JPH0714494B2 - Method for manufacturing oxide superconductor - Google Patents

Method for manufacturing oxide superconductor

Info

Publication number
JPH0714494B2
JPH0714494B2 JP62221713A JP22171387A JPH0714494B2 JP H0714494 B2 JPH0714494 B2 JP H0714494B2 JP 62221713 A JP62221713 A JP 62221713A JP 22171387 A JP22171387 A JP 22171387A JP H0714494 B2 JPH0714494 B2 JP H0714494B2
Authority
JP
Japan
Prior art keywords
powder
mixed powder
particle size
oxide superconductor
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62221713A
Other languages
Japanese (ja)
Other versions
JPS6463062A (en
Inventor
昭徳 尾原
俊二 山本
忠利 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62221713A priority Critical patent/JPH0714494B2/en
Priority to PCT/JP1988/000549 priority patent/WO1988009768A1/en
Priority to EP88905217A priority patent/EP0317643B1/en
Priority to DE88905217T priority patent/DE3880973T2/en
Priority to US07/315,788 priority patent/US5268353A/en
Publication of JPS6463062A publication Critical patent/JPS6463062A/en
Publication of JPH0714494B2 publication Critical patent/JPH0714494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/021Separation using Meissner effect, i.e. deflection of superconductive particles in a magnetic field
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/16Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、酸化物超電導体の製造方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to a method for producing an oxide superconductor.

〔従来の技術〕[Conventional technology]

第3図は例えば同一出願人による特願昭62-144401号明
細書「酸化物超電導体の製造方法」に示された従来の酸
化物超電導体の製造方法を示す説明図である。第1工程
はランタノイド金属、アルカリ土類金属の酸化物と銅の
酸化物などの素材の秤量(11)、第2工程は乳鉢中でよ
く混合(12)し、第3工程では数百℃で予備焼成(1
3)、第4工程で再び混合粉砕(14)の後、第5工程で
必要な酸化物超電導粉体を分離(15)し、第6工程で分
離された酸化物超電導粉体を必要な形に整形(16)し、
第7工程では900℃〜1100℃の温度で本焼成(17)して
合成する。
FIG. 3 is an explanatory view showing a conventional method for producing an oxide superconductor, which is disclosed in, for example, Japanese Patent Application No. 62-144401 “Method for producing oxide superconductor” by the same applicant. The first step weighs materials such as lanthanoid metal, alkaline earth metal oxides and copper oxides (11), the second step mixes well (12) in a mortar, and the third step is at several hundreds of degrees Celsius. Pre-baking (1
3) After mixing and pulverizing (14) again in the 4th step, the oxide superconducting powder required in the 5th step is separated (15), and the oxide superconducting powder separated in the 6th step is formed into the required shape. Shaped (16) into
In the seventh step, main calcination (17) is performed at a temperature of 900 ° C to 1100 ° C to synthesize.

この方法は、粉体混合法と呼ばれるものである。第4図
は上記分離工程(15)の具体的な一例を説明する断面構
成図であり、図において、(1)は混合粉体収納容器,
(2)は酸化物超電導粉体,(3)は超電導を示さない
不純物,(4)は磁石,(5)は磁力線,(6)は分離
容器,(7)は仕切板,(10)は混合粉体である。分離
容器(6)の上部から混合粉体(10)を落下させると、
超電導を示す粉体(2)は、マイスナー効果により磁石
(4)から遠ざかり、分離容器(6)の仕切板(7)の
反対側に落下する。一方、超電導を示さない粉体(3)
は、そのまま落下するので、分離でき、酸化物超電導粉
体(2)のみを集めて次の整形工程(16)へ進む。な
お、粉体の分離は、酸化物超電導粉体(2)が超電導を
発揮する温度にまで冷却して行なう。
This method is called a powder mixing method. FIG. 4 is a sectional configuration diagram for explaining a specific example of the separation step (15), in which (1) is a mixed powder storage container,
(2) is oxide superconducting powder, (3) is an impurity that does not show superconductivity, (4) is a magnet, (5) is a magnetic field line, (6) is a separation container, (7) is a partition plate, and (10) is It is a mixed powder. When the mixed powder (10) is dropped from the upper part of the separation container (6),
The powder (2) exhibiting superconductivity moves away from the magnet (4) due to the Meissner effect, and falls on the opposite side of the partition plate (7) of the separation container (6). On the other hand, powder that does not show superconductivity (3)
Can be separated because they fall as they are, and only the oxide superconducting powder (2) is collected and the process proceeds to the next shaping step (16). The powder is separated by cooling to a temperature at which the oxide superconducting powder (2) exhibits superconductivity.

上記のように、分離工程(15)を経て本焼成(17)して
得られた酸化物超電導体の通電特性を第2図の特性曲線
Iで示す。第2図において、横軸は通電電流、縦軸は、
発生電圧である。通電電流を零から徐々に上昇する。し
ばらくは超電導状態であるため、発生電圧は零である
が、A点を越えると電圧が発生する。通常A点は臨界電
流値と呼ばれるものである。
The characteristic curve I of FIG. 2 shows the current-carrying characteristics of the oxide superconductor obtained by the main firing (17) through the separation step (15) as described above. In FIG. 2, the horizontal axis represents the energizing current and the vertical axis represents
It is the generated voltage. The energizing current gradually increases from zero. Since it is in a superconducting state for a while, the generated voltage is zero, but when point A is exceeded, a voltage is generated. Point A is usually called the critical current value.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の製造方法によって得られた酸化物超電導体の通電
電流特性は、特性曲線Iのように、臨界電流値がA点の
如く低く、超電導体としての特性が悪いという問題点が
あった。
The current carrying characteristics of the oxide superconductor obtained by the conventional manufacturing method have a problem that the critical current value is as low as the point A as shown by the characteristic curve I and the characteristics as a superconductor are poor.

この発明は上記のような問題点を解消するためになされ
たもので、臨界電流値が高く、超電導体としての特性の
良いものを得ることを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a material having a high critical current value and good characteristics as a superconductor.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る酸化物超電導体の製造方法は、複数種類
の原料を所定の割合で混合して焼成し、粉砕することに
よって酸化物超電導粉体を主成分とする混合粉体を得る
工程、前記混合粉体をふるいにかけて粒径が100μm以
下の混合粉体を取り出す工程、前記粒径が100μm以下
の混合粉体を落下させながら、該混合粉体に、磁石によ
り水平方向から磁場をかけ、前記混合粉体に含まれた酸
化物超電導粉体を該磁石とは反対の水平方向に飛ばし、
前記混合粉体に含まれた超電導を示さない不純物をその
まま下方に落下させることによって前記酸化物超電導粉
体を分離する工程、および分離された酸化物超電導体粉
体をふるいにかけて粒径が1μm以上のものを取り出す
工程を有することを特徴とするものである。
The method for producing an oxide superconductor according to the present invention comprises a step of obtaining a mixed powder containing oxide superconducting powder as a main component by mixing and firing a plurality of kinds of raw materials at a predetermined ratio, and pulverizing the raw materials. A step of sieving the mixed powder with a particle size of 100 μm or less, dropping the mixed powder having a particle size of 100 μm or less, and applying a magnetic field from a horizontal direction to the mixed powder by a magnet; Flying the oxide superconducting powder contained in the mixed powder in the horizontal direction opposite to the magnet,
A step of separating the oxide superconducting powder by dropping the impurities not showing superconducting contained in the mixed powder as it is, and sieving the separated oxide superconducting powder so that the particle size is 1 μm or more. It is characterized by having a step of taking out the thing.

〔作用〕[Action]

この発明における製造方法は、分離工程により不純物を
徐去すると共に、ふるいにより粒径を1〜100μmに揃
えるのでち密で臨界電流値が高い酸化物超電導体が得ら
れる。
In the production method according to the present invention, the impurities are gradually removed in the separation step, and the particle size is made uniform to 1 to 100 μm by the sieve, so that a dense oxide superconductor having a high critical current value can be obtained.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明する。第1図
は、この発明の一実施例による酸化物超電導体の製造方
法における一部を説明する断面構成図であり、図におい
て、(8)は穴径100μmのふるいすなわちフィルタA,
(9)は穴径1μmのふるいすなわちフィルタB,(21)
はC室,(22)はD室,(23)はE室,(24)はF室で
ある。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional configuration diagram for explaining a part of a method for producing an oxide superconductor according to an embodiment of the present invention. In the figure, (8) shows a sieve having a hole diameter of 100 μm, that is, a filter A,
(9) is a sieve with a hole diameter of 1 μm, namely filter B, (21)
Is room C, (22) is room D, (23) is room E, and (24) is room F.

容器(1)の中の混合粉体(10)は超電導を示す成分の
粉体(2)と超電導を示さない成分の粉体すなわち不純
物(3)が混合しているが、これらの粉体の粒度は通常
0.1μm以下のものから1mm程度の範囲にまで広く分布し
ている。分離容器(6)では、まず穴径が100μmのフ
ィルタA(8)に、よって混合粉体(10)の粒度が100
μm以上のものと100μm以下のものとに分離する。す
なわち、100μm以上の粒度のものは、フィルタA
(8)を通過せず、右側のC室(21)に貯まり、100μ
m未満のものはフィルタA(8)を通過し落下する。落
下の過程で、磁石(4)の磁力線(5)の作用と、超電
導のマイスナー効果により、超電導を示す成分の粉体
(2)のみが図面に向かって右側に遠ざかり、フィルタ
B(9)の上に落下する。フィルタB(9)は穴径1μ
mであるため、1μm未満の粒度のものはE室(23)に
落下し、1μm以上のものは、D室(22)に貯まるの
で、これを集めて、次の成形および焼成工程へ進む。以
上のように粒度を揃えて作るため、ち密な組織の酸化物
超電導体が得られる。
The mixed powder (10) in the container (1) is a mixture of powder (2) of a component showing superconductivity and powder of a component not showing superconductivity, that is, impurities (3). Granularity is normal
Widely distributed from 0.1 μm or less to about 1 mm. In the separation container (6), first, the particle size of the mixed powder (10) is 100 because of the filter A (8) having a hole diameter of 100 μm.
Separate into those with a diameter of 100 μm or more and those with a diameter of 100 μm or less. That is, if the particle size is 100 μm or more, filter A
It does not pass through (8), accumulates in chamber C (21) on the right side, and becomes 100μ.
Those less than m pass through the filter A (8) and fall. In the process of dropping, due to the action of the magnetic field lines (5) of the magnet (4) and the Meissner effect of superconductivity, only the powder (2) of the component showing superconductivity moves away to the right toward the drawing, and the filter B (9) Fall on. Filter B (9) has a hole diameter of 1μ
Since it is m, particles having a particle size of less than 1 μm fall into the E chamber (23), and particles having a particle size of 1 μm or more are stored in the D chamber (22), which are collected and proceed to the next molding and firing step. Since the particles are made to have the same grain size as described above, an oxide superconductor having a dense structure can be obtained.

なお、超電導線の臨界電流密度向上および臨界磁界向上
の因子として、ピン止め力の大きさがあるが、このピン
止め力は酸化物超電導体の平均粒径により異なり、一般
的には、1μm以上が選ばれることが、文献(超電導マ
グネット研究センター報告,第3巻,P.34〜P.38,昭和61
年12月,九州大学工学部付属超電導マグネット研究セン
ター発行)に示されている。また、発明者らの実験によ
れば100μmがその上限値であり、これにより粒径が大
きくなると、オンセットからオフセットまでの温度間隔
が著しく広い劣悪な酸化物超電導体となる可能性の高い
ことが確認された。
The pinning force is a factor for improving the critical current density and the critical magnetic field of the superconducting wire. The pinning force varies depending on the average particle size of the oxide superconductor, and is generally 1 μm or more. Is selected in the literature (Superconducting Magnet Research Center Report, Volume 3, P.34 to P.38, Showa 61).
, Published by the Superconducting Magnet Research Center, Faculty of Engineering, Kyushu University). Further, according to the experiments conducted by the inventors, the upper limit value is 100 μm, and when the particle size is increased due to this, there is a high possibility that an inferior oxide superconductor having a significantly wide temperature interval from onset to offset is obtained. Was confirmed.

上記実施例により得られた酸化物超電導体の通電電流特
性を第2図の特性曲線IIで示す。この臨界電流値はB点
であり従来のA点に比べてかなり大きくなっていること
がわかる。
The current carrying characteristics of the oxide superconductors obtained in the above examples are shown by characteristic curve II in FIG. This critical current value is point B, which is considerably larger than the conventional point A.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、複数種類の原料を所
定の割合で混合して焼成し、酸化物超電導粉体を主成分
とする混合粉体を得る工程、および上記混合粉体に磁石
を近付け、超電導体のマイスナー効果による磁気反発力
を利用して上記酸化物超電導粉体を分離する工程、およ
びふるいにより、上記酸化物超電導粉体の粒径を1〜10
0μmに揃える工程を施すので、臨界電流値が高く特性
の良い酸化物超電導体が得られる。
As described above, according to the present invention, a step of obtaining a mixed powder containing oxide superconducting powder as a main component by mixing a plurality of kinds of raw materials at a predetermined ratio and firing the mixture, and a magnet for the mixed powder. , A step of separating the oxide superconducting powder by using the magnetic repulsion force due to the Meissner effect of the superconductor, and a sieving so that the particle size of the oxide superconducting powder is 1 to 10
Since the step of adjusting to 0 μm is performed, an oxide superconductor having a high critical current value and good characteristics can be obtained.

【図面の簡単な説明】 第1図はこの発明の一実施例による酸化物超電導体の製
造方法の一部を説明する断面構成図,第2図はこの発明
の一実施例および従来の方法により得られた酸化物超電
導体の通電電流特性を示す曲線図,第3図は従来の酸化
物超電導体の製造方法を示す工程図,第4図は第3図の
分離工程を説明する断面構成図である。 図において、(2)は酸化物超電導粉体,(3)は不純
物,(4)は磁石,(6)は分離容器,(8)はフィル
タA,(9)はフィルタB,(10)は混合粉体である。 なお、各図中、同一符号は同一、または相当部分を示す
ものとする。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional configuration view for explaining a part of a method for manufacturing an oxide superconductor according to an embodiment of the present invention, and FIG. 2 is a view showing an embodiment of the present invention and a conventional method. A curve diagram showing the energization current characteristics of the obtained oxide superconductor, FIG. 3 is a process diagram showing a conventional method for manufacturing an oxide superconductor, and FIG. 4 is a cross-sectional configuration diagram explaining the separation process of FIG. Is. In the figure, (2) is an oxide superconducting powder, (3) is an impurity, (4) is a magnet, (6) is a separation container, (8) is filter A, (9) is filter B, and (10) is It is a mixed powder. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/00 ZAA 9276−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 39/00 ZAA 9276-4M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数種類の原料を所定の割合で混合して焼
成し、粉砕することによって酸化物超電導粉体を主成分
とする混合粉体を得る工程、前記混合粉体をふるいにか
けて粒径が100μm以下の混合粉体を取り出す工程、前
記粒径が100μm以下の混合粉体を落下させながら、該
混合粉体に、磁石により水平方向から磁場をかけ、前記
混合粉体に含まれた酸化物超電導粉体を該磁石とは反対
の水平方向に飛ばし、前記混合粉体に含まれた超電導を
示さない不純物をそのまま下方に落下させることによっ
て前記酸化物超電導粉体を分離する工程、および分離さ
れた酸化物超電導粉体をふるいにかけて粒径が1μm以
上のものを取り出す工程を有することを特徴とする酸化
物超電導体の製造方法。
1. A step of obtaining a mixed powder containing oxide superconducting powder as a main component by mixing a plurality of kinds of raw materials at a predetermined ratio, firing and pulverizing the mixed powder, and sieving the mixed powder to obtain a particle size. Of a mixed powder having a particle size of 100 μm or less, a magnetic field is applied to the mixed powder from a horizontal direction by a magnet while dropping the mixed powder having a particle size of 100 μm or less, and the oxidation contained in the mixed powder is performed. Of separating the oxide superconducting powder by flying the superconducting powder in the horizontal direction opposite to the magnet, and dropping the impurities that do not show superconductivity contained in the mixed powder downward as they are, and separation. A method for producing an oxide superconductor, comprising a step of sieving the oxide superconducting powder thus prepared to remove particles having a particle size of 1 μm or more.
JP62221713A 1987-06-09 1987-09-03 Method for manufacturing oxide superconductor Expired - Fee Related JPH0714494B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62221713A JPH0714494B2 (en) 1987-09-03 1987-09-03 Method for manufacturing oxide superconductor
PCT/JP1988/000549 WO1988009768A1 (en) 1987-06-09 1988-06-08 Method of producing oxide superconductor
EP88905217A EP0317643B1 (en) 1987-06-09 1988-06-08 Method of producing oxide superconductor
DE88905217T DE3880973T2 (en) 1987-06-09 1988-06-08 METHOD FOR PRODUCING OXIDE-BASED SUPER LADDERS.
US07/315,788 US5268353A (en) 1987-06-09 1988-06-08 Method for separating superconductor powder from nonsuperconductive powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62221713A JPH0714494B2 (en) 1987-09-03 1987-09-03 Method for manufacturing oxide superconductor

Publications (2)

Publication Number Publication Date
JPS6463062A JPS6463062A (en) 1989-03-09
JPH0714494B2 true JPH0714494B2 (en) 1995-02-22

Family

ID=16771100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62221713A Expired - Fee Related JPH0714494B2 (en) 1987-06-09 1987-09-03 Method for manufacturing oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0714494B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711138Y2 (en) * 1987-11-11 1995-03-15 石川島播磨重工業株式会社 Manufacturing equipment for ceramics superconductor materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616864B2 (en) * 1987-06-01 1994-03-09 株式会社半導体エネルギー研究所 Selection method of oxide superconducting materials

Also Published As

Publication number Publication date
JPS6463062A (en) 1989-03-09

Similar Documents

Publication Publication Date Title
US5935912A (en) Superconducting wire and method of manufacturing the same
US5474976A (en) Production of oxide superconductors having large magnetic levitation force
EP0374263A1 (en) Oxide superconductive material and process for its production
CA1340229C (en) Bismuth oxide superconductors, and devices and systems comprising such aconductor
US3182391A (en) Process of preparing thermoelectric elements
JPH0714494B2 (en) Method for manufacturing oxide superconductor
WO1992017407A1 (en) Oxide superconductor and production thereof
US5268353A (en) Method for separating superconductor powder from nonsuperconductive powder
EP0300353B1 (en) Method of manufacturing superconductor
JP3767841B2 (en) Oxide superconductor with high critical current density
JPH0662329B2 (en) Method for manufacturing oxide superconductor
JP2967154B2 (en) Oxide superconductor containing Ag and having uniform crystal orientation and method for producing the same
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
US5026683A (en) Ceramic superconductor wire apparatus and methods
JPS63285155A (en) Oxide type superconductive material and production thereof
JP3102010B2 (en) Thallium oxide superconducting wire
JP2507937B2 (en) Manufacturing method of superconducting ceramic wire
JP3073996B2 (en) Method for producing sintered body of Y1Ba2Cu3O7-x-based oxide superconductor and Y1Ba2Cu3O7-x-based oxide superconductor
JP2678619B2 (en) Oxide superconducting wire and its manufacturing method
JP2555734B2 (en) Production method of superconducting material
JP2828396B2 (en) Oxide superconductor and manufacturing method thereof
JPH05279031A (en) Rare earth oxide superconductor and its production
JP3115695B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JPH0438457B2 (en)
JPH0784341B2 (en) Method for producing oxide-based superconducting compact

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees