JPH0662329B2 - Method for manufacturing oxide superconductor - Google Patents

Method for manufacturing oxide superconductor

Info

Publication number
JPH0662329B2
JPH0662329B2 JP62144401A JP14440187A JPH0662329B2 JP H0662329 B2 JPH0662329 B2 JP H0662329B2 JP 62144401 A JP62144401 A JP 62144401A JP 14440187 A JP14440187 A JP 14440187A JP H0662329 B2 JPH0662329 B2 JP H0662329B2
Authority
JP
Japan
Prior art keywords
powder
oxide superconductor
mixed powder
oxide
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62144401A
Other languages
Japanese (ja)
Other versions
JPS63307158A (en
Inventor
昭徳 尾原
俊二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62144401A priority Critical patent/JPH0662329B2/en
Priority to PCT/JP1988/000549 priority patent/WO1988009768A1/en
Priority to EP88905217A priority patent/EP0317643B1/en
Priority to DE88905217T priority patent/DE3880973T2/en
Priority to US07/315,788 priority patent/US5268353A/en
Publication of JPS63307158A publication Critical patent/JPS63307158A/en
Publication of JPH0662329B2 publication Critical patent/JPH0662329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/021Separation using Meissner effect, i.e. deflection of superconductive particles in a magnetic field
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/16Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、酸化物超電導体の製造方法の改良に関する
ものである。
TECHNICAL FIELD The present invention relates to an improvement in a method for producing an oxide superconductor.

〔従来の技術〕[Conventional technology]

第6図は、例えば、昭和62年4月6日にシンポジウム
「高温超電導材料の作製と応用」において発表された論
文「セラミツクス高温超電導材料の作製と評価」、東京
大学工学部工業化学科、岸尾光二、で示された従来の酸
化物超電導体の製造方法を示す説明図である。第1工程
はランタノイド金属、アルカリ土類金属の酸化物と銅の
酸化物などの素材の秤量(11)、第2工程は乳鉢中でよく
混合(12)し、第3工程では数百℃で予備焼成(13)、第4
工程で再び混合粉砕(14)の後、第5工程で必要な形に整
形(15)し、第6工程では900℃〜1100℃の温度で本焼成
(16)して合成する。
Figure 6 shows, for example, the paper “Preparation and Evaluation of Ceramics High-Tc Superconducting Materials” presented at the symposium “Preparation and Application of High-Tc Superconducting Materials” on April 6, 1987, Faculty of Engineering, University of Tokyo, Koji Kishio, FIG. 9 is an explanatory view showing a method for manufacturing the conventional oxide superconductor shown in FIG. The first step weighs materials such as lanthanoid metal, alkaline earth metal oxides and copper oxides (11), the second step mixes well (12) in a mortar, and the third step is at several hundreds of degrees Celsius. Pre-baking (13), 4th
After mixing and crushing (14) again in the process, shaping (15) into the required shape in the fifth process, and in the sixth process, main firing at a temperature of 900 ° C to 1100 ° C.
(16) and synthesize.

この方法は、粉体混合法と呼ばれるもので、この製造方
法によつて作られた酸化物超電導体の温度による抵抗値
の特性の一例を第5図の特性曲線Iで示す。
This method is called a powder mixing method, and an example of the characteristic of the resistance value depending on the temperature of the oxide superconductor manufactured by this manufacturing method is shown by a characteristic curve I in FIG.

第5図において、横軸は温度、縦軸は抵抗値を表わす。
また、E点は通常オンセツトと呼ばれ抵抗の変化が急激
に低下し始める温度、またF点はオフセツトと呼ばれ抵
抗が消滅する温度である。
In FIG. 5, the horizontal axis represents temperature and the vertical axis represents resistance value.
The point E is a temperature usually called an onset and the resistance change starts to rapidly decrease. The point F is a temperature called an offset and the resistance disappears.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の製造方法によつて作られた酸化物超電導体の温度
による抵抗値の変化は、特性曲線Iのように、オンセツ
トのE点からオフセツトのF点までに温度の間隔が広く
なり、オフセツトすなわち抵抗の消滅する温度が低くな
るので、冷却に必要な温度が低くなり、また超電導体と
しての特性が悪いという問題点があつた。
As shown in the characteristic curve I, the change in the resistance value of the oxide superconductor produced by the conventional manufacturing method causes a wide temperature interval from the point E of the onset to the point F of the offset. Since the temperature at which the resistance disappears becomes low, the temperature required for cooling becomes low, and the characteristics as a superconductor are poor.

この発明は上記のような問題点を解消するためになされ
たもので、オフセツト温度が高く、オンセツトからオフ
セツトまでの温度の間隔が狭い酸化物超電導体の製造方
法を得ることを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a method for producing an oxide superconductor having a high offset temperature and a narrow temperature interval from the onset to the offset.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る酸化物超電導体の製造方法は、複数種類
の原料を所定の割合で混合して焼成し、酸化物超電導粉
体を主成分とする混合粉体を得る工程、および上記混合
粉体に磁石を近付け、超電導体のマイナス−効果による
磁気反発力を利用して上記酸化物超電導粉体を分離する
工程を施すものである。
The method for producing an oxide superconductor according to the present invention comprises a step of mixing a plurality of types of raw materials at a predetermined ratio and firing the mixture to obtain a mixed powder containing an oxide superconducting powder as a main component, and the mixed powder. A step of bringing the magnet close to and separating the oxide superconducting powder by utilizing the magnetic repulsion force due to the minus effect of the superconductor.

〔作用〕[Action]

この発明における分離工程は、混合粉体のうち超電導性
を示さない成分を除去できるので、オンセツトとオフセ
ツトの温度差が小さく、オフセツト温度が高い良質の酸
化物超電導体が得られる。
In the separation step of the present invention, the component which does not exhibit superconductivity in the mixed powder can be removed, so that the temperature difference between the onset and the offset is small and a good oxide superconductor having a high offset temperature can be obtained.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明する。第1図
はこの発明の一実施例による酸化物超電導体の製造方法
を示す説明図で、第1工程から第4工程までは、第6図
の従来の製造方法と同一であるが、第5工程として粉体
の分離(17)を行なつた後、第7工程で整形(15)、第8工
程で本焼成(16)を行なう。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing a method of manufacturing an oxide superconductor according to an embodiment of the present invention. The steps 1 to 4 are the same as the conventional manufacturing method of FIG. After the powder is separated (17) as a step, shaping (15) is performed in the seventh step and main firing (16) is performed in the eighth step.

次に、粉体の分離の具体的方法について説明する。第2
図において、(1)は容器、(2)は酸化物超電導粉体、(3)
は超電導を示さない粉体、(10)は混合粉体、また第3図
において、(4)は磁石、(5)は磁石(4)の作る磁力線であ
る。
Next, a specific method for separating powder will be described. Second
In the figure, (1) is a container, (2) is an oxide superconducting powder, (3)
Is powder which does not show superconductivity, (10) is a mixed powder, and in FIG. 3, (4) is a magnet and (5) is a magnetic field line created by the magnet (4).

普通容器(1)の中の混合粉体(10)は、第2図に示すよう
に、超電導を示す粉体(2)と超電導を示さない粉体(3)が
混合しており、従来はこの状態のままで、次の製造工程
である整形(15)に進む。ところが、この発明では、例え
ば第3図のように容器(1)の底に磁石(4)を設置する。磁
石(4)から出る磁力線(5)は、容器(1)の周囲を図のよう
に通過する。この時、容器(1)を振動させたり、適当な
棒で内部をかきまぜると、混合粉体(10)が動き、超電導
粉体(2)は反磁性の作用すなわちマイスナー効果による
磁気反発力により磁力線を反射するため、磁石(4)から
遠ざかるように動く。つまり、超電導粉体(2)は容器(1)
の上部へ、また超電導を示さない粉体(3)は容器(1)の下
部へ集まる。このように分離させ、有効な粉体(2)のみ
を集めて次の整形工程へ進む。
As shown in FIG. 2, the mixed powder (10) in the ordinary container (1) is a mixture of powder (2) showing superconductivity and powder (3) not showing superconductivity. In this state, the process proceeds to the next manufacturing step, shaping (15). However, in the present invention, the magnet (4) is installed at the bottom of the container (1) as shown in FIG. 3, for example. The magnetic field lines (5) emitted from the magnet (4) pass around the container (1) as shown in the figure. At this time, if the container (1) is vibrated or the inside is agitated with an appropriate rod, the mixed powder (10) moves, and the superconducting powder (2) causes the magnetic lines of force due to the diamagnetic effect, that is, the magnetic repulsion due to the Meissner effect. To move away from the magnet (4). In other words, the superconducting powder (2) is placed in the container (1)
, And the powder (3) that does not exhibit superconductivity collects at the bottom of the container (1). In this way, only the effective powder (2) is collected and the next shaping process is performed.

以上の製造方法により作られた酸化物超電導体における
温度による抵抗値の特性は、第5図の特性曲線IIに示す
ように、オフセツトG点の温度が高く、オンセツトE点
からオフセツトG点までの温度の間隔が狭いものが得ら
れる。
As shown in the characteristic curve II of FIG. 5, the characteristic of the resistance value with temperature in the oxide superconductor manufactured by the above manufacturing method is that the temperature at the offset G point is high and the temperature from the onset E point to the offset G point is high. A narrow temperature interval can be obtained.

また、第4図では、中央に仕切板(7)を入れた分離容器
(6)の側面に磁石(4)を設置した例で、分離容器(6)の上
部から混合粉体(10)を落下させる。この時、前例と同様
に、超電導を示す粉体(2)は、磁石(4)から遠ざかり、分
離容器(6)の仕切板(7)の反対側に落下する。一方、超電
導を示さない粉体(3)は、そのまま落下するので、分離
できる。
Also, in FIG. 4, a separation container with a partition plate (7) in the center
In the example in which the magnet (4) is installed on the side surface of (6), the mixed powder (10) is dropped from the upper part of the separation container (6). At this time, as in the previous example, the powder (2) exhibiting superconductivity moves away from the magnet (4) and falls on the opposite side of the partition plate (7) of the separation container (6). On the other hand, the powder (3) that does not exhibit superconductivity falls as it is and can be separated.

なお、粉体の分離は、酸化物超電導粉体(2)が超電導を
発揮する温度にまで冷却して行なう。
The powder is separated by cooling to a temperature at which the oxide superconducting powder (2) exhibits superconductivity.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、複数種類の原料を所
定の割合で混合して焼成し、酸化物超電導粉体を主成分
とする混合粉体を得る工程、および上記混合粉体に磁石
を近付け、超電導体のマイスナー効果による磁気反発力
を利用して上記酸化物超電導粉体を分離する工程を施す
ので、オフセツト温度が高く、オンセツトからオフセツ
トまでの温度の間隔が狭い酸化物超電導体が得られる効
果がある。
As described above, according to the present invention, a step of obtaining a mixed powder containing oxide superconducting powder as a main component by mixing a plurality of kinds of raw materials at a predetermined ratio and firing the mixture, and a magnet for the mixed powder Since the oxide superconducting powder is separated by utilizing the magnetic repulsive force due to the Meissner effect of the superconductor, the oxide superconductor has a high offset temperature and a narrow temperature interval from the onset to the offset. There is an effect to be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による酸化物超電導体の製
造方法を示す説明図、第2図は容器に収納された混合粉
体の状態を模式的に示す断面図、第3図,第4図はそれ
ぞれ分離工程の具体的な一例を模式的に示す断面図、第
5図は従来およびこの発明の一実施例で得られた酸化物
超電導体の抵抗−温度特性を示す曲線図、第6図は従来
の酸化物超電導体の製造方法を示す説明図である。 図において、(1),(6)は容器、(2)は酸化物超電導粉体、
(3)は超電導を示さない粉体、(4)は磁石、(5)は磁力
線、(10)は混合粉体である。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is an explanatory view showing a method for manufacturing an oxide superconductor according to an embodiment of the present invention, and FIG. 2 is a sectional view schematically showing a state of mixed powder stored in a container, FIG. FIG. 4 is a cross-sectional view schematically showing a specific example of the separation step, and FIG. 5 is a curve diagram showing the resistance-temperature characteristics of the oxide superconductor obtained in the conventional example and the example of the present invention. FIG. 6 is an explanatory view showing a conventional method for manufacturing an oxide superconductor. In the figure, (1) and (6) are containers, (2) is oxide superconducting powder,
(3) is powder that does not exhibit superconductivity, (4) is a magnet, (5) is magnetic lines of force, and (10) is a mixed powder. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数種類の原料を所定の割合で混合して焼
成し、酸化物超電導粉体を主成分とする混合粉体を得る
工程、および上記混合粉体に磁石を近付け、超電導体の
マイスナー効果による磁気反発力を利用して上記酸化物
超電導粉体を分離する工程を施す酸化物超電導体の製造
方法。
1. A step of mixing a plurality of kinds of raw materials in a predetermined ratio and firing the mixture to obtain a mixed powder containing an oxide superconducting powder as a main component, and bringing a magnet close to the mixed powder to obtain a superconductor. A method for producing an oxide superconductor, which comprises performing a step of separating the oxide superconducting powder by utilizing magnetic repulsion due to the Meissner effect.
【請求項2】酸化物超電導体の分離は、混合粉体を収納
する容器の下部に磁石を設置し、上記混合粉体の振動ま
たは攪拌により酸化物超電導粉体を上部に浮き上らせる
ことにより行なう特許請求の範囲第1項記載の酸化物超
電導体の製造方法。
2. To separate the oxide superconductor, a magnet is installed in the lower part of a container for containing the mixed powder, and the oxide superconducting powder is floated to the upper part by vibrating or stirring the mixed powder. The method for producing an oxide superconductor according to claim 1, which is performed by.
【請求項3】酸化物超電導体の分離は、磁石から発生す
る磁界中に混合粉体を自由落下させ、酸化物超電導粉体
の落下方向を変化させることにより行なう特許請求の範
囲第1項記載の酸化物超電導体の製造方法。
3. The oxide superconductor is separated by freely dropping the mixed powder in a magnetic field generated from a magnet and changing the falling direction of the oxide superconductor powder. Method for producing oxide superconductor of.
JP62144401A 1987-06-09 1987-06-09 Method for manufacturing oxide superconductor Expired - Lifetime JPH0662329B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62144401A JPH0662329B2 (en) 1987-06-09 1987-06-09 Method for manufacturing oxide superconductor
PCT/JP1988/000549 WO1988009768A1 (en) 1987-06-09 1988-06-08 Method of producing oxide superconductor
EP88905217A EP0317643B1 (en) 1987-06-09 1988-06-08 Method of producing oxide superconductor
DE88905217T DE3880973T2 (en) 1987-06-09 1988-06-08 METHOD FOR PRODUCING OXIDE-BASED SUPER LADDERS.
US07/315,788 US5268353A (en) 1987-06-09 1988-06-08 Method for separating superconductor powder from nonsuperconductive powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62144401A JPH0662329B2 (en) 1987-06-09 1987-06-09 Method for manufacturing oxide superconductor

Publications (2)

Publication Number Publication Date
JPS63307158A JPS63307158A (en) 1988-12-14
JPH0662329B2 true JPH0662329B2 (en) 1994-08-17

Family

ID=15361308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62144401A Expired - Lifetime JPH0662329B2 (en) 1987-06-09 1987-06-09 Method for manufacturing oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0662329B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119352A (en) * 1987-10-30 1989-05-11 Seiko Epson Corp Method for separating superconductor
JP2871724B2 (en) * 1989-05-18 1999-03-17 日本電気株式会社 Optical disk media
EP2679310A4 (en) 2011-02-23 2016-05-18 Ube Industries Method and apparatus for separation of mixture

Also Published As

Publication number Publication date
JPS63307158A (en) 1988-12-14

Similar Documents

Publication Publication Date Title
Cava Oxide superconductors
JPH0662329B2 (en) Method for manufacturing oxide superconductor
EP0317643B1 (en) Method of producing oxide superconductor
JPH0312940B2 (en)
EP0300353A2 (en) Method of manufacturing superconductor
US5182253A (en) Purification apparatus for superconductor fine particles
JPH02307548A (en) Superconductor sorting apparatus
JPH0714494B2 (en) Method for manufacturing oxide superconductor
EP0564279B1 (en) Rare earth superconducting body and process for production thereof
JPH02233548A (en) Production of oxide superconductor
JP3073996B2 (en) Method for producing sintered body of Y1Ba2Cu3O7-x-based oxide superconductor and Y1Ba2Cu3O7-x-based oxide superconductor
Cava et al. Old and new oxide superconductors
Higgins et al. Oxygenation kinetics and superconductivity of partly substituted YBa2Cu3Ox
JPS63278568A (en) Method for selecting superconductive substance
JP3217660B2 (en) Manufacturing method of oxide superconductor
JPH0812497A (en) Superconducting material having high levitation and damping characteristics and its production
JPH01107857A (en) Separation of superconductive material
JPH01230402A (en) Oxide superconductor
JP3623829B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JP2637617B2 (en) Manufacturing method of superconducting material
JPS6415158A (en) Separator for high-temperature superconductor
KR0174385B1 (en) Process for preparing the higg temperature superconductor having anisotropy
JPH0446883B2 (en)
JPS63310766A (en) Production of superconducting material
JP2507538B2 (en) Method for manufacturing oxide superconductor