JPH01119352A - Method for separating superconductor - Google Patents

Method for separating superconductor

Info

Publication number
JPH01119352A
JPH01119352A JP62275522A JP27552287A JPH01119352A JP H01119352 A JPH01119352 A JP H01119352A JP 62275522 A JP62275522 A JP 62275522A JP 27552287 A JP27552287 A JP 27552287A JP H01119352 A JPH01119352 A JP H01119352A
Authority
JP
Japan
Prior art keywords
temperature
critical temperature
magnetic flux
superconductors
predetermined temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62275522A
Other languages
Japanese (ja)
Inventor
Eiji Natori
栄治 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62275522A priority Critical patent/JPH01119352A/en
Publication of JPH01119352A publication Critical patent/JPH01119352A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/021Separation using Meissner effect, i.e. deflection of superconductive particles in a magnetic field

Abstract

PURPOSE:To obtain a superconductor in a state of stable single phase at a critical temperature, by introducing pulverized superconductors which have been set at a predetermined temperature into a magnetic field to separate them by the difference in their repulsive forces against the magnetic flux. CONSTITUTION:After adjusting the temperature of pulverized semiconductors at a temperature slightly lower than a desirable critical temperature, said superconductors are put into a magnetic field of a permanent magnet 1 of Nd-Fe-B, where separation of said superconductors is effected depending on their repulsive forces caused by diamagnetism against the magnetic flux. The permanent magnet 1 is magnetized in a direction of arrow 3. When powders set at a predetermined temperature are caused to fall toward the pole of the magnet, substances 2 having a critical temperature higher than the predetermined temperature are repulsed since they are entirely diamagnetized, so that their orbit of fall is biased. On the contrary, substances 2' having a critical temperature lower than the predetermined temperature fall, without being repulsed by the magnetic flux, to be separated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気シールド材、ジタセフソン素子、。[Detailed description of the invention] [Industrial application field] The present invention relates to a magnetic shielding material and a Jitasefson element.

超電導モーター、超電導マグネット等に用いる超電導材
料の単一臨界温度相の選別分離方法に関する。
This invention relates to a method for selecting and separating single critical temperature phases of superconducting materials used in superconducting motors, superconducting magnets, etc.

〔従来の技術〕[Conventional technology]

臨界温度の高い超電導材料にはHouston大学のC
,W、Chuらが発見したBa−Y−Cu−0系セラミ
ツクやEnergy  Conversion  De
vices、゛ Inc、のS。
For superconducting materials with high critical temperatures, University of Houston C.
, W., Chu et al. discovered Ba-Y-Cu-0 ceramics and Energy Conversion De
vices, Inc.

R,0vshinskyらが発見した[1a−Y−Cu
−F−0系セラミツクがあり、これらは粉末法或は共沈
法により原料を調合した後還元雰囲気中に於て加熱し反
応物を得て、次に反応物をプレス成形、次に焼結を行い
作成されていた。上記超TL4物質の特性及び作成方法
は、PhysicaI  Review  Lette
rs  Vol、58  No9 1987  P2O
3,JaPanese  Jounal  of  A
pplied  Physics  Vol、28 1
987  LaB5、Physical  Revie
w  Letters  Vol、58  No24 
1987  p2579に詳細が述べられている。
[1a-Y-Cu
There are -F-0 ceramics, which are prepared by preparing raw materials by powder method or coprecipitation method, heating in a reducing atmosphere to obtain a reactant, then press-molding the reactant, and then sintering. It was created by doing this. The characteristics and production method of the above-mentioned super TL4 material are described in Physica I Review Letter.
rs Vol, 58 No9 1987 P2O
3.Japanese Journal of A
pplied Physics Vol, 28 1
987 LaB5, Physical Revie
w Letters Vol, 58 No.24
1987 p2579 for details.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来の作成方法では、結晶中に臨界温度の
異なる相が混相していて単一相の安定した高温臨界温度
の超電導物質は得られていなかった。とくにBa−Y−
Cu−F−0系超′r!i導物質では常温に近い超電導
体の報告が成されているが常況臨界温度の相は全体の数
%以下であった。またこれらの異なる相の分離は未だに
成されていない。
However, with conventional production methods, a single-phase stable superconducting material with a high critical temperature cannot be obtained because phases with different critical temperatures are mixed in the crystal. Especially Ba-Y-
Cu-F-0 series super'r! Regarding i-conducting materials, there have been reports of superconductors with temperatures close to room temperature, but the phase at normal critical temperature accounts for less than a few percent of the total. Furthermore, separation of these different phases has not yet been achieved.

本発明はこの様な問題を解決するものであり、その目的
とするところは単一相に安定した臨界温度の超Wis体
物質を容易に得ることが可能な分離方法を提供するとこ
ろにある。
The present invention is intended to solve these problems, and its purpose is to provide a separation method that can easily obtain a single-phase, stable, super-Wis material at a critical temperature.

([ff点を解決するための手段〕 上記の問題を解決するため本発明の超ff1lj体分離
方法は磁場印加中に予め所定の温度に設定した粉末状の
超電導物質を入れ該粉末の磁束に対する反発の差によっ
て分離することを特徴とする。
([Means for solving the ff point] In order to solve the above problem, the super ff1lj body separation method of the present invention introduces a powdered superconducting material whose temperature is set in advance to a predetermined temperature while a magnetic field is applied, and the magnetic flux of the powder is It is characterized by separation based on the difference in repulsion.

〔実施例〕〔Example〕

以下実施例に従い本発明の詳細な説明する。 The present invention will be described in detail below with reference to Examples.

最初にSon Os 、Y* Os 、YFs 、s 
/2Ha O,11aCOs 、BaF* 、5rCO
s 、SrF*、CuOの粉末とトリクロロモノフルオ
ロエタンをボールミルに入れ微粉砕化すると共に混合分
散する0次にこの粉末を900℃、酸素雰囲気中に於て
8時間加熱して反応物を得る0次に該反応物を圧縮成形
した後930℃、酸素雰囲気中に於て焼結し超電導物質
を得る。得られた超電導物質の臨界温度を測定した。結
果はTco (オンセット)=240に1Tce (エ
ンドポイント)=93にであった。この様に合金や3元
系化合物超電導体と比べ、酸化物セラミック系超電導物
質は高い臨界温度を得易い反面TcoとTceに大きな
差がみられる。これは酸化物セラミック超電導体の結晶
中には異なる構造の相つまり異なる臨界温度の相が混和
状態にあり、安定した単一相になっていないためである
。次に焼結後の超電4体とトリクロロモノフルオロエタ
ン中に入れボールミルにより粉砕し粉末化する。粉末化
した超電導物質を得たい臨界温度より僅か低い程度(−
1〜2°)に調温した後、磁場印加中にいれ完全反磁性
(マイスナー効果)化の有無による磁束への反発の有無
により分離する。第1図と第2図はこの分離状態を示し
たもので育る。1はNd−Fe−B系永久磁石であり矢
印3の方向に着磁されている。該磁石の磁極部に所定の
温度に設定した粉末を落下させると設定温度より臨界温
度の高い物質2は完全反磁性になっているため第1図の
ように磁石の磁束に反発して落下軌道が変わる。これに
対して設定温度より臨界温度の低い物質2′及び超電導
物質でないもの(不純物)2′は第2図に示す用に磁束
に反発せずそのまま落下するため分離する。粉末の適正
粒度は試料条件により異なり作成都度適正化を行う必要
があるためここでは記さないが大き過ぎるとまだ混和状
態にあり単一層の分離が出来ず、小さ過ぎると磁束を通
すため反発力が少なくなり分離が困難になるため注意が
必要である。このようにして分離した超電導物質の臨界
温度を測定した。本実施例では粉末の温度設定によりど
のような臨界温度の物質でも容易に得ることが出来るが
最も高い臨界温度相と最も低い臨界温度相の値を第1表
に示した。
First Son Os , Y* Os , YFs , s
/2HaO, 11aCOs, BaF*, 5rCO
Powders of S, SrF*, and CuO and trichloromonofluoroethane are placed in a ball mill and pulverized, mixed and dispersed.Next, this powder is heated at 900°C in an oxygen atmosphere for 8 hours to obtain a reactant. Next, the reactant is compression molded and sintered at 930° C. in an oxygen atmosphere to obtain a superconducting material. The critical temperature of the superconducting material obtained was measured. The results were Tco (onset) = 240 and Tce (end point) = 93. As described above, compared to alloys and ternary compound superconductors, oxide ceramic superconducting materials can easily obtain a high critical temperature, but there is a large difference in Tco and Tce. This is because phases with different structures, that is, phases with different critical temperatures, are mixed in the crystal of the oxide ceramic superconductor, and a stable single phase is not formed. Next, the 4 superelectric bodies after sintering are placed in trichloromonofluoroethane and ground into powder using a ball mill. Slightly lower than the critical temperature at which we want to obtain powdered superconducting material (-
After adjusting the temperature to 1 to 2 degrees), a magnetic field is applied and separation is performed depending on whether there is repulsion to the magnetic flux due to the presence or absence of complete diamagnetism (Meissner effect). Figures 1 and 2 show this state of separation. Reference numeral 1 denotes a Nd-Fe-B permanent magnet, which is magnetized in the direction of arrow 3. When a powder set at a predetermined temperature is dropped onto the magnetic pole part of the magnet, the substance 2 whose critical temperature is higher than the set temperature is completely diamagnetic, so it repels the magnetic flux of the magnet and follows the falling trajectory as shown in Figure 1. changes. On the other hand, substances 2' whose critical temperature is lower than the set temperature and substances other than superconducting substances (impurities) 2' do not repel the magnetic flux and fall as they are, as shown in FIG. 2, so they are separated. The appropriate particle size of the powder will vary depending on the sample conditions and must be adjusted each time it is prepared, so it will not be described here, but if it is too large, it will still be in a mixed state and it will not be possible to separate a single layer, and if it is too small, the magnetic flux will pass through, creating a repulsive force. Care must be taken as the amount decreases and separation becomes difficult. The critical temperature of the superconducting material separated in this way was measured. In this example, substances with any critical temperature can be easily obtained by setting the temperature of the powder, and Table 1 shows the values of the highest critical temperature phase and the lowest critical temperature phase.

第1表 表より判る用に本実施例により得られる超?Its材料
はTcoとTceに差が少なく安定した相になっている
As can be seen from Table 1, the super? Its material has a stable phase with little difference between Tco and Tce.

また本実施例では印加磁場として永久磁石を用いている
が電磁石でも良くさらに落下時の軌道差により分離して
いるが垂直方向に磁束を発生させこの上に粉末を乗せた
ときの浮上の有無による分離でも何等差し支えない。
In addition, in this example, a permanent magnet is used as the applied magnetic field, but an electromagnet may also be used.Furthermore, although the magnetic field is separated due to the difference in trajectory when falling, magnetic flux is generated in the vertical direction, and whether or not there is levitation when the powder is placed on top of this generates magnetic flux. There is no problem with separation.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば単一相の臨界温度の安
定した超電導材料を容易に得ることが出来る。また異な
った臨界温度の超電導材料(但し単一相)も必要に応じ
て揃えることが、可能となリ、更に本発明では超111
4物質以外のものを除去することも出来るため高電流密
度化に向けて一つの大きな手段となる。
As described above, according to the present invention, a single-phase superconducting material with a stable critical temperature can be easily obtained. In addition, it is possible to prepare superconducting materials (single phase) with different critical temperatures as needed.
Since it can also remove substances other than the four substances, it is a major means for increasing current density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は本実施例における粉末の分離状態を示
すものであり、第1図は臨界温度の高い物質の場合、第
2図は臨界温度の低い物質又は不純物の場合を示す図で
ある。 1・・・永久磁石 2・・・臨界温度の高い物質 2′・・・臨界温度の低い物質又は不純物3・・・着磁
方向 以  上 出願人 セイコーエブンン株式会社 : ; 第2図
Figures 1 and 2 show the state of separation of powder in this example. Figure 1 shows the case of a substance with a high critical temperature, and Figure 2 shows the case of a substance with a low critical temperature or impurity. It is. 1...Permanent magnet 2...Substance with a high critical temperature 2'...Substance or impurity with a low critical temperature 3...More than the direction of magnetization Applicant Seiko Even Corporation: ; Figure 2

Claims (1)

【特許請求の範囲】[Claims]  磁場印加中に予め所定の温度に設定した粉末状の超電
導物質を入れ該粉末の磁束に対する反発の差により分離
することを特徴とする超電導体分離方法。
1. A method for separating superconductors, characterized in that a powdered superconducting material is placed at a predetermined temperature while a magnetic field is applied, and separation is performed based on the difference in repulsion of the powder against magnetic flux.
JP62275522A 1987-10-30 1987-10-30 Method for separating superconductor Pending JPH01119352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62275522A JPH01119352A (en) 1987-10-30 1987-10-30 Method for separating superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62275522A JPH01119352A (en) 1987-10-30 1987-10-30 Method for separating superconductor

Publications (1)

Publication Number Publication Date
JPH01119352A true JPH01119352A (en) 1989-05-11

Family

ID=17556636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62275522A Pending JPH01119352A (en) 1987-10-30 1987-10-30 Method for separating superconductor

Country Status (1)

Country Link
JP (1) JPH01119352A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302967A (en) * 1987-06-01 1988-12-09 Semiconductor Energy Lab Co Ltd Sorting of oxide superconducting material
JPS63307158A (en) * 1987-06-09 1988-12-14 Mitsubishi Electric Corp Production of oxide superconductor
JPS6430659A (en) * 1987-07-24 1989-02-01 Sumitomo Heavy Industries Screening method for superconductive material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302967A (en) * 1987-06-01 1988-12-09 Semiconductor Energy Lab Co Ltd Sorting of oxide superconducting material
JPS63307158A (en) * 1987-06-09 1988-12-14 Mitsubishi Electric Corp Production of oxide superconductor
JPS6430659A (en) * 1987-07-24 1989-02-01 Sumitomo Heavy Industries Screening method for superconductive material

Similar Documents

Publication Publication Date Title
Nariki et al. Influence of the size of Gd211 starting powder on the critical current density of Gd-Ba-Cu-O bulk superconductor
WO1990003524A1 (en) Bearing system employing a superconductor element
Hinai et al. Superconducting properties of Gd123 superconductor fabricated in air
JP3962107B2 (en) Oxide superconducting composite, method for producing the same, oxide superconducting magnet, and superconducting coil device
WO1992017407A1 (en) Oxide superconductor and production thereof
JPH01119352A (en) Method for separating superconductor
Weinberger et al. Characterization of composite high temperature superconductors for magnetic bearing applications
Babu et al. Seeded infiltration and growth of bulk YBCO nano-composites
EP0315977A2 (en) Superconductor material comprising a three-component metallic oxide
Koblischka et al. Magnetic Characterization of Bulk C-Added MgB 2
JP3283691B2 (en) High damping oxide superconducting material and method of manufacturing the same
Muralidhar et al. High-T/sub c/superconducting magnets that function at liquid oxygen temperature
JP2004161504A (en) Re-barium-copper-oxygen-based superconductive material precursor, re-barium-copper-oxygen-based superconductive material and method of manufacturing the same
GÜNER Effect of Gd211 Addition on the Vertical Levitation Force of Gd123 Superconductors
Ishikawa et al. Size effect and pinning potential for YBCO systems prepared by modified melt texture growth
JP2636258B2 (en) Manufacturing method of superconducting material
Ohshima et al. Effects of starting materials and preparation conditions on superconducting properties of Ba2YCu3O7-δ compounds
Abulaiti et al. The effect of pre-sintering and high-temperature infiltration on the properties of single-domain YBCO bulk superconductors by the Y+ 011 top-seeded infiltration growth process
JP2004203727A (en) Oxide superconductor having high critical current density
JP2000169145A (en) Oxide superconducting material and its production
JPH01123643A (en) Method for selecting superconductive powder
JP3282688B2 (en) Manufacturing method of oxide superconductor
Lee et al. Preparation of a melt-processed La123 bulk superconductor with finely dispersed Y211 particle
KR0174385B1 (en) Process for preparing the higg temperature superconductor having anisotropy
Plechacek Development of YBCO levitators for simple applications