JPH06345413A - Production of superfine carbon tube and superfine carbon powder - Google Patents

Production of superfine carbon tube and superfine carbon powder

Info

Publication number
JPH06345413A
JPH06345413A JP5137452A JP13745293A JPH06345413A JP H06345413 A JPH06345413 A JP H06345413A JP 5137452 A JP5137452 A JP 5137452A JP 13745293 A JP13745293 A JP 13745293A JP H06345413 A JPH06345413 A JP H06345413A
Authority
JP
Japan
Prior art keywords
carbon
ultrafine
plasma
tube
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5137452A
Other languages
Japanese (ja)
Other versions
JP3383685B2 (en
Inventor
Naoki Hatta
直樹 八田
Kunihiro Enomoto
邦弘 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP13745293A priority Critical patent/JP3383685B2/en
Publication of JPH06345413A publication Critical patent/JPH06345413A/en
Application granted granted Critical
Publication of JP3383685B2 publication Critical patent/JP3383685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a carbon tube having fineness of ca. 10Angstrom -several tens Angstrom outside diameter and several Angstrom -20Angstrom inside diameter, very long length reaching to 0.2mm and developed graphite layers. Further, to obtain fine carbon particles being spherical and having 10Angstrom -several hundreds Angstrom outside size and concentrically developed graphite layers till into their centers. CONSTITUTION:Plasma is generated from a plasma gun 2. A carbon containing raw material is fed in the plasma and subjected to be heated and split to deposit thermally decomposed cylindrical carbon solid 10 on a cathode 3 of the plasma gun. The solid is cooled and superfine carbon tube and superfine carbon powders are separated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は極細炭素チューブ及び炭
素超微粒子の製造方法に関する。詳しくは、きわめて長
尺の極細黒鉛質チューブと、中心まで黒鉛層が発達した
球状黒鉛質超微粒子を製造する方法に関する。
TECHNICAL FIELD The present invention relates to an ultrafine carbon tube and a method for producing ultrafine carbon particles. Specifically, it relates to a very long ultrafine graphite tube and a method for producing spherical graphite ultrafine particles having a graphite layer developed to the center.

【0002】[0002]

【従来の技術】極細炭素チューブとは、黒鉛シートを継
目なく丸めた形状の、外径約7Å〜数100Å、長さ数
μm〜数mmの1重ないし多重層構造をもつチューブを
指す。炭素超微粒子とは、黒鉛シートを球状もしくは多
角形状に継目なく丸めた形状の、外径約10Å〜数10
0Åの1重ないし多重層構造をもつ粒子を指す。
2. Description of the Related Art An ultrafine carbon tube refers to a tube formed by seamlessly rolling a graphite sheet and having an outer diameter of about 7Å to several 100Å and a length of several μm to several mm and a single or multi-layer structure. Ultrafine carbon particles are graphite sheets that are seamlessly rounded into a spherical or polygonal shape, and have an outer diameter of approximately 10Å to several tens.
It refers to particles with a single or multiple layer structure of 0Å.

【0003】前者はNature,Vol.354,5
6(1991)で初めて報告され、大量生成条件につい
てはNature,Vol.358,220(199
2)で紹介されている。また後者は、前者の製造に際し
一緒に生成され、上記の文献その他に性状が記載されて
いる。
The former is described in Nature, Vol. 354, 5
6 (1991), and the mass production conditions are described in Nature, Vol. 358, 220 (199
It is introduced in 2). The latter is produced together with the former, and its properties are described in the above-mentioned documents and others.

【0004】これらは、従来、He,Arその他のガス
中で2つの炭素電極間で直流電圧をかけてアーク放電さ
せ、陽極に堆積したコーキング(炭素)中から採取され
ていた。極細炭素チューブは、主として量子細線、極微
小電極、分子輸送用極細管及びマイクロマシン用駆動ワ
イヤ等、電子素子やバイオ関連及びマイクロマシン関連
における画期的な高機能材料としての応用が期待され
る。また、炭素超微粒子は高強度・高安定性と高電気伝
導性を有し、マイクロマシン用潤滑剤や電子材料等とし
て応用可能と考えられる。
Conventionally, these have been collected from the coking (carbon) deposited on the anode by applying a DC voltage between two carbon electrodes in He, Ar or other gas to cause arc discharge. The ultrafine carbon tube is expected to be applied as an epoch-making highly functional material mainly in quantum wires, ultrafine electrodes, ultrafine tubes for molecular transport, drive wires for micromachines, etc. in electronic devices, biotechnology and micromachines. Further, ultrafine carbon particles have high strength, high stability, and high electrical conductivity, and are considered to be applicable as a lubricant for micromachines, electronic materials, and the like.

【0005】[0005]

【発明が解決しようとする課題】従来の製法による極細
炭素チューブは、長さとしては高々サブμmから数μm
の短いものしか製造できなかった。このため、上述のよ
うな用途の中で適用範囲が限定され、またハンドリング
も極めて困難なため、実用化は早期には期待できない。
また、従来の炭素超微粒子の製造方法では、一般に中空
部分を有した多角形状のものしか得られず、例えばマイ
クロマシン用潤滑剤としては強度、潤滑性等の点で問題
がまだある。なお、Nature,Vol.359,7
07(1992)には、前者の炭素チューブに高エネル
ギーの電子線を照射することによって、真球度が高く、
中央まで同心球状に黒鉛層が発達した球状炭素超微粒子
が生成されることが報告されている。しかし原料の炭素
チューブや電子線照射装置は極めて高価であり、製造法
としては実用的でない。
The ultrafine carbon tube manufactured by the conventional method has a length of at most sub-μm to several μm.
Only short ones could be manufactured. For this reason, the range of application is limited among the above-mentioned applications, and handling is extremely difficult, so commercialization cannot be expected at an early stage.
In addition, in the conventional method for producing ultrafine carbon particles, generally only polygonal shapes having hollow portions can be obtained, and for example, lubricants for micromachines still have problems in strength and lubricity. In addition, Nature, Vol. 359,7
In 07 (1992), by irradiating the former carbon tube with a high-energy electron beam, the sphericity is high,
It has been reported that spherical carbon ultrafine particles in which a graphite layer is developed concentrically up to the center are produced. However, the raw material carbon tube and electron beam irradiation apparatus are extremely expensive and are not practical as a manufacturing method.

【0006】本発明の目的は、従来法で生成されるもの
の数100倍に達する極めて長尺の極細炭素チューブ
と、Nature,Vol.359,707(199
2)で記述されたものに匹敵する、中央まで同心球状に
黒鉛層が発達した球状炭素超微粒子とを安価で簡便に製
造する手法を提供することにある。
The object of the present invention is to provide a very long ultrafine carbon tube which is several hundred times as large as that produced by the conventional method, and Nature, Vol. 359, 707 (199
It is an object of the present invention to provide a method for inexpensively and easily producing spherical carbon ultrafine particles having a graphite layer developed concentrically up to the center, which is comparable to that described in 2).

【0007】[0007]

【課題を解決するための手段】本発明の極細炭素チュー
ブ及び炭素超微粒子の製造方法は、熱プラズマを発生さ
せ、この中に含炭素原料を供給してこれを加熱・分解さ
せ、この反応ガスを基体上に凝縮させて固化物を生成さ
せ、次いでこの固化物を冷却した後、この固化物中から
極細炭素チューブ及び炭素超微粒子を分離することを特
徴とするものである。
The method for producing ultrafine carbon tubes and ultrafine carbon particles according to the present invention comprises generating a thermal plasma, supplying a carbon-containing raw material therein, heating and decomposing it, and then reacting this reaction gas. Is condensed on a substrate to form a solidified product, which is then cooled, and then the ultrafine carbon tube and the ultrafine carbon particles are separated from the solidified product.

【0008】以下、本発明についてさらに詳細に説明す
る。
The present invention will be described in more detail below.

【0009】本発明において、熱プラズマを発生させる
方法としては、特定種のプラズマガスを加熱電離する方
法が好ましい。具体的には直流アーク放電プラズマジェ
ット式プラズマガン機構や、100kHz〜10GHz
程度の高周波誘導熱プラズマ発生機構が例示される。
In the present invention, the method of generating thermal plasma is preferably a method of heating and ionizing a specific type of plasma gas. Specifically, DC arc discharge plasma jet type plasma gun mechanism, 100 kHz to 10 GHz
A high frequency induction thermal plasma generation mechanism is exemplified.

【0010】なお、直流アーク放電プラズマジェット発
生機構と高周波誘導熱プラズマ発生機構を併用して熱プ
ラズマを発生させるようにしても良い。この場合、広い
容積にわたって原料供給速度の変化に対して安定な熱プ
ラズマを発生でき、極細炭素チューブ及び炭素超微粒子
を大量に合成できる。
The direct arc discharge plasma jet generating mechanism and the high frequency induction thermal plasma generating mechanism may be used together to generate the thermal plasma. In this case, stable thermal plasma can be generated over a wide volume with respect to changes in the raw material supply rate, and a large amount of ultrafine carbon tubes and ultrafine carbon particles can be synthesized.

【0011】このプラズマガスとしては、He,Ar,
He/O2 ,Ar/O2 もしくはHe/Ar/O2 が好
ましい。このガスを適切な手段を用いて加熱電離させ、
熱プラズマを発生させる。熱プラズマの最高到達温度は
2000K以上、好ましくは3500〜15000Kが
よい。
As the plasma gas, He, Ar,
He / O 2 , Ar / O 2 or He / Ar / O 2 are preferred. This gas is heated and ionized by using an appropriate means,
Generate thermal plasma. The maximum attainable temperature of the thermal plasma is 2000 K or higher, preferably 3500 to 15000 K.

【0012】この熱プラズマ中に供給される含炭素原料
としては、カーボンブラック、黒鉛、または炭素などの
炭素系物質のほか、含炭素化合物をも用いうる。含炭素
化合物としては、炭素と、炭素以外の酸素、イオウ、窒
素、水素のいずれか1種または複数種とからなる化合物
であることが好ましい。
As the carbon-containing raw material supplied to the thermal plasma, carbon-containing compounds can be used in addition to carbon-based substances such as carbon black, graphite, and carbon. The carbon-containing compound is preferably a compound composed of carbon and one or more of oxygen, sulfur, nitrogen and hydrogen other than carbon.

【0013】具体的には、該原料としては、次のような
化合物が好ましい。
Specifically, the following compounds are preferable as the raw material.

【0014】カーボンブラック、黒鉛等の炭素系物質、
ベンゼン、ピリジン、シクロペンタジエン、ピロール、
フラン、チオフェン等の単環の芳香族化合物および複素
芳香族化合物、もしくはそれらのメチル、ヒドロキシ、
またはメルカプト置換体、ナフタレン、キノリン、イン
デン、インドール、ベンゾフラン、ベンゾチオフェン、
アントラセン、アクリジン、フェナントレン、フェナン
トリジン、フルオレン、カルバゾール、ジベンゾフラ
ン、ジベンゾチオフェン、アセナフチレン、ピレン、フ
ルオランテン等の縮合多環芳香族化合物および縮合多環
複素芳香族化合物、もしくはそれらのメチル、ヒドロキ
シ、またはメルカプト置換体、ビフェニル、2,2’−
(または4,4’−)ビピリジン、o−(またはm−も
しくはp−)テルフェニル等の多環系環集合芳香族化合
物および多環系環集合複素芳香族化合物、もしくはそれ
らのメチル、ヒドロキシ、またはメルカプト置換体、o
−(またはp−)ベンゾキノン、1,4−ナフトキノ
ン、9,10−アントラキノン、9−フルオレノン等の
芳香族ケトンおよびキノン、もしくはそれらのメチル、
ヒドロキシ、またはメルカプト置換体、エチレン、1−
ブテン、1,3−ブタジエン、アセチレン、1−ブチ
ン、1,3−ブタジイン等の不飽和脂肪族炭化水素、も
しくはそれらのメチル、ヒドロキシ、またはメルカプト
置換体、メタン、エタン、プロパン、n−(またはイ
ソ)ブタン、n−(またはイソもしくはネオ)ペンタ
ン、n−ヘキサン、シクロヘキサン、n−ヘプタン、n
−オクタン等の飽和脂肪族炭化水素、もしくはそれらの
メチル、ヒドロキシ、またはメルカプト置換体。
Carbon-based substances such as carbon black and graphite,
Benzene, pyridine, cyclopentadiene, pyrrole,
Furan, thiophene and other monocyclic aromatic compounds and heteroaromatic compounds, or their methyl, hydroxy,
Or substituted mercapto, naphthalene, quinoline, indene, indole, benzofuran, benzothiophene,
Fused polycyclic aromatic compounds and fused polycyclic heteroaromatic compounds such as anthracene, acridine, phenanthrene, phenanthridine, fluorene, carbazole, dibenzofuran, dibenzothiophene, acenaphthylene, pyrene and fluoranthene, or their methyl, hydroxy or mercapto. Substitute, biphenyl, 2,2'-
(Or 4,4 ′-) bipyridine, o- (or m- or p-) terphenyl, and other polycyclic ring assembly aromatic compounds and polycyclic ring assembly heteroaromatic compounds, or their methyl, hydroxy, Or substituted mercapto, o
Aromatic ketones and quinones such as-(or p-) benzoquinone, 1,4-naphthoquinone, 9,10-anthraquinone, 9-fluorenone, or methyl thereof;
Hydroxy or mercapto substitution, ethylene, 1-
Unsaturated aliphatic hydrocarbons such as butene, 1,3-butadiene, acetylene, 1-butyne, 1,3-butadiyne, or their methyl, hydroxy or mercapto substituents, methane, ethane, propane, n- (or Iso) butane, n- (or iso or neo) pentane, n-hexane, cyclohexane, n-heptane, n
-Saturated aliphatic hydrocarbons such as octane or their methyl, hydroxy or mercapto substitutions.

【0015】また、無機化合物としては、CS2 ,CO
等を該原料として用いることができる。
Further, as the inorganic compound, CS 2 , CO
Etc. can be used as the raw material.

【0016】以上の含炭素化合物原料は、単独で、また
は2種以上を組合せて用いる。
The above carbon-containing compound raw materials may be used alone or in combination of two or more.

【0017】熱プラズマ中に供給された原料は、200
0K以上、好ましくは2500K以上の温度域におい
て、熱プラズマによる熱分解によって炭素クラスタCn
(1≦n≦100)が生成するのに十分な時間加熱され
る。その後、原料の熱分解によって生じた高温のガス
を、表面が2300K〜黒鉛気化温度に保たれた基体に
接触させる。この基体としては、黒鉛等、高温下で安定
なものが好ましい。また、熱分解によってプラズマガン
の一部あるいは別に設けられた水冷基板上に副生成され
る熱分解炭素固形物をこの基体とすることもできる。こ
の場合、発生している熱プラズマによって、その表面温
度が2300K〜黒鉛気化温度に保たれる部位に該熱分
解炭素固形物を生成させる必要がある。
The raw material supplied into the thermal plasma is 200
In the temperature range of 0 K or higher, preferably 2500 K or higher, carbon cluster C n is generated by thermal decomposition by thermal plasma.
It is heated for a time sufficient to produce (1 ≦ n ≦ 100). Then, the high temperature gas generated by the thermal decomposition of the raw material is brought into contact with the substrate whose surface is maintained at the graphite vaporization temperature of 2300K. As the substrate, a substrate that is stable at high temperatures such as graphite is preferable. Also, a pyrolytic carbon solid substance, which is by-produced on a water-cooled substrate provided in a part of the plasma gun or separately by pyrolysis, can be used as the substrate. In this case, it is necessary to generate the pyrolytic carbon solid matter at the site where the surface temperature is kept at 2300 K to the graphite vaporization temperature by the generated thermal plasma.

【0018】このようにして、熱プラズマ中で分解によ
って生じた炭素クラスタが該基体上に凝縮され、極細炭
素チューブ及び炭素超微粒子が生成する。これらは熱プ
ラズマの発生停止後に冷却され、副生成した熱分解炭素
固形物と共に捕集される。また、この他にスス状物質が
生成される。なお、プラズマ反応部の内圧は10〜76
0Torrに保つのが好ましい。
In this way, the carbon clusters produced by decomposition in the thermal plasma are condensed on the substrate, and ultrafine carbon tubes and ultrafine carbon particles are produced. These are cooled after the generation of the thermal plasma is stopped, and are collected together with the pyrolytic carbon solid matter generated as a by-product. In addition to this, soot-like substances are generated. The internal pressure of the plasma reaction part is 10 to 76.
It is preferable to keep it at 0 Torr.

【0019】以上において、特に中央まで同心球状に黒
鉛層が発達した球状炭素超微粒子を得るためには、超微
粒子の生成部位が長時間(約5分以上、好ましくは約1
0分以上)2300K〜黒鉛気化温度の範囲に保たれる
ようにする。
In order to obtain spherical carbon ultrafine particles in which a graphite layer is concentrically developed up to the center, the generation site of the ultrafine particles is long (about 5 minutes or more, preferably about 1).
(0 min or more) 2300K to be maintained in the graphite vaporization temperature range.

【0020】また、特に長尺の極細炭素チューブを得る
には、該チューブの生成部位において、長時間(約5分
以上、好ましくは約10分以上)2300K〜黒鉛気化
温度の範囲に一定に保たれ、さらにプラズマ熱分解によ
って生じる炭素クラスタが、成長中の該チューブ1本1
本にとぎれることなく一定の速度で気相から供給される
ようにする。
Further, in order to obtain a particularly long ultrafine carbon tube, the temperature is kept constant within a range from 2300 K to the graphite vaporization temperature for a long time (about 5 minutes or more, preferably about 10 minutes or more) at the site where the tube is formed. And the carbon clusters generated by plasma pyrolysis are
It should be supplied from the gas phase at a constant rate without interruption.

【0021】この炭素クラスタの供給条件は、具体的に
は、1度生成した極細炭素チューブを含む炭素固形物
が、スクール状に厚み方向に堆積されないようにするこ
とである。もし、スクール状に厚み方向に堆積すると、
初期に生成した下層の該チューブへの炭素クラスタ供給
がとぎれやすい。
The condition for supplying the carbon clusters is, specifically, to prevent carbon solids containing once-produced ultrafine carbon tubes from being deposited in a school shape in the thickness direction. If it accumulates in the thickness direction like a school,
The supply of carbon clusters to the lower tube that is initially formed is likely to be interrupted.

【0022】この供給条件は、例えば該チューブを生成
させる基体の表面に沿うように含炭素化合物原料が導入
された熱プラズマの流れ方向を定め、該基体の表面温度
が2300K〜黒鉛気化温度、好ましくは黒鉛気化温度
直下近傍を保つように該熱プラズマを接触されるように
すると実現できる。このようにすると、従来の黒鉛電極
アーク法で得られる該チューブの数10〜数100倍の
長さのものが生成される。
The supply conditions determine, for example, the flow direction of the thermal plasma in which the carbon-containing compound raw material is introduced so as to be along the surface of the substrate on which the tube is formed, and the surface temperature of the substrate is 2300 K to the graphite vaporization temperature, preferably Can be realized by bringing the thermal plasma into contact with the graphite so as to keep the temperature immediately below the vaporization temperature of graphite. By doing so, a tube having a length of several tens to several hundreds times that of the tube obtained by the conventional graphite electrode arc method is produced.

【0023】また、副生成物として熱分解炭素固形物が
熱プラズマに面して生成する時、その表面が長尺極細炭
素チューブ及び中央まで同心球状に黒鉛層が発達した球
状炭素微粒子の生成する条件に適する部位になりやす
い。
When a pyrolytic carbon solid substance is generated as a by-product facing a thermal plasma, spherical ultrafine carbon tubes are formed on the surface and spherical carbon fine particles having a graphite layer concentrically formed to the center are formed. It is easy to become a part suitable for the conditions.

【0024】以上のようにして生成された極細炭素チュ
ーブ及び炭素超微粒子は、捕集後、副生成した熱分解炭
素固形物から分離されて得られる。
The ultrafine carbon tube and the ultrafine carbon particles produced as described above are obtained after being collected and then separated from the pyrolytic carbon solid matter by-produced.

【0025】なお、有機溶媒または水溶性有機溶媒を少
量加えた水中に該チューブ及び該超微粒子を分散させた
後溶媒を乾燥させる;または、機械的に該固形物のプラ
ズマに接していた黒いビロード状部分をかき取る(この
部分に該チューブ及び該超微粒子が存在する)、等の方
法によってこの分離を行なうことができる。この分離の
後、必要があれば、有機溶媒に分散させた後、100μ
m程度の孔径のメンブレンフィルターを用い数回濾過す
ることによって、極細炭素チューブを濾別物質として、
また炭素超微粒子を分散濾液として分別できる。
The tube and the ultrafine particles are dispersed in water containing a small amount of an organic solvent or a water-soluble organic solvent, and then the solvent is dried; or a black velvet which is mechanically in contact with the plasma of the solid. This separation can be performed by a method such as scraping off the strip-shaped portion (the tube and the ultrafine particles are present in this portion). After this separation, if necessary, after dispersing in an organic solvent, 100 μm
By filtering the membrane several times with a membrane filter having a pore size of about m, the ultrafine carbon tube is used as a filter substance.
Also, ultrafine carbon particles can be separated as a dispersion filtrate.

【0026】以上の極細炭素チューブ及び炭素超微粒子
の合成方法において、原料供給系からプラズマ発生系、
プラズマ反応部、捕集部に至る経路内は、全て外気から
遮断されている。外気と遮断するには、第1図のよう
に、真空ポンプによって排気さらにガス置換されたチャ
ンバ内に、該経路の部材全体または主要部分を設置すれ
ばよい。
In the above-described method for synthesizing ultrafine carbon tubes and ultrafine carbon particles, the raw material supply system to the plasma generation system,
The inside of the path leading to the plasma reaction section and the collection section is completely shielded from the outside air. In order to shut off from the outside air, as shown in FIG. 1, the entire member or main part of the path may be installed in a chamber that has been evacuated by a vacuum pump and further replaced with gas.

【0027】[0027]

【作用】本発明の極細炭素チューブ及び炭素超微粒子の
製造方法によると、連続的に供給される含炭素化合物原
料から該チューブ及び該超微粒子を製造できる。特に、
応用価値の高い、極めて長尺で黒鉛化度の高い該チュー
ブ、及び中央まで同心球状に黒鉛層が発達した炭素超微
粒子を安価で簡便に製造できる。
According to the method for producing an ultrafine carbon tube and ultrafine carbon particles of the present invention, the tube and the ultrafine particles can be produced from a continuously supplied carbon-containing compound raw material. In particular,
It is possible to easily and inexpensively manufacture the extremely long tube having a high degree of graphitization, which has a high application value, and the ultrafine carbon particles having a concentric spherical graphite layer developed up to the center.

【0028】[0028]

【実施例】【Example】

(実施例1)第1図は、直流アーク放電プラズマジェッ
トによって熱プラズマを発生させる極細炭素チューブ及
び炭素超微粒子の製造方法を示す縦断面図である。
(Embodiment 1) FIG. 1 is a vertical cross-sectional view showing a method for producing ultrafine carbon tubes and ultrafine carbon particles in which thermal plasma is generated by a DC arc discharge plasma jet.

【0029】プラズマガス供給管1が接続されたプラズ
マガン2は、円筒状陽極(銅または黒鉛製)3と中央の
陰極(タングステンまたは黒鉛製)4からなる。プラズ
マガスが陰極4から陽極3方向に流れ、十分に混合され
る。陽極3と陰極4の間に直流電圧を印加しアーク放電
させて、陽極3の下流に熱プラズマのジェット5を生ぜ
しめる。両極は損耗しないよう水冷する。この下流に連
続的に含炭素化合物原料を原料供給管6から供給する。
プラズマガン2はチャンバ7内に配置されている。チャ
ンバ7内は排気ポンプ8により排気されている。
The plasma gun 2 to which the plasma gas supply pipe 1 is connected comprises a cylindrical anode (made of copper or graphite) 3 and a central cathode (made of tungsten or graphite) 4. The plasma gas flows from the cathode 4 toward the anode 3 and is sufficiently mixed. A direct current voltage is applied between the anode 3 and the cathode 4 to cause arc discharge, and a jet 5 of thermal plasma is generated downstream of the anode 3. Both poles are water cooled to prevent wear. A carbon-containing compound raw material is continuously supplied downstream from this through a raw material supply pipe 6.
The plasma gun 2 is arranged in the chamber 7. The inside of the chamber 7 is exhausted by an exhaust pump 8.

【0030】第1図の装置において、原料として液体ベ
ンゼンを7.4ミリリットル/30minの速度でHe
(流量0.2リットル/min)及びO2 (流量0.0
3リットル/min)を随伴ガスとして原料供給系から
供給した。このベンゼンは、ヒータ式予熱器で80℃に
予熱され、気化されて、そのまま保温された状態でプラ
ズマガン2の約7mm下流へ送られる。
In the apparatus shown in FIG. 1, liquid benzene was used as a raw material at a rate of 7.4 ml / 30 min for He.
(Flow rate 0.2 liter / min) and O 2 (flow rate 0.0
3 liter / min) was supplied as a accompanying gas from the raw material supply system. This benzene is preheated to 80 ° C. by a heater type preheater, vaporized, and sent to the plasma gun 2 about 7 mm downstream while being kept warm.

【0031】プラズマガスとしては、Arを1.0リッ
トル/min、Heを0.8リットル/minの割合で
供給した(以上、流量は全て常温常圧時換算)。
As the plasma gas, Ar was supplied at a rate of 1.0 liter / min and He was supplied at a rate of 0.8 liter / min (the above flow rates are all at room temperature and atmospheric pressure).

【0032】その他の主な条件は次の通りである。Other main conditions are as follows.

【0033】プラズマガン電力 4.4kW〜
5.4kW(水冷損失込) 反応部内圧 50Torr プラズマ発生時間 30min その結果、プラズマガン陽極3上において、プラズマジ
ェット5の周囲を囲むように円筒状の熱分解炭素固形物
10が析出した。冷却後、この炭素固形物10を取り出
したところ、その円筒状の内壁のプラズマジェット11
に触れていた部分に、極細炭素チューブ及び炭素超微粒
子が生成していることが認められた。
Plasma gun power 4.4 kW ~
5.4 kW (including water cooling loss) Reaction part internal pressure 50 Torr Plasma generation time 30 min As a result, a cylindrical pyrolytic carbon solid substance 10 was deposited on the plasma gun anode 3 so as to surround the periphery of the plasma jet 5. After cooling, when this carbon solid substance 10 was taken out, a plasma jet 11 on its cylindrical inner wall
It was confirmed that the ultrafine carbon tube and the ultrafine carbon particles were formed in the part that was touched.

【0034】図2に、30minの反応で得られた炭素
固形物10の内壁の走査型電子顕微鏡(SEM)写真を
示す。炭素超微粒子の凝集した上に、非常に細長い炭素
チューブが存在していることがわかる。SEM写真か
ら、この内の一本の長さを調べた所、少くとも0.2m
mあることが判明した。ただし、その片方の先端は、炭
素超微粒子の凝集した中に埋もれていたため、これより
も長い可能性もある。これは従来の黒鉛電極アーク法で
得られるものの数10〜数100倍以上の長さに相当す
る。
FIG. 2 shows a scanning electron microscope (SEM) photograph of the inner wall of the carbon solid material 10 obtained by the reaction for 30 minutes. It can be seen that a very long carbon tube exists on the aggregated ultrafine carbon particles. The length of one of them was examined from the SEM photograph, and it was at least 0.2 m.
It turned out that there are m. However, since the tip of one of them was buried in the aggregate of ultrafine carbon particles, it may be longer than this. This is several tens to several hundred times longer than that obtained by the conventional graphite electrode arc method.

【0035】図3に、この炭素固形物10から脱離させ
た極細炭素チューブ及び炭素超微粒子の透過型電子顕微
鏡(TEM)写真を示す。このチューブの外径は5.4
Å、内径は9Åであり、10層のよく発達した黒鉛層か
ら成っていることがわかる。図中、矢印で示したもの
は、中心部まで同心球状に黒鉛層が発達した、ほとんど
球形の炭素超微粒子である。他にも多数の丸味の強い炭
素超微粒子が見られる。
FIG. 3 shows a transmission electron microscope (TEM) photograph of the ultrafine carbon tube and the ultrafine carbon particles desorbed from the carbon solid material 10. The outer diameter of this tube is 5.4.
Å, the inner diameter is 9Å, and it can be seen that it consists of 10 well-developed graphite layers. In the figure, what is indicated by an arrow is an almost spherical carbon ultrafine particle in which a graphite layer is developed concentrically to the center. In addition, many ultra-fine carbon particles with a strong roundness can be seen.

【0036】図4に、この炭素固形物10から脱離され
た別の部位の炭素超微粒子のTEM写真を示す。これら
のほとんどは中心部まで黒鉛層の発達した球状の超微粒
子である。
FIG. 4 shows a TEM photograph of the ultrafine carbon particles at another site desorbed from the carbon solid material 10. Most of these are spherical ultrafine particles with a graphite layer developed up to the center.

【0037】なお、上述の長尺極細炭素チューブは、き
わめてしなやかかつ強じんであり、半径0.5μm程度
で曲げても全く折れることはなかった。
The long ultrafine carbon tube described above was extremely supple and strong, and did not break at all even when bent at a radius of about 0.5 μm.

【0038】(実施例2)実施例1と同一の条件(電力
は4.4kW)で、原料及び原料随伴ガスとして、ベン
ゼン/チオフェン=3/1混合液を9.2ミリリットル
/31minの流量でHe0.2リットル/minと混
合供給し(ベンゼン/チオフェンは80℃で予気化し
た)、プラズマジェットで31min熱分解した。結果
として、実施例1と同様の円筒状熱分解炭素固形物がプ
ラズマガン陽極に析出した。この固形物の内壁付着物を
SEM及びTEM観察したところ、実施例1と同様の極
細炭素チューブ及び炭素超微粒子が認められた。
(Example 2) Under the same conditions as in Example 1 (power is 4.4 kW), a benzene / thiophene = 3/1 mixture was used as a raw material and a raw material-associated gas at a flow rate of 9.2 ml / 31 min. He was mixed and supplied with 0.2 liter / min (benzene / thiophene was pre-vaporized at 80 ° C.), and pyrolyzed with a plasma jet for 31 min. As a result, the same cylindrical pyrolytic carbon solid matter as in Example 1 was deposited on the plasma gun anode. SEM and TEM observation of the deposit on the inner wall of this solid material revealed the same ultrafine carbon tube and ultrafine carbon particles as in Example 1.

【0039】(実施例3)実施例1と同一の条件(電力
は5.0kW)で、原料及び原料随伴ガスとして、ベン
ゼン/CS2 =9/1混合液を6.4ml/30min
の流量でHe0.2リットル/minと混合供給し(ベ
ンゼン/CS2 は80℃で予気化した)、プラズマジェ
ットで30min熱分解した。結果として、実施例1と
同様の円筒状熱分解炭素固形物がプラズマガン陽極に析
出した。この固形物の内壁付着物をSEM及びTEM観
察したところ、実施例1と同様の極細炭素チューブ及び
炭素超微粒子が認められた。
(Embodiment 3) Under the same conditions as in Embodiment 1 (electric power is 5.0 kW), a benzene / CS 2 = 9/1 mixture is used as a raw material and a raw material-associated gas at 6.4 ml / 30 min.
Was mixed and supplied with He at a flow rate of 0.2 liter / min (benzene / CS 2 was pre-evaporated at 80 ° C.) and pyrolyzed with a plasma jet for 30 min. As a result, the same cylindrical pyrolytic carbon solid matter as in Example 1 was deposited on the plasma gun anode. SEM and TEM observation of the deposit on the inner wall of this solid material revealed the same ultrafine carbon tube and ultrafine carbon particles as in Example 1.

【0040】(実施例4)実施例1と同一の条件、原料
系を用い(電力は4.4kW)、黒鉛円筒(外径8m
m,内径5mm,長さ7mm)をあらかじめプラズマガ
ン陽極のプラズマジェットの噴出する穴部(すなわち、
実施例1で熱分解炭素固形物が析出した位置)に固定し
て、5min反応させた。冷却後、この黒鉛円筒を取出
し、内壁付着物をSEM及びTEM観察したところ、実
施例1と同様の極細炭素チューブ及び炭素超微粒子が認
められた。
(Embodiment 4) The same conditions as in Embodiment 1, using the raw material system (power of 4.4 kW), graphite cylinder (outer diameter 8 m)
m, inner diameter 5 mm, length 7 mm) is a hole (ie,
It was fixed at the position where the solid of pyrolytic carbon was deposited in Example 1) and reacted for 5 minutes. After cooling, this graphite cylinder was taken out, and the deposits on the inner wall were observed by SEM and TEM. As a result, the same ultrafine carbon tubes and carbon ultrafine particles as in Example 1 were observed.

【0041】[0041]

【発明の効果】本発明によれば、含炭素化合物原料か
ら、極細炭素チューブ及び炭素超微粒子を製造できる。
特に、外径約10〜数10Å、内径数Å〜20Åという
細さで、0.2mmに達するような極めて長尺、かつ黒
鉛層が発達した炭素チューブが得られる。また、外径約
10Å〜数100Åで球状に近く、また同心球状に中央
まで黒鉛層が発達した炭素微粒子が得られる。この極細
炭素チューブは、量子細線、極微小電極、分子輸送用極
細管、及びマイクロマシン用駆動ワイヤ等、電子素子や
バイオ関連及びマイクロマシン関連における画期的な高
機能材料となる。また、この炭素超微粒子は、マイクロ
マシン用潤滑剤や高電気伝導性電子材料等、高付加価値
用途に応用できる。
According to the present invention, ultrafine carbon tubes and ultrafine carbon particles can be produced from a carbon-containing compound raw material.
In particular, it is possible to obtain a carbon tube having an outer diameter of about 10 to several tens of Å and an inner diameter of several Å to 20 Å, which is extremely long and reaches a length of 0.2 mm and in which a graphite layer is developed. Further, it is possible to obtain carbon fine particles having an outer diameter of approximately 10 Å to several 100 Å, which is close to a spherical shape, and in which a graphite layer is concentrically formed to the center. This ultrafine carbon tube will be an epoch-making highly functional material in electronic devices, biotechnology and micromachines, such as quantum wires, ultrafine electrodes, ultrafine tubes for transporting molecules, and drive wires for micromachines. Further, the ultrafine carbon particles can be applied to high value-added applications such as lubricants for micromachines and highly electrically conductive electronic materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例方法に用いられる極細炭素チュ
ーブ及び炭素超微粒子の製造装置の断面図である。
FIG. 1 is a cross-sectional view of an ultrafine carbon tube and an apparatus for producing ultrafine carbon particles used in an example method of the present invention.

【図2】本発明の実施例方法によって製造された極細炭
素チューブ及び炭素超微粒子の走査型電子顕微鏡写真で
ある。
FIG. 2 is a scanning electron micrograph of ultrafine carbon tubes and ultrafine carbon particles produced by the method of the present invention.

【図3】極細炭素チューブ及び炭素超微粒子の透過型電
子顕微鏡写真である。
FIG. 3 is a transmission electron micrograph of an ultrafine carbon tube and ultrafine carbon particles.

【図4】炭素超微粒子の透過型電子顕微鏡写真である。FIG. 4 is a transmission electron micrograph of ultrafine carbon particles.

【符号の説明】[Explanation of symbols]

2 プラズマガン 3 陽極 4 陰極 5 プラズマジェット 10 析出した熱分解炭素固形物 2 Plasma gun 3 Anode 4 Cathode 5 Plasma jet 10 Pyrolytic carbon solid matter deposited

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱プラズマを発生させ、この中に含炭素
原料を供給してこれを加熱・分解させ、この反応ガスを
基体上に凝縮させて固化物を生成させ、次いでこの固化
物を冷却した後、この固化物中から極細炭素チューブ及
び炭素超微粒子を分離することを特徴とする極細炭素チ
ューブ及び炭素超微粒子の製造方法。
1. A thermal plasma is generated, a carbon-containing raw material is supplied into this to heat and decompose it, and this reaction gas is condensed on a substrate to produce a solidified product, and then this solidified product is cooled. After that, the ultrafine carbon tube and the ultrafine carbon particles are separated from the solidified product.
JP13745293A 1993-06-08 1993-06-08 Method for producing ultrafine carbon tube and ultrafine carbon particles Expired - Fee Related JP3383685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13745293A JP3383685B2 (en) 1993-06-08 1993-06-08 Method for producing ultrafine carbon tube and ultrafine carbon particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13745293A JP3383685B2 (en) 1993-06-08 1993-06-08 Method for producing ultrafine carbon tube and ultrafine carbon particles

Publications (2)

Publication Number Publication Date
JPH06345413A true JPH06345413A (en) 1994-12-20
JP3383685B2 JP3383685B2 (en) 2003-03-04

Family

ID=15198944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13745293A Expired - Fee Related JP3383685B2 (en) 1993-06-08 1993-06-08 Method for producing ultrafine carbon tube and ultrafine carbon particles

Country Status (1)

Country Link
JP (1) JP3383685B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290698A (en) * 2005-04-14 2006-10-26 Yamaguchi Univ Method of manufacturing carbon nanofiber
KR100684933B1 (en) * 2005-05-09 2007-02-20 재단법인서울대학교산학협력재단 Thermal plasma reactor for production of electrically conductive carbon material and method therefor
WO2016157787A1 (en) * 2015-03-27 2016-10-06 日本ゼオン株式会社 Method for producing carbon nanostructure including carbon nanotube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290698A (en) * 2005-04-14 2006-10-26 Yamaguchi Univ Method of manufacturing carbon nanofiber
KR100684933B1 (en) * 2005-05-09 2007-02-20 재단법인서울대학교산학협력재단 Thermal plasma reactor for production of electrically conductive carbon material and method therefor
WO2016157787A1 (en) * 2015-03-27 2016-10-06 日本ゼオン株式会社 Method for producing carbon nanostructure including carbon nanotube
JPWO2016157787A1 (en) * 2015-03-27 2018-01-18 日本ゼオン株式会社 Method for producing carbon nanostructure including carbon nanotube

Also Published As

Publication number Publication date
JP3383685B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
US5424054A (en) Carbon fibers and method for their production
US20240010499A1 (en) Apparatus and method for plasma synthesis of graphitic products including graphene
AU2001237064B2 (en) Diamond/carbon nanotube structures for efficient electron field emission
US7824649B2 (en) Apparatus and method for synthesizing a single-wall carbon nanotube array
TW201938484A (en) Structured composite materials
Karmakar et al. A novel approach towards selective bulk synthesis of few-layer graphenes in an electric arc
AU2001237064A1 (en) Diamond/carbon nanotube structures for efficient electron field emission
JP2526782B2 (en) Carbon fiber and its manufacturing method
Qiu et al. Carbon nanomaterials from eleven caking coals
US11923176B2 (en) Temperature-controlled chemical processing reactor
JPH09188509A (en) Production of monolayer carbon manotube
JPH11116218A (en) Production of single layered nanotube
JP7176126B1 (en) Process and Apparatus for Synthesizing Multiwalled Carbon Nanotubes from High Polymer Waste
JP5716155B2 (en) Powder for producing nanocarbon and method for producing metal-encapsulated fullerene
US10920085B2 (en) Alteration of carbon fiber surface properties via growing of carbon nanotubes
JP3383685B2 (en) Method for producing ultrafine carbon tube and ultrafine carbon particles
JPH05124807A (en) Production of fluorenes
RU2489350C2 (en) Method of producing carbon nanomaterials and device for its implementation
JP4665113B2 (en) Fine particle production method and fine particle production apparatus
JPH0632606A (en) Production of fullerenes
JPH0624721A (en) Production of fullerenes
JPH0616405A (en) Production of fullerenes
CN117980263A (en) Carbon nanotube synthesizing apparatus
JPH1087310A (en) Production of fullerene and device therefor
RU2571150C2 (en) Method of production of carbon nanotubes

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees