic acid ester used as the binder in the present invention include methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate and the like.
These methacrylic acid esters are in a liquid state as a monomer when the paste-like compounding agent is prepared, but when the paste-like compounding agent prepared by mixing these is applied or filled on the electrode substrate and dried, the methacrylic acid ester is formed. Polymerize to form a film. When blending, the methacrylic acid ester may be dissolved in benzene, xylene, toluene, methyl ethyl ketone, or another appropriate thinner in order to adjust the viscosity.

これらメタクリル酸エステルの使用量は、ペースト状配
合剤の全固形分中において1〜10重量%である。これは
メタクリル酸エステルの量が1重量%より少ないと結着
剤としての効果が充分に発揮されず、メタクリル酸エス
テルの量が10重量%より多くなると、結着剤被膜によっ
て導電マトリックスが切断されて内部抵抗が高くなるか
らである。
The amount of these methacrylic acid esters used is 1 to 10% by weight based on the total solid content of the pasty compounding agent. This is because when the amount of methacrylic acid ester is less than 1% by weight, the effect as a binder is not sufficiently exhibited, and when the amount of methacrylic acid ester is more than 10% by weight, the conductive matrix is cut by the binder film. Internal resistance becomes high.

また、上記メタクリル酸エステル中にニッケル、カーボ
ンなどの導電性物質を配合し、均一に分散させておいて
結着剤として用いることにより、メタクリル酸エステル
単独で用いる場合よりも、高率充放電が可能になるなど
の点において電極特性の優れたニッケル電極が得られ
る。もちろん、結着剤として作用するのはメタクリル酸
エステルであって、導電性物質は何ら結着作用に寄与し
ないが、導電性物質をメタクリル酸エステル中に分散さ
せておくことによって導電性物質を介しての活物質粒子
の電気的接触が良好になり、結着剤による導電マトリッ
クスの切断が防止されて、内部低抗の小さい電極が得ら
れるようになる。
Further, by blending a conductive substance such as nickel or carbon in the methacrylic acid ester and uniformly dispersing it and using it as a binder, a higher rate of charge / discharge can be obtained than in the case of using the methacrylic acid ester alone. It is possible to obtain a nickel electrode having excellent electrode characteristics in that it becomes possible. Of course, it is the methacrylic acid ester that acts as a binding agent, and the conductive substance does not contribute to the binding action at all, but the conductive substance is dispersed in the methacrylic acid ester so that the conductive substance is mediated. The electrical contact of all active material particles is improved, the conductive matrix is prevented from being cut by the binder, and an electrode having a small internal resistance can be obtained.

上記のようにメタクリル酸エステル中に分散させる導電
性物質としては、たとえばニッケル粉末、ニッケル短繊
維、銀粉末、カーボン粉末、カーボン短繊維などが用い
られる。特にニッケル粉末は導電性が良好で価格面でも
銀粉末よりは低価格であることから好用される。そし
て、上記のように導電性物質を配合する場合には、粘着
調整の目的で溶剤で希釈され、導電性物質入りの結着剤
組成物にされる。この導電性物質入りの結着剤組成物は
固形分が50〜80重量%、溶剤20〜50重量%に調整すると
取り扱いが容易であり、導電性物質としてニッケル、銀
など金属を用いる場合には固形分中の金属成分と樹脂成
分との割合は重量比で5:1〜4:1にするのが好ましく、ま
た導電性物質としてカーボンを用いる場合にはカーボン
と樹脂成分の割合は2:1〜1:1にするのが好ましい。
As the conductive substance dispersed in the methacrylic acid ester as described above, for example, nickel powder, nickel short fibers, silver powder, carbon powder, short carbon fibers, etc. are used. In particular, nickel powder is preferable because it has good conductivity and is lower in price than silver powder. When the conductive substance is blended as described above, it is diluted with a solvent for the purpose of adjusting the adhesion to obtain a binder composition containing the conductive substance. The binder composition containing the conductive substance is easy to handle when the solid content is adjusted to 50 to 80% by weight and the solvent is 20 to 50% by weight, and when a metal such as nickel or silver is used as the conductive substance, The ratio of the metal component and the resin component in the solid content is preferably 5: 1 to 4: 1 by weight ratio, and when carbon is used as the conductive substance, the ratio of the carbon and the resin component is 2: 1. It is preferably set to 1: 1.

そして、使用に際しては、通常、上記のように導電性物
質を溶剤で希釈されたメタクリル酸エステル中に分散さ
せたものが用いられる。その使用量は、活物質量に対し
て5〜50重量%で使用されるが、前述のように結着剤と
しての作用を果すのは、あくまでもメタクリル酸エステ
ルなので、メタクリル酸エステルが固形分(ただし、ペ
ースト状配合剤の調製時においては、メタクリル酸エス
テルはモノマー状態であって液状を呈するが、該メタク
リル酸エステルを配合して調製したペースト状配合剤を
電極基体に塗布または充填し、乾燥すると、メタクリル
酸エステルは高分子化して被膜を形成し、固体となる)
としてペースト状配合剤中における全固形分中1〜10重
量%にされる。
When used, a conductive substance is usually dispersed in a methacrylic acid ester diluted with a solvent as described above. The amount of the methacrylic acid ester used is 5 to 50% by weight based on the amount of the active material. However, when the paste-like compounding agent is prepared, the methacrylic acid ester is in a monomer state and is in a liquid state. However, the paste-like compounding agent prepared by mixing the methacrylic acid ester is applied to or filled in the electrode substrate and dried. Then, the methacrylic acid ester polymerizes to form a film and becomes a solid)
As 1 to 10% by weight based on the total solid content in the pasty compounding agent.

ペースト状配合剤は、通常、活物質、導電助剤、上記の
ように導電性物質を分散させ溶剤で希釈した結着剤とし
てのメタクリル酸エステルを混合することによって調製
される。
The pasty compounding agent is usually prepared by mixing an active material, a conductive auxiliary agent, and a methacrylic acid ester as a binder obtained by dispersing the conductive material as described above and diluting it with a solvent.

活物質としては水酸化ニッケルまたはオキシ水酸化ニッ
ケルが用いられる。導電助剤としてはニッケル粉末、コ
バルト粉末、銀粉末などの金属粉末またはそれらの金属
の短繊維、カーボン粉末、カーボン短繊維などが用いら
れる。この導電助剤はメタクリル酸エステル中への導電
性物質の添加量を多くすることによって、通常の配合量
より減少してもよいし、また、まったく配合しないよう
にすることもできる。なお、上記コバルト粉末は導電助
剤としての作用以外に充放電特性を向上させるという重
要な役割を有している。そして、前記ペースト状配合剤
中には上記成分以外にもたとえば充電効率を向上させる
目的で、水酸化リチウム、水酸化カルシウム、水酸化カ
ドミウムなどを添加してもよい。
Nickel hydroxide or nickel oxyhydroxide is used as the active material. As the conductive additive, metal powder such as nickel powder, cobalt powder, silver powder, or short fibers of these metals, carbon powder, short carbon fibers or the like is used. By increasing the amount of the conductive substance added to the methacrylic acid ester, the conductive additive may be decreased from the usual amount, or may not be added at all. The cobalt powder has an important role of improving charge / discharge characteristics in addition to the function as a conductive additive. In addition to the above components, lithium hydroxide, calcium hydroxide, cadmium hydroxide, etc. may be added to the paste-like compounding agent for the purpose of improving charging efficiency.

電極基体には、たとえばニッケル発泡体などの金属発泡
体、金属繊維チョップの焼結体、ニッケル平織金網など
の平織金網、樹脂繊維上に金属メッキを施したものなど
ニッケル電極の製造に際して通常用いられる導電性の多
孔性基体が用いられる。
For the electrode substrate, for example, a metal foam such as nickel foam, a sintered body of metal fiber chops, a plain woven wire mesh such as a nickel plain woven wire mesh, or a metal fiber-plated resin fiber is commonly used in the manufacture of nickel electrodes. A conductive porous substrate is used.

電極基体へのペースト状配合剤の塗布または充填は、通
常の塗布、摺り込みなどに加えて、溶剤による希釈によ
り粘度を低く調整したペースト状配合剤中に電極基体を
浸漬し、乾燥、硬化を繰り返す方法も採用できる。この
ような乾燥、硬化を繰り返す場合においても、従来の焼
結式ニッケル電極の場合のような焼結体を作製する工程
が不要であり、また乾燥、硬化の繰り返しといっても溶
剤を乾燥するだけで、硝酸塩の熱分解とは異なり、大型
の装置を要しないので、工程面、設備面とも従来の焼結
式ニッケル電極の場合に比べてはるかに有利である。
The application or filling of the paste-like compounding agent to the electrode substrate is performed by ordinary coating, rubbing, etc., and immersing the electrode substrate in the paste-like compounding agent whose viscosity is adjusted to be low by dilution with a solvent, followed by drying and curing. A repeating method can also be adopted. Even when such drying and curing are repeated, the step of producing a sintered body as in the case of the conventional sintered nickel electrode is unnecessary, and the solvent is dried even if the drying and curing are repeated. However, unlike pyrolysis of nitrate, a large-scale device is not required, and therefore, it is far more advantageous than the conventional sintered nickel electrode in terms of process and equipment.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be described in more detail with reference to examples.

水酸化ニッケル粉末60重量部と、金属ニッケル粉末35重
量部と、金属コバルト粉末5重量部を混合し、結着剤と
して溶剤で希釈したニッケル粉末入りメタクリル酸メチ
ルモノマー25重量部を加えてペースト状配合剤を調製し
た。ニッケル粉末入りメタクリル酸メチルモノマーは、
固形分65重量%、溶剤35重量%から構成され、固形分中
の金属成分すなわちニッケルと樹脂成分の割合は重量比
で4:1で、溶剤はトルエン−メチルエチルケトン混合液
である。配合剤の全固形分中におけるメタクリル酸メチ
ルの量は3.5重量%に相当する。
60 parts by weight of nickel hydroxide powder, 35 parts by weight of metallic nickel powder, and 5 parts by weight of metallic cobalt powder are mixed, and 25 parts by weight of methyl methacrylate monomer containing nickel powder diluted with a solvent as a binder is added to prepare a paste form. A compounding agent was prepared. Methyl methacrylate monomer containing nickel powder is
The solid content is 65% by weight and the solvent is 35% by weight. The ratio of the metal component, that is, nickel and resin component in the solid content is 4: 1 by weight, and the solvent is a toluene-methyl ethyl ketone mixed liquid. The amount of methyl methacrylate in the total solids of the compounding agent corresponds to 3.5% by weight.

上記のようにして調製されたペースト状配合剤中に厚さ
0.15mmで、開孔率70容量%のニッケル製エキパンドメタ
ルからなる電極基体を浸漬し、引き上げて乾燥し樹脂成
分を硬化させ、この浸漬−乾燥−硬化を3回繰り返して
厚さ約0.5mmのニッケル電極を製造した。
The thickness of the pasty compound prepared as above
An electrode substrate made of nickel expanded metal with a porosity of 70% by volume at 0.15 mm is dipped, pulled up and dried to cure the resin component, and this dipping-drying-curing is repeated 3 times to a thickness of about 0.5 mm. Nickel electrodes were manufactured.

このようにして製造されたニッケル電極を正極として用
い、第1図に示すような構造で直径14.5mm、高さ50mmの
円筒形ニッケル−カドミウム二次電池(公称容量500mA
h)を作製し、該電池の充放電サイクル特性についての
評価を行なった。
Using the nickel electrode manufactured in this way as a positive electrode, a cylindrical nickel-cadmium secondary battery (nominal capacity: 500 mA, with a structure as shown in FIG. 1 and a diameter of 14.5 mm and a height of 50 mm.
h) was produced and the charge / discharge cycle characteristics of the battery were evaluated.

第1図において、1は前記のようにして作製されたニッ
ケル電極で、厚さ約0.5mm、幅40mm、長さ65mmの板状を
している。2はポリアミド不織布からなるセパレータ
で、平均厚さ0.2mmで、各電極幅より約2mm大きい幅を有
している。3は負極としてのカドミウム電極で、このカ
ドミウム電極3は酸化カドミウムを水溶性バインダーを
用いて芯材に塗着したペースト式極板からなり、厚さ約
0.5mm、幅40mm、長さ85mmで、ニッケル電極の電気容量
の約1.5倍の負極電気容量を持っている。そして、この
カドミウム電極3はセパレータ2を介在させて前記のニ
ッケル電極1と重ね合わせ、渦巻状に巻回されて外装缶
9内に収容されている。4はニッケル電極1のリード
で、5はカドミウム電極3のリードであり、6は金属製
の封口板で、この封口板6は上側部分6aと下側部分6bと
からなり、その下側部分6bに前記ニッケル電極側のリー
ド4の一端がスポット溶接されている。そして、この電
池は電池内圧が異常に上昇したときの安全性確保のため
の防爆弁7を有し、絶縁パッキング8と外装缶9をかし
めるクリンプシールで密閉構造を保持しており、電池内
には濃度30重量%の水酸化カリウム水溶液よりなる電解
液が封入されている。
In FIG. 1, reference numeral 1 denotes the nickel electrode manufactured as described above, which has a plate shape with a thickness of about 0.5 mm, a width of 40 mm and a length of 65 mm. 2 is a separator made of polyamide nonwoven fabric, having an average thickness of 0.2 mm and having a width that is about 2 mm larger than the width of each electrode. Reference numeral 3 is a cadmium electrode as a negative electrode. The cadmium electrode 3 is a paste type electrode plate in which cadmium oxide is applied to a core material by using a water-soluble binder and has a thickness of about
It has a width of 0.5 mm, a width of 40 mm, and a length of 85 mm, and has a negative electrode electric capacity that is about 1.5 times the electric capacity of a nickel electrode. The cadmium electrode 3 is superposed on the nickel electrode 1 with the separator 2 interposed therebetween, is spirally wound, and is housed in the outer can 9. 4 is a lead of the nickel electrode 1, 5 is a lead of the cadmium electrode 3, 6 is a metal sealing plate, and this sealing plate 6 is composed of an upper part 6a and a lower part 6b, and a lower part 6b thereof. One end of the lead 4 on the nickel electrode side is spot-welded. The battery has an explosion-proof valve 7 for ensuring safety when the internal pressure of the battery rises abnormally, and a sealed structure is maintained by a crimp seal that crimps the insulating packing 8 and the outer can 9. Is filled with an electrolytic solution composed of an aqueous potassium hydroxide solution having a concentration of 30% by weight.

上記構成の電池を電池Aとし、従来技術に従いポリテト
ラフルオルエチレンを結着剤としたペースト式ニッケル
電極を用いた電池を電池Bとし、また、ニッケル焼結体
に硝酸ニッケルを含浸させ、加熱して硝酸ニッケルを熱
分解させて製造した焼結式ニッケル電極を用いた電池を
電池Cとし、充放電サイクル特性試験を行なった。その
結果を第2図に示す。電池Aと電池Bおよび電池Cの相
違は、ニッケル電極の違いのみであって、その他は同じ
である。そして、サイクル特性試験の試験条件は放電電
流100mA、充電電流100mAで7.5時間充電し、充放電時の
カット電圧は充電時1.6V、充電時1.0Vである。
The battery having the above structure is referred to as battery A, and the battery using a paste type nickel electrode using polytetrafluoroethylene as a binder according to the conventional technique is referred to as battery B. Further, nickel sintered body is impregnated with nickel nitrate and heated. Then, a battery using a sintered nickel electrode produced by thermally decomposing nickel nitrate was used as a battery C, and a charge / discharge cycle characteristic test was performed. The results are shown in FIG. The difference between the battery A, the battery B, and the battery C is only the difference in the nickel electrode, and the others are the same. Then, the test conditions of the cycle characteristic test are charging with a discharge current of 100 mA and a charging current of 100 mA for 7.5 hours, and the cut voltage during charging and discharging is 1.6 V during charging and 1.0 V during charging.

第2図に示すように、本発明によるニッケル電極を正極
に用いた電池Aは、充放電サイクル数が増加しても放電
容量が大きく、焼結式ニッケル電極を用いた電池Cに匹
敵する特性を示し、従来のペースト式ニッケル電極を用
いた電池Bに比べて充放電サイクル特性がはるかに優れ
ていた。
As shown in FIG. 2, the battery A using the nickel electrode according to the present invention as a positive electrode has a large discharge capacity even when the number of charge / discharge cycles is increased, and has characteristics comparable to the battery C using the sintered nickel electrode. The charge-discharge cycle characteristics were far superior to those of the battery B using the conventional paste-type nickel electrode.

以上のように、本発明のニッケル電極は、焼結式ニッケ
ル電極に匹敵する充放電サイクル特性を有するが、その
製造に際してはペースト式の製造でき、焼結式ニッケル
電極を製造する場合に比べて、ニッケル焼結体の製造工
程が不要であり、かつ充填工程が簡略化でき、しかも大
型設備が不要であるため、製造コストを大幅に低減でき
る。
As described above, the nickel electrode of the present invention has a charge-discharge cycle characteristic comparable to that of the sintered nickel electrode, but in the production thereof, it can be produced by the paste method, and compared with the case of producing the sintered nickel electrode. Since the manufacturing process of the nickel sintered body is unnecessary, the filling process can be simplified, and large equipment is not necessary, the manufacturing cost can be significantly reduced.

なお、実施例では結着剤として導電性物質入りのものを
用いたが、結着剤として作用するのはメタクリル酸エス
テルであって、電極強度の向上、充放電サイクルの繰り
返しによる活物質の脱落防止はメタクリル酸エステルの
結着作用によってもたらされ、導電性物質入りのものに
代えてメタクリル酸エステルのみを用いても、実施例の
場合同様に充放電サイクル特性を向上できる。また、本
発明によって得られるニッケル電極は、実施例に例示し
たニッケル−カドミウム二次電池のみならず、たとえば
ニッケル−亜鉛二次電池、ニッケル−鉄二次電池などの
アルカリ二次電池にも応用できる。
In the examples, those containing a conductive substance were used as the binder, but it is methacrylic acid ester that acts as the binder, and the improvement of the electrode strength and the loss of the active material due to repeated charge / discharge cycles. The prevention is brought about by the binding action of the methacrylic acid ester, and even if only the methacrylic acid ester is used instead of the one containing the conductive substance, the charge / discharge cycle characteristics can be improved similarly to the case of the embodiment. The nickel electrode obtained by the present invention can be applied not only to the nickel-cadmium secondary battery exemplified in the examples but also to alkaline secondary batteries such as nickel-zinc secondary battery and nickel-iron secondary battery.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明では、メタクリル酸エステ
ルを特定割合で結着剤を用いることによって、電極強度
を高め、活物質の脱落を防止することができ、充放電サ
イクル特性の向上が達成できた。そしてペースト式電極
製造の長所を充分に生かすことができ、簡単な方法で、
経済的有利にかつ製造工程上有利に特性の優れたニッケ
ル電極を製造することができた。
As described above, in the present invention, by using the binder in a specific ratio of methacrylic acid ester, it is possible to enhance the electrode strength, prevent the active material from falling off, and improve the charge / discharge cycle characteristics. It was And it is possible to take full advantage of the paste-type electrode manufacturing, and with a simple method,
It was possible to manufacture a nickel electrode having excellent characteristics economically and in the manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のニッケル電極を用いた円筒形ニッケル
−カドミウム二次電池の一例を示す断面図、第2図は本
発明のニッケル電極を用いた円筒形ニッケル−カドミウ
ム二次電池と従来のニッケル電極を用いた円筒形ニッケ
ル−カドミウム二次電池の充放電サイクル特性を示す図
である。 1……ニッケル電極、2……セパレータ、3……カドミ
ウム電極
FIG. 1 is a cross-sectional view showing an example of a cylindrical nickel-cadmium secondary battery using the nickel electrode of the present invention, and FIG. 2 is a cylindrical nickel-cadmium secondary battery using the nickel electrode of the present invention and a conventional battery. It is a figure which shows the charging / discharging cycle characteristic of a cylindrical nickel-cadmium secondary battery using a nickel electrode. 1 ... Nickel electrode, 2 ... Separator, 3 ... Cadmium electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】活物質を主剤とし、結着剤を含むペースト
状配合剤を多孔性の電極基体に塗布または充填して製造
するアルカリ二次電池用ニッケル電極において、上記結
着剤としてメタクリル酸エステルをペースト状配合剤の
全固形分中において1〜10重量%用いたことを特徴とす
るアルカリ二次電池用ニッケル電極。
1. A nickel electrode for an alkaline secondary battery, which is produced by coating or filling a porous electrode substrate with a paste-like compounding agent containing an active material as a main ingredient, and a methacrylic acid as the binder. A nickel electrode for an alkaline secondary battery, characterized in that the ester is used in an amount of 1 to 10% by weight based on the total solid content of the pasty compounding agent.
【請求項2】上記結着剤中に導電性物質を配合した特許
請求の範囲第1項記載のアルカリ二次電池用ニッケル電
極。
2. The nickel electrode for an alkaline secondary battery according to claim 1, wherein a conductive substance is mixed in the binder.
【請求項3】導電性物質がニッケル粉末である特許請求
の範囲第2項記載のアルカリ二次電池用ニッケル電極。
3. The nickel electrode for an alkaline secondary battery according to claim 2, wherein the conductive substance is nickel powder.
JP60039844A 1985-02-27 1985-02-27 Nickel electrode for alkaline secondary battery Expired - Lifetime JPH0679489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60039844A JPH0679489B2 (en) 1985-02-27 1985-02-27 Nickel electrode for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60039844A JPH0679489B2 (en) 1985-02-27 1985-02-27 Nickel electrode for alkaline secondary battery

Publications (2)

Publication Number Publication Date
JPS61198561A JPS61198561A (en) 1986-09-02
JPH0679489B2 true JPH0679489B2 (en) 1994-10-05

Family

ID=12564269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60039844A Expired - Lifetime JPH0679489B2 (en) 1985-02-27 1985-02-27 Nickel electrode for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH0679489B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3343459B2 (en) * 1995-02-09 2002-11-11 三洋化成工業株式会社 Thickener for the production process of electrode paste for alkaline storage batteries

Also Published As

Publication number Publication date
JPS61198561A (en) 1986-09-02

Similar Documents

Publication Publication Date Title
KR920007381B1 (en) Making method of akaline battery
US4427751A (en) Alkaline battery
JP2708452B2 (en) Hydrogen storage alloy electrode and method for producing the same
US5837402A (en) Zinc powders for use in batteries and a secondary alkaline zinc battery using said zinc powders
JPH0679489B2 (en) Nickel electrode for alkaline secondary battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JP2623409B2 (en) Hydrogen storage electrode and method for producing the same
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JPH0251874A (en) Alkaline zinc lead-acid battery
JP3306058B2 (en) Hydrogen storage alloy electrode and nickel metal hydride secondary battery
JPH0423383B2 (en)
CA1102409A (en) Battery plates covered with porous thermoplastic resin
JP2854920B2 (en) Nickel-metal hydride battery
JPH0670903B2 (en) Nickel electrode for alkaline secondary battery
JPH0513075A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPS61135054A (en) Manufacture of nickel electrode for alkaline secondary battery
JPH03192652A (en) Hydrogen storage alloy electrode
JPS62229763A (en) Nonsintered nickel positive electrode
JPH03133058A (en) Manufacture of paste type cadmium negative electrode
JPH0824040B2 (en) Method for manufacturing hydrogen storage electrode
JPH088101B2 (en) Method for manufacturing hydrogen storage electrode