JPS61198561A - Nickel electrode for alkaline secondary battery - Google Patents

Nickel electrode for alkaline secondary battery

Info

Publication number
JPS61198561A
JPS61198561A JP60039844A JP3984485A JPS61198561A JP S61198561 A JPS61198561 A JP S61198561A JP 60039844 A JP60039844 A JP 60039844A JP 3984485 A JP3984485 A JP 3984485A JP S61198561 A JPS61198561 A JP S61198561A
Authority
JP
Japan
Prior art keywords
nickel
electrode
binder
active material
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60039844A
Other languages
Japanese (ja)
Other versions
JPH0679489B2 (en
Inventor
Noboru Kotani
小谷 昇
Naonobu Miama
尚伸 美甘
Akio Shimizu
清水 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP60039844A priority Critical patent/JPH0679489B2/en
Publication of JPS61198561A publication Critical patent/JPS61198561A/en
Publication of JPH0679489B2 publication Critical patent/JPH0679489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain at low cost a nickel electrode whose active material coming off is prevented in repeated charge-discharge cycles and having good performance by using methacrylate ester as a binder of active material paste. CONSTITUTION:Methacrylate ester is used as a binder of active material paste. Therefore, a paste type nickel electrode 1 having good electrode strength, no coming off of active material in repeated charge-discharge cycles, and good performance can be produced. By using the binder obtained by uniformly dispersing a conductive material such as nickel or carbon in the methacrylate ester, high rate charge-discharge performance is increased compared with use of methacrylate ester alone. Since the electrode can be produced as a paste type, an active material filling process is simplified and large scale equipment is eliminated, and production cost can remarkably be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はアルカリ二次電池用の二・メチル電極に関す
る。さらに詳しくは、ニッケルーカドミウム二次電池、
ニッケルー亜鉛二次電池などのアルカリ二次電池の正極
として用いられる低コストでかつ特性の優れたニッケル
電極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a dimethyl electrode for alkaline secondary batteries. For more details, please refer to nickel-cadmium secondary batteries,
This invention relates to a low-cost nickel electrode with excellent characteristics that is used as a positive electrode for alkaline secondary batteries such as nickel-zinc secondary batteries.

〔従来の技術〕[Conventional technology]

従来、アルカリ二次電池用のニッケル電極は、ニッケル
粉末を焼結して作製した多孔性のニッケル焼結体を電極
基体に用い、これを硝酸ニッケル溶液に浸漬し、その後
、熱分解して活物質とする焼結式で製造されていた(た
とえばS、U、Falk &A、J、5alkind 
” Alkaline Storage Batter
ies″John l1iley & 5ons In
c、 (1969) )。
Conventionally, nickel electrodes for alkaline secondary batteries use a porous nickel sintered body made by sintering nickel powder as the electrode base, immerse it in a nickel nitrate solution, and then thermally decompose it to activate it. (e.g. S, U, Falk & A, J, 5alkind)
” Alkaline Storage Batter
ies″John l1iley & 5ons In
c, (1969)).

この焼結式で製造された電極は、高率放電などに良好な
特性を有するものの、コストが高いという欠点があった
。その理由は、電極基体として用いるニッケル焼結体を
作るために高温還元雰囲気炉が必要なこと、さらに+7
’活物質充填工程を数回繰り返す必要があることなどか
ら、設備費、光熱費、人件費などを多く要することにあ
った。
Although electrodes manufactured using this sintering method have good characteristics such as high rate discharge, they have the disadvantage of being high in cost. The reason for this is that a high-temperature reducing atmosphere furnace is required to make the nickel sintered body used as the electrode base, and
'Because the active material filling process had to be repeated several times, equipment costs, utility costs, personnel costs, etc. were high.

そのため、現在はまりど実用化にいたってないが、焼結
式電極の特性を維持しながら、コストの安いニッケル電
極を得る目的で、活物質と導電助剤と結着剤を適当量混
合し、ペースト状にして、これをパンチングメタルなど
の集電体に塗布するペースト式が提案され、注目を集め
ている。しかしながら、良好な結着剤が見出されていな
いため、電極強度が充分なものや、充放電サイクルを繰
り返しても活物質の脱落がないものは得られていない。
Therefore, although it has not yet been put into practical use, in order to obtain a low-cost nickel electrode while maintaining the characteristics of a sintered electrode, an appropriate amount of active material, conductive additive, and binder is mixed. A paste method, in which the paste is made into a paste and applied to a current collector such as a punched metal, has been proposed and is attracting attention. However, since a good binder has not been found, electrodes with sufficient strength and active materials that do not fall off even after repeated charging and discharging cycles have not been obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように、焼結式による場合は電極性能面で優れて
いるものの、製造面、コスト面で問題があり、一方、ペ
ースト式による場合は低コストに製造できるという利点
を有するものの、電極性能面で問題があり、現在のとこ
ろ、いずれの方式によっても満足すべきものは得られて
いない。
As mentioned above, although the sintering method has excellent electrode performance, it has problems in terms of manufacturing and cost.On the other hand, the paste method has the advantage of being able to manufacture at low cost, but the electrode performance There are problems in this respect, and so far, neither method has yielded anything satisfactory.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述した従来技術の問題点を解決するもので、
ペースト状配合剤の結着剤としてメタクリル酸エステル
を用いることによってペースト式で安価に製造でき、し
かも電極強度が大で、かつ充放電サイクルを繰り返して
も活物質の脱落がない電極性能の優れたニッケル電極を
提供したものである。
The present invention solves the problems of the prior art described above.
By using methacrylic acid ester as a binder in the paste compound, it can be manufactured at low cost in a paste format, and has high electrode strength and excellent electrode performance with no active material falling off even after repeated charge/discharge cycles. It provided a nickel electrode.

本発明において結着剤として用いるメタクリル酸エステ
ルとしては、たとえばメタクリル酸メチ・ル、メタクリ
ル酸エチル、メタクリル酸ブチル、アクリル酸メチル、
アクリル酸エチル、アクリル酸ブチルなどが用いられる
。これらメタクリル酸エステルはペースト状配合剤の調
製時はモノマー状態であって液状を呈するが、これらを
配合して調製したペースト状配合剤を電極基体に塗布ま
たは充填し、乾燥すると、メタクリル酸エステルが高分
子化して被膜を形成する。そして、配合に際しては粘度
調整のため、メタクリル酸エステルをベンゼン、キシレ
ン、トルエン、メチルエチルケトンその他の適宜のシン
ナーに溶がしておいてもよい。
Examples of methacrylic esters used as binders in the present invention include methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate,
Ethyl acrylate, butyl acrylate, etc. are used. These methacrylic acid esters are in a monomer state and liquid when a paste-like compound is prepared, but when the paste-like compound prepared by blending them is applied or filled onto an electrode substrate and dried, the methacrylic acid ester is Polymerizes to form a film. When blending, the methacrylic acid ester may be dissolved in benzene, xylene, toluene, methyl ethyl ketone, or other suitable thinner in order to adjust the viscosity.

これらメタクリル酸エステルの使用量としては、ペース
ト状配合剤中において固形分として1〜10重量%の範
囲が好ましい。これはメタクリル酸エステルの量が1重
量%より少ないと結着剤としての効果が充分に発揮され
ず、メタクリル酸エステルの量が10重量%より多くな
ると、結着剤被膜によって導電マトリックスが切断され
て内部抵抗が高くなるからである。
The amount of these methacrylic acid esters used is preferably in the range of 1 to 10% by weight as solid content in the paste formulation. This is because if the amount of methacrylic acid ester is less than 1% by weight, the effect as a binder will not be fully exhibited, and if the amount of methacrylic acid ester is more than 10% by weight, the conductive matrix will be cut by the binder film. This is because the internal resistance increases.

また、上記メタクリル酸エステル中にニッケル、カーボ
ンなどの導電性物質を配合し、均一に分散させておいて
結着剤として用いることにより、メタクリル酸エステル
単独で用いる場合よりも、高率充放電が可能になるなど
の点において電極特性の優れたニッケル電極が得られる
。もちろん、結着剤として作用するのはメタクリル酸エ
ステルであって、導電性物質は何ら結着作用に寄与しな
いが、導電性物質をメタクリル酸エステル中に分散させ
ておくことによって導電性物質を介しての活物質粒子の
電気的接触が良好になり、結着剤による導電マトリック
スの切断が防止されて、内部抵抗の小さい電極が得られ
るようになる。
In addition, by blending conductive substances such as nickel and carbon into the methacrylic ester and using it as a binder after uniformly dispersing it, a higher rate of charge and discharge can be achieved than when using the methacrylic ester alone. A nickel electrode with excellent electrode properties can be obtained. Of course, it is the methacrylic ester that acts as a binder, and the conductive substance does not contribute to the binding effect at all, but by dispersing the conductive substance in the methacrylic ester, it is possible to bind the substance through the conductive substance. The electrical contact between all the active material particles is improved, the conductive matrix is prevented from being cut by the binder, and an electrode with low internal resistance can be obtained.

上記のようにメタクリル酸エステル中に分散させる導電
性物質としては、たとえばニッケル粉末、ニッケル短繊
維、銀粉末、カーボン粉末、カーボン短繊維などが用い
られる。特にニッケル粉末は導電性が良好で価格面でも
銀粉末よりは低価格であることがら経用される。そして
、上記のように導電性物質を配合する場合には、粘度調
整の目的で溶剤で希釈され、導電性物質入りの結着剤組
成物にされる。この導電性物質入りの結着剤組成物は固
形分が50〜80重量%、溶剤20〜50重量%に調整
すると取り扱いが容易であり、導電性物質としてニッケ
ル、銀など金属を用いる場合には固形分中の金属成分と
樹脂成分との割合は重量比で5:1〜4:1にするのが
好ましく、また導電性物質としてカーボンを用いる場合
にはカーボンと樹脂成分の割合は2:1〜1:lにする
のが好ましい。
As the conductive substance to be dispersed in the methacrylic ester as described above, for example, nickel powder, nickel short fibers, silver powder, carbon powder, carbon short fibers, etc. are used. In particular, nickel powder is commonly used because it has good conductivity and is cheaper than silver powder. When a conductive substance is blended as described above, it is diluted with a solvent for the purpose of viscosity adjustment to form a binder composition containing the conductive substance. This binder composition containing a conductive substance is easy to handle if the solid content is adjusted to 50 to 80% by weight and the solvent to 20 to 50% by weight. The ratio of the metal component to the resin component in the solid content is preferably 5:1 to 4:1 by weight, and when carbon is used as the conductive substance, the ratio of the carbon to the resin component is 2:1. It is preferable to adjust the ratio to 1:l.

そして、使用に際しては、通常、上記のように導電性物
質を溶剤で希釈されたメタクリル酸エステル中に分散さ
せたものが用いられる。その使用量は、活物質量に対し
て5〜50重量%で使用されるが、前述のように結着剤
としての作用を果すのは、あくまでもメタクリル酸エス
テルなので、メタクリル酸エステルが固形分としてペー
スト状配合剤中における全固形分中1〜10重量%にさ
れる。
When used, a conductive material is generally used as described above, which is dispersed in a methacrylic ester diluted with a solvent. The amount used is 5 to 50% by weight based on the amount of active material, but as mentioned above, it is only the methacrylic ester that acts as a binder, so the methacrylic ester is used as a solid content. It accounts for 1 to 10% by weight of the total solid content in the paste formulation.

ペースト状配合剤は、通常、活物質、導電助剤、上記の
ように導電性物質を分散させ溶剤で希釈した結着剤とし
てのメタクリル酸エステルを混合することによって調製
される。
A paste-like compound is usually prepared by mixing an active material, a conductive aid, and a methacrylic acid ester as a binder in which a conductive substance is dispersed and diluted with a solvent as described above.

活物質としては水酸化ニッケルまたはオキシ水酸化ニッ
ケルが用いられる。導電助剤としてはニッケル粉末、コ
バルト粉末、銀粉末などの金属粉末またはそれらの金属
の短繊維、カーボン粉末、カーボン短繊維などが用いら
れる。この導電助剤はメタクリル酸エステル中への導電
性物質の添加量を多くすることによって、通常の配合量
より減少してもよいし、また、まったく配合しないよう
にすることもできる。なお、上記コバル【粉末は導電[
111剤としての作用以外に充放電特性を向上させると
いう重要な役割を有している。そして、前記ペースト状
配合剤中には上記成分以外にもたとえば充電効率を向上
させる目的で、水酸化リチウム、水酸化カルシウム、水
酸化カドミウムなどを添加してもよい。
Nickel hydroxide or nickel oxyhydroxide is used as the active material. As the conductive aid, metal powders such as nickel powder, cobalt powder, silver powder, short fibers of these metals, carbon powder, carbon short fibers, etc. are used. By increasing the amount of the conductive substance added to the methacrylic acid ester, the amount of the conductive additive may be reduced from the usual amount, or it may not be added at all. Note that the above Kobal [powder is conductive]
In addition to acting as a 111 agent, it also plays an important role in improving charge and discharge characteristics. In addition to the above-mentioned components, lithium hydroxide, calcium hydroxide, cadmium hydroxide, etc. may be added to the paste-like compound, for example, for the purpose of improving charging efficiency.

電極基体には、たとえばニッケル発泡体などの金属発泡
体、金属繊維チョップの焼結体、ニッケル乎織金網など
の平織金網、樹脂繊維上に金属メッキを施したものなど
ニッケル電極の製造に際して通常用いられる導電性の多
孔性基体が用いられる。
Examples of electrode substrates include metal foams such as nickel foams, sintered bodies of chopped metal fibers, plain woven wire meshes such as nickel woven wire meshes, and metal plating on resin fibers, which are commonly used in the manufacture of nickel electrodes. An electrically conductive porous substrate is used.

電極基体へのペースト状配合剤の塗布または充填は、通
常の塗布、摺り込みなどに加えて、溶剤による希釈によ
り粘度を低く調整したペースト状配合剤中に電極基体を
浸漬し、乾燥、硬化を繰り返す方法も採用できる。この
ような乾燥、硬化を繰り返す場合においても、従来の焼
結式ニッケル電極の場合のような焼結体を作製する工程
が不要であり、また乾燥、硬化の繰り返しといっても溶
剤を乾燥するだけで、硝酸塩の熱分解とは異なり、大型
の装置を要しないので、工程面、設備面とも従来の焼結
式ニッケル電極の場合に比べてはるかに有利である。
To apply or fill the electrode substrate with a paste-like compound, in addition to the usual coating and rubbing, the electrode substrate is immersed in a paste-like compound whose viscosity has been adjusted to low by diluting with a solvent, and then dried and hardened. An iterative method can also be adopted. Even when drying and curing are repeated like this, there is no need for the process of creating a sintered body as in the case of conventional sintered nickel electrodes, and even though drying and curing are repeated, the solvent is dried. However, unlike the thermal decomposition of nitrates, it does not require large equipment, so it is much more advantageous than conventional sintered nickel electrodes in terms of process and equipment.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail by giving examples.

水酸化ニッケル粉末60重量部と、金属ニッケル粉末3
5重量部と、金属コバルト粉末5重量部を混合し、結着
剤として溶剤で希釈したニッケル粉末入りメタクリル酸
メチルモノマー25重量部を加えてペースト状配合剤を
調製した。ニッケル粉末入りメタクリル酸メチルモノマ
ーは、固形分65重量%、溶剤35重量%から構成され
、固形分中の金属成分すなわちニッケルと樹脂成分の割
合は重量比で4:1で、溶剤はトルエン−メチルエチル
、ケトン混合液である。配合剤の全固形分中におけるメ
タクリル酸メチルの量は3.5重量%に相当する。
60 parts by weight of nickel hydroxide powder and 3 parts by weight of metallic nickel powder
5 parts by weight of nickel powder and 5 parts by weight of metal cobalt powder were mixed, and 25 parts by weight of methyl methacrylate monomer containing nickel powder diluted with a solvent as a binder was added to prepare a paste-like formulation. Methyl methacrylate monomer containing nickel powder is composed of 65% by weight of solid content and 35% by weight of solvent, and the ratio of the metal component, that is, nickel, to the resin component in the solid content is 4:1 by weight, and the solvent is toluene-methyl. It is a mixture of ethyl and ketone. The amount of methyl methacrylate in the total solids of the formulation corresponds to 3.5% by weight.

上記のようにして鋼製されたペースト状配合剤中に厚さ
0.15mmで、開孔率70容量%のニッケル製エキバ
ンドメタルからなる電極基体を浸漬し、引き上げて乾燥
し樹脂成分を硬化させ、この浸漬−乾燥−硬化を3回繰
り返して厚さ約0.5 mmのニッケル電極を製造した
An electrode base made of nickel exband metal with a thickness of 0.15 mm and a porosity of 70% by volume is immersed in the paste-like compound made of steel as described above, and then pulled up and dried to harden the resin component. This dipping-drying-hardening process was repeated three times to produce a nickel electrode with a thickness of about 0.5 mm.

このようにして製造されたニッケル電極を正極として用
い、第1図に示すような構造で直径14.5mm%高さ
50mmの円筒形ニソケルーカドミウム二次電池(公称
容量500mAh)を作製し、該電池の充放電サイクル
特性についての評価を行なった。
Using the nickel electrode produced in this way as a positive electrode, a cylindrical nickel-cadmium secondary battery (nominal capacity 500 mAh) with a diameter of 14.5 mm and a height of 50 mm was fabricated as shown in FIG. The charge/discharge cycle characteristics of the battery were evaluated.

第1図において、lは前記のようにして作製されたニッ
ケル電極で、厚さ約0.5 mm、幅40mm、、長さ
65+n+nの板状をしている。2はボリアミド不織布
からなるセパレータで、平均厚さ0.2 mmで、各電
極幅より約2mm大きい幅を有している。3は負極とし
てのカドミウム電極で、このカドミウム電極3は酸化カ
ドミウムを水溶性バインダーを用いて芯材に塗着したペ
ースト式極板からなり、厚さ約0.5 mm、幅40I
III111長さ85mmで、−メチル電極の電気容量
の約1.5倍の負極電気容量を持っている。
In FIG. 1, reference numeral 1 denotes a nickel electrode prepared as described above, which has a plate shape with a thickness of about 0.5 mm, a width of 40 mm, and a length of 65+n+n. Reference numeral 2 denotes a separator made of polyamide nonwoven fabric, which has an average thickness of 0.2 mm and a width approximately 2 mm larger than the width of each electrode. 3 is a cadmium electrode as a negative electrode, and this cadmium electrode 3 is made of a paste-type electrode plate in which cadmium oxide is applied to the core material using a water-soluble binder, and has a thickness of approximately 0.5 mm and a width of 40 mm.
III111 has a length of 85 mm and a negative electrode capacitance approximately 1.5 times that of the -methyl electrode.

そして、このカドミウム電極3はセパレータ2を介在さ
せて前記のニッケル電極1と重ね合わせ、渦巻状に巻回
されて外装缶9内に収容されている。4はニッケル電極
1のリードで、5はカドミウム電極3のリードであり、
6は金属製の封目板で、この封口板6は上側部分6aと
下側部分6bとからなり、その下側部分6bに前記ニッ
ケル電極側のり一ド4の一端がスポット溶接されている
。そして、この電池は電池内圧が異常に上騨したときの
安全性確保のための防爆弁7を有し、絶縁パ・ノキング
8と外装缶9をかしめるクリンプシールで密閉構造を保
持しており、電池内には濃度30重量%の水酸化カリウ
ム水溶液よりなる電解液が封入されている。
The cadmium electrode 3 is overlapped with the nickel electrode 1 with the separator 2 interposed therebetween, and is wound spirally and housed in the outer can 9. 4 is the lead of nickel electrode 1, 5 is the lead of cadmium electrode 3,
6 is a metal sealing plate, and this sealing plate 6 consists of an upper part 6a and a lower part 6b, and one end of the nickel electrode side glue 4 is spot welded to the lower part 6b. This battery has an explosion-proof valve 7 to ensure safety when the battery internal pressure rises abnormally, and maintains a sealed structure with a crimp seal that caulks the insulating seal 8 and the outer can 9. An electrolytic solution consisting of an aqueous potassium hydroxide solution having a concentration of 30% by weight is sealed inside the battery.

上記構成の電池を電池へとし、従来技術に従いポリテト
ラフルオルエチレンを結着剤としたペースト式ニッケル
電極を用いた電池を電池Bとし、また、ニッケル焼結体
に硝酸二・メチルを含浸させ、加熱して硝酸ニッケルを
熱分解させて製造した焼結式ニッケル電極を用いた電池
を電池Cとし、充放電サイクル特性試験を行なった。そ
の結果を第2図に示す。電池Aと電池Bおよび電池Cの
相違は、ニッケル電極の違いのみであって、その他は同
じである。そして、サイクル特性試験の試験条件は放電
電流100mA、充電電流100mAで7゜5時間充電
し、充放電時のカット電圧は充電時1゜6V、充電時1
.0■である。
A battery with the above configuration was made into a battery, a battery using a paste type nickel electrode using polytetrafluoroethylene as a binder according to the conventional technology was used as battery B, and a nickel sintered body was impregnated with dimethyl nitrate. A battery using a sintered nickel electrode manufactured by heating to thermally decompose nickel nitrate was designated as Battery C, and a charge/discharge cycle characteristic test was conducted. The results are shown in FIG. The only difference between Battery A, Battery B, and Battery C is the difference in the nickel electrode, and the rest are the same. The test conditions for the cycle characteristic test were to charge for 7.5 hours at a discharge current of 100 mA and a charging current of 100 mA, and the cut voltage during charging and discharging was 1.6 V when charging and 1.
.. It is 0 ■.

第2図に示すように、本発明によるニッケル電極を正極
に用いた電池Aは、充放電サイクル数が増加しても放電
容量が大きく、焼結式ニッケル電極を用いた電池Cに匹
敵する特性を示し、従来のペースト式ニッケル電極を用
いた電池Bに比べて充放電サイクル特性がはるかに優れ
ていた。
As shown in Figure 2, Battery A using the nickel electrode according to the present invention as the positive electrode has a large discharge capacity even when the number of charge/discharge cycles increases, and has characteristics comparable to Battery C using a sintered nickel electrode. , and the charge/discharge cycle characteristics were far superior to that of Battery B using a conventional paste-type nickel electrode.

以上のように、本発明のニッケル電極は、焼結式ニッケ
ル電極に匹敵する充放電サイクル特性を有するが、その
製造に際してはペースト式で製造でき、焼結式ニッケル
電極を製造する場合に比べて、ニッケル焼結体の製造工
程が不要であり、かつ充填工程が簡略化でき、しかも大
型設備が不要であるため、製造コスI−を大幅に低減で
きる。
As described above, the nickel electrode of the present invention has charge-discharge cycle characteristics comparable to sintered nickel electrodes, but it can be manufactured using a paste method, which is superior to sintered nickel electrodes. Since the manufacturing process of the nickel sintered body is not necessary, the filling process can be simplified, and large equipment is not required, the manufacturing cost I- can be significantly reduced.

なお、実施例では結着剤として導電性物質入りのものを
用いたが、結着剤として作用するのはメタクリル酸エス
テルであって、電極強度の向上、充放電サイクルの繰り
返しによる活物質の脱落防止はメタクリル酸エステルの
結着作用によっても1ま たらされ、導電性物質入りのものに代えてメタクリル酸
エステルのみを用いても、実施例の場合同様に充放電サ
イクル特性を向上できる。また、本発明によって得られ
るニッケル電極は、実施例に例示したニソケル−カドミ
ウム二次電池のみならず、たとえばニッケルー亜鉛二次
電池、ニッケルー鉄二次電池などのアルカリ二次電池に
も応用できる。
In the examples, a binder containing a conductive material was used, but the binder is methacrylic acid ester, which improves the strength of the electrode and prevents the active material from falling off due to repeated charge/discharge cycles. The prevention is also improved by the binding effect of the methacrylic ester, and even if only the methacrylic ester is used instead of one containing a conductive substance, the charge-discharge cycle characteristics can be improved in the same way as in the example. Further, the nickel electrode obtained according to the present invention can be applied not only to the nickel-cadmium secondary batteries illustrated in the examples, but also to alkaline secondary batteries such as nickel-zinc secondary batteries and nickel-iron secondary batteries.

〔発明の効果〕〔Effect of the invention〕

゛ 以上説明したように、本発明では、メタクリル酸エ
ステルを結着剤に用いることによって、電極強度を高め
、活物質の脱落を防止することができ、充放電サイクル
特性の向上が達成できた。そしてペースト式電極製造の
長所を充分に生かすことができ、簡単な方法で、経済的
有利にかつ製造工程上有利に特性の優れたニッケル電極
を製造することができた。
As explained above, in the present invention, by using methacrylic ester as a binder, it was possible to increase the electrode strength, prevent the active material from falling off, and improve the charge/discharge cycle characteristics. Furthermore, the advantages of paste-type electrode manufacturing could be fully utilized, and nickel electrodes with excellent characteristics could be manufactured by a simple method, economically advantageous, and advantageous in terms of the manufacturing process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のニッケル電極を用いた円筒形ニッケル
ーカドミウム二次電池の一例を示す断面図、第2図は本
発明のニッケル電極を用いた円筒形ニソケルーカドミウ
ム二次電池と従来の二・7ケル電極を用いた円筒形ニソ
ケルーカドミウム二次電池の充放電サイクル特性を示す
図である。 ■・・・ニッケル電極、 2・・・セパレータ、3・・
・カドミウム電極 第1図 第2図 充放2tナイク1V数、
Fig. 1 is a cross-sectional view showing an example of a cylindrical nickel-cadmium secondary battery using the nickel electrode of the present invention, and Fig. 2 shows a cylindrical nickel-cadmium secondary battery using the nickel electrode of the present invention and a conventional nickel-cadmium secondary battery. FIG. 3 is a diagram showing the charge/discharge cycle characteristics of a cylindrical NiSO-K-cadmium secondary battery using a 2.7-KEL electrode. ■...Nickel electrode, 2...Separator, 3...
・Cadmium electrode Figure 1 Figure 2 Charging and discharging 2t Nyc 1V number,

Claims (3)

【特許請求の範囲】[Claims] (1)活物質を主剤とし、結着剤を含むペースト状配合
剤を多孔性の電極基体に塗布または充填して製造するア
ルカリ二次電池用ニッケル電極において、上記結着剤と
してメタクリル酸エステルを用いたことを特徴とするア
ルカリ二次電池用ニッケル電極。
(1) In a nickel electrode for alkaline secondary batteries manufactured by coating or filling a porous electrode substrate with a paste-like compound containing an active material and a binder, a methacrylate ester is used as the binder. A nickel electrode for an alkaline secondary battery characterized by the use of the nickel electrode.
(2)上記結着剤中に導電性物質を配合した特許請求の
範囲第1項記載のアルカリ二次電池用ニッケル電極。
(2) The nickel electrode for an alkaline secondary battery according to claim 1, wherein a conductive substance is blended into the binder.
(3)導電性物質がニッケル粉末である特許請求の範囲
第2項記載のアルカリ二次電池用ニッケル電極。
(3) The nickel electrode for an alkaline secondary battery according to claim 2, wherein the conductive substance is nickel powder.
JP60039844A 1985-02-27 1985-02-27 Nickel electrode for alkaline secondary battery Expired - Lifetime JPH0679489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60039844A JPH0679489B2 (en) 1985-02-27 1985-02-27 Nickel electrode for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60039844A JPH0679489B2 (en) 1985-02-27 1985-02-27 Nickel electrode for alkaline secondary battery

Publications (2)

Publication Number Publication Date
JPS61198561A true JPS61198561A (en) 1986-09-02
JPH0679489B2 JPH0679489B2 (en) 1994-10-05

Family

ID=12564269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60039844A Expired - Lifetime JPH0679489B2 (en) 1985-02-27 1985-02-27 Nickel electrode for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH0679489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726607A1 (en) * 1995-02-09 1996-08-14 SANYO CHEMICAL INDUSTRIES, Ltd. Thickener for electrode paste and electrode paste composition for alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726607A1 (en) * 1995-02-09 1996-08-14 SANYO CHEMICAL INDUSTRIES, Ltd. Thickener for electrode paste and electrode paste composition for alkaline storage battery

Also Published As

Publication number Publication date
JPH0679489B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
KR920007381B1 (en) Making method of akaline battery
GB2109985A (en) Recharcheable electrical storage batteries
US4427751A (en) Alkaline battery
US3877986A (en) Rechargeable cell having improved cadmium negative electrode and method of producing same
CA2097637A1 (en) Hydrogen-occlusion electrode and a method of manufacturing thereof
JP2708452B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPS61198561A (en) Nickel electrode for alkaline secondary battery
JPS61163569A (en) Metal oxide-hydrogen secondary cell
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JP2623409B2 (en) Hydrogen storage electrode and method for producing the same
JP2004327064A (en) Electrode and battery using it
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2631324B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPS5935360A (en) Zinc electrode
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JPH0412455A (en) Electrode for alkaline storage battery
JPH0251874A (en) Alkaline zinc lead-acid battery
JPH05205736A (en) Manufacture of paste type plate for alkaline storage battery
JP2631191B2 (en) Method for producing active material slurry for hydrogen storage alloy electrode
JPH08227711A (en) Alkaline storage battery and manufacture of its positive electrode
JP3306058B2 (en) Hydrogen storage alloy electrode and nickel metal hydride secondary battery
JPS61198560A (en) Nickel electrode for alkaline secondary battery
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery