JPH06341736A - Refrigerant condenser - Google Patents

Refrigerant condenser

Info

Publication number
JPH06341736A
JPH06341736A JP13028793A JP13028793A JPH06341736A JP H06341736 A JPH06341736 A JP H06341736A JP 13028793 A JP13028793 A JP 13028793A JP 13028793 A JP13028793 A JP 13028793A JP H06341736 A JPH06341736 A JP H06341736A
Authority
JP
Japan
Prior art keywords
refrigerant
tube
condenser
subcooling
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13028793A
Other languages
Japanese (ja)
Inventor
Hisao Nagashima
久夫 永島
Hideaki Sato
英明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP13028793A priority Critical patent/JPH06341736A/en
Publication of JPH06341736A publication Critical patent/JPH06341736A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To make cooling air strike directly on a subcooling part 884 of tubes and thereby to make a condenser taking subcooling display its capacity to the full by disposing receiver tubes at the upper and lower ends of a heat exchanger part on which the cooling air hardly strikes and also by disposing the subcooling part on the upstream side of the cooling air. CONSTITUTION:A heat exchanger part is constructed by providing corrugate fins 3 between a plurality of tubes 2, while inlet-side and outlet-side headers 5 and 6 are connected to the opposite ends of each tube 2 respectively. Each tube 2 is a flat tube having a number of refrigerant passages formed inside, while the tubes are divided into a plurality of tube groups constituting a main condenser part 2a and a subcooling part 2b of a refrigerant. Moreover, the main condenser part 2a and the subcooling part 2b are so disposed as to be sectioned on the upstream and downstream sides of cooling air. At the lower end of the heat exchanger part 4, a receiver tube 9 having a larger passage area than the one of a refrigerant piping is provided. By making the cooling air strike directly on the subcooling part 2b, according to this constitution, the performance thereof is improved and a condenser taking subcooling is made to display its capacity to the full.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス冷媒を冷却して液
化凝縮する冷媒凝縮器に関し、例えば、車両用空調装置
の冷凍サイクル内の冷媒凝縮器として用いることができ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant condenser for cooling a gas refrigerant to liquefy and condense it, and can be used, for example, as a refrigerant condenser in a refrigeration cycle of a vehicle air conditioner.

【0002】[0002]

【従来の技術】一般に、車両用空調装置の冷凍サイクル
は負荷に応じた適当な過冷却度(サブクール)をとるこ
とにより冷凍能力および、サイクル効率COPが向上す
ることが知られている。この観点に基づいて、特開平3
−96368号公報、および特開平4−251162号
公報において提案された凝縮器では、図14に示すよう
に主凝縮部51、気液分離部52および過冷却部53が
一体化して設けられ、気液分離部52の前流に位置する
主凝縮部51にて冷媒の凝縮が、気液分離部52の後流
に位置する過冷却部53にて冷媒の過冷却が行われてい
た。さらに、サイクルを循環する冷媒量を調節すること
により、過冷却部53で適度なサブクールが得られるよ
う工夫されていた。
2. Description of the Related Art Generally, it is known that a refrigerating cycle of a vehicle air conditioner improves refrigerating capacity and cycle efficiency COP by taking an appropriate degree of subcooling (subcool) according to a load. Based on this point,
In the condenser proposed in Japanese Patent Application Laid-Open No. 96368 and Japanese Patent Application Laid-Open No. 4-251162, a main condensing section 51, a gas-liquid separating section 52 and a supercooling section 53 are integrally provided as shown in FIG. The refrigerant is condensed in the main condenser section 51 located upstream of the liquid separation section 52, and the refrigerant is supercooled in the supercooling section 53 located downstream of the gas-liquid separation section 52. Further, it has been devised that a proper subcool can be obtained in the supercooling unit 53 by adjusting the amount of refrigerant circulating in the cycle.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の従来技
術では熱交換をしない、すなわち放熱フィンを備えてい
ない部分である気液分離部52が凝縮器の中央付近の前
面風の当たりやすい場所に位置し、また、過冷却部53
が凝縮器下端部の前面風の当たりにくい場所に位置して
おり、サブクールをとる凝縮器としての能力を充分に引
き出すことができなかった。例えば、サブクールをとる
ことによって冷凍サイクルの効率は20%向上するのに
対して、気液分離部52が中央付近に設置されているた
めに15%程度しか向上させることができなかった。
However, in the above-mentioned prior art, the gas-liquid separating portion 52, which does not perform heat exchange, that is, the portion not provided with the radiation fins, is located in the vicinity of the center of the condenser where the front wind easily hits. Located and the supercooling section 53
Was located at the lower end of the condenser in a place where wind could not hit the front, and it was not possible to bring out the capacity of the condenser as a subcool. For example, the efficiency of the refrigeration cycle is improved by 20% by taking the sub-cool, whereas it can be improved by only about 15% because the gas-liquid separation section 52 is installed near the center.

【0004】[0004]

【課題を解決するための手段】本発明は、上記問題点を
解決するために、冷媒通路を構成する複数のチューブ
と、このチューブに接合されたフィンとを備え、前記チ
ューブ内を流通する冷媒流を前記フィンを介して冷却風
と熱交換することにより凝縮する冷媒凝縮器であって、
前記チューブの端部に接合され、前記チューブを前記冷
却風の風下側の第1のチューブ群と風上側の第2のチュ
ーブ群とに分割する仕切り板を備えたヘッダと、前記第
1のチューブ群により構成される主凝縮部と、前記第2
のチューブ群により構成される過冷却部とにより構成さ
れる熱交換部と、前記熱交換部の上端もしくは下端のい
ずれか一方に配され、前記第1のチューブ群と前記第2
のチューブ群とを連通するレシーバチューブとを備えて
いるという技術手段を採用する。
In order to solve the above problems, the present invention comprises a plurality of tubes forming a refrigerant passage and fins joined to the tubes, and a refrigerant flowing in the tubes. A refrigerant condenser that condenses by exchanging heat with cooling air through the fins,
A header provided with a partition plate that is joined to an end of the tube and divides the tube into a first tube group on the leeward side of the cooling air and a second tube group on the upwind side of the cooling air; A main condensing part composed of a group, and the second
A heat exchanging portion constituted by a supercooling portion constituted by the tube group and the upper end or the lower end of the heat exchanging portion, and the first tube group and the second tube group.
The technical means of having a receiver tube that communicates with the tube group of the.

【0005】[0005]

【作用効果】上記構成によると、圧縮機より吐出された
ガス冷媒は、まず主凝縮部である第1のチューブ群に流
入する。このとき、ガス冷媒はヘッダの仕切り板により
過冷却部およびレシーバチューブには流入しない。主凝
縮部にて凝縮され気液2相となった冷媒は、レシーバチ
ューブに流入される。冷凍サイクル中の循環冷媒量は、
そのときの冷房負荷における流速の大きさによって適当
なサブクールをとるように、レシーバチューブ内にて調
節される。
According to the above structure, the gas refrigerant discharged from the compressor first flows into the first tube group which is the main condenser section. At this time, the gas refrigerant does not flow into the supercooling section and the receiver tube due to the partition plate of the header. The refrigerant that has been condensed in the main condensing section and has become a gas-liquid two-phase flows into the receiver tube. The amount of circulating refrigerant in the refrigeration cycle is
It is adjusted in the receiver tube so as to take an appropriate subcool depending on the magnitude of the flow velocity in the cooling load at that time.

【0006】次に、レシーバチューブを出た気液2相冷
媒は過冷却部である第2のチューブ群に流入し、ここで
過冷却された液冷媒となって膨張手段へ流入される。前
記した従来の技術では、レシーバチューブが凝縮器の中
央付近に位置しており、熱交換部の前面面積が減少し凝
縮能力を低下させていたが、上記構成の本発明の凝縮器
では、レシーバチューブをコンデンサファン前面風の当
たりにくい熱交換部の上端あるいは下端に配置し、また
過冷却部を風上側に配置して、前面風が直接過冷却部に
あたる構成としたため過冷却部の性能が向上し、サブク
ールをとる凝縮器としての能力を充分に発揮することが
できる。
Next, the gas-liquid two-phase refrigerant flowing out of the receiver tube flows into the second tube group, which is a supercooling section, and becomes a supercooled liquid refrigerant therein to flow into the expansion means. In the above-mentioned conventional technique, the receiver tube is located near the center of the condenser, and the front surface area of the heat exchange section is reduced to reduce the condensation capacity. The tube is placed on the upper or lower end of the heat exchange section where the wind does not hit the condenser fan front side, and the supercooling section is placed on the windward side, so that the front wind directly hits the subcooling section, improving the performance of the supercooling section. However, the ability as a condenser to take subcool can be fully exerted.

【0007】[0007]

【実施例】以下、本発明を車両用空調装置の冷凍サイク
ルに適用した一実施例を図面にしたがって説明する。図
1から図7に本発明の冷媒凝縮器1の概要を示す。な
お、矢線は冷媒の流れを示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a refrigerating cycle of a vehicle air conditioner will be described below with reference to the drawings. 1 to 7 show an outline of the refrigerant condenser 1 of the present invention. The arrows indicate the flow of the refrigerant.

【0008】図1のように大別して複数のチューブ2、
このチューブ2の間に配されたコルゲートフィン3によ
り熱交換部4が構成され、複数のチューブ2の一端に入
口側ヘッダ5、他端に出口側ヘッダ6が接続されてい
る。チューブ2は、偏平な管で内部に多数の冷媒通路が
形成されており、主に冷媒を凝縮する主凝縮部2aを構
成する第1チューブ群と、凝縮された冷媒を過冷却する
過冷却部2bを構成する第2チューブ群とに分けられて
いる。ここで、図示しない冷却ファンにより発生する冷
却風の風下側に主凝縮部2aは配され、風上側に過冷却
部2bが配されている。コルゲートフィン3は、各チュ
ーブ2の各間に挟まれ、チューブ2の間を流れる冷却風
の空気とチューブ2の内部を流れる冷媒との熱交換率を
向上させるためのもので、極薄の板材を波状に屈曲して
設けたものである。なお、コルゲートフィン3には伝熱
促進のために多数のルーバが形成されている。
As shown in FIG. 1, it is roughly divided into a plurality of tubes 2,
The heat exchange section 4 is constituted by the corrugated fins 3 arranged between the tubes 2, and the inlet side header 5 is connected to one end of the plurality of tubes 2 and the outlet side header 6 is connected to the other end. The tube 2 is a flat tube in which a large number of refrigerant passages are formed, and a first tube group forming a main condenser section 2a that mainly condenses the refrigerant and a supercooling section that supercools the condensed refrigerant. It is divided into a second tube group constituting 2b. Here, the main condenser section 2a is arranged on the leeward side of the cooling air generated by a cooling fan (not shown), and the supercooling section 2b is arranged on the upwind side. The corrugated fins 3 are sandwiched between the tubes 2 to improve the heat exchange rate between the air of the cooling air flowing between the tubes 2 and the refrigerant flowing inside the tubes 2, and are extremely thin plate materials. Is bent in a wavy shape. A large number of louvers are formed on the corrugated fins 3 to accelerate heat transfer.

【0009】熱交換部4の下端部には、前記冷媒配管の
通路面積よりも大きな通路面積を有する断面矩形状のレ
シーバチューブ9が配されている。入口側ヘッダ5およ
び出口側ヘッダ6は、複数のチューブ2およびレシーバ
チューブ9の両端に接続されており、入口側ヘッダ5の
冷媒入口には入口プラグ7が設けられ、出口側ヘッダ6
の冷媒出口には出口プラグ8が設けられている。
At the lower end of the heat exchange section 4, a receiver tube 9 having a rectangular cross section having a passage area larger than the passage area of the refrigerant pipe is arranged. The inlet side header 5 and the outlet side header 6 are connected to both ends of the plurality of tubes 2 and the receiver tube 9, and an inlet plug 7 is provided at the refrigerant inlet of the inlet side header 5 and the outlet side header 6 is provided.
An outlet plug 8 is provided at the refrigerant outlet of.

【0010】図2は、図1における入口側ヘッダ5のA
方向矢視図である。入口側ヘッダ5は、仕切り板を構成
する縦割りセパレータ10および横割りセパレータ11
によって、入口プラグ7と主凝縮部2aとに連通してい
る第1空間12と、レシーバチューブ9と過冷却部2b
とに連通している第2空間13とに区画されている。ま
た、図3は図1における出口側ヘッダ6のB方向矢視図
である。出口側ヘッダ6も同様に縦割りセパレータ14
および横割りセパレータ15によって、主凝縮部2aと
レシーバチューブ9とに連通している第3空間16と、
過冷却部2bと出口プラグ8とに連通している第4空間
17とに区画されている。つまり、チューブ2は縦割り
セパレータ10、14に沿って主凝縮部2aと過冷却部
2bに分割され、また横割りセパレータ11、15に沿
ってチューブ2とレシーバチューブ9は分割されてい
る。
FIG. 2 shows A of the inlet header 5 in FIG.
FIG. The inlet-side header 5 includes a vertically-separated separator 10 and a horizontally-separated separator 11 that form a partition plate.
The first space 12, which communicates with the inlet plug 7 and the main condenser 2a, the receiver tube 9, and the supercooler 2b.
And a second space 13 that communicates with. FIG. 3 is a view of the outlet header 6 in FIG. Similarly, the outlet side header 6 has a vertical separator 14 as well.
And a third space 16 that communicates with the main condenser 2a and the receiver tube 9 by the laterally dividing separator 15,
It is partitioned into a fourth space 17 that communicates with the subcooling portion 2b and the outlet plug 8. That is, the tube 2 is divided into the main condenser section 2a and the supercooling section 2b along the vertically divided separators 10 and 14, and the tube 2 and the receiver tube 9 are divided along the horizontally divided separators 11 and 15.

【0011】ここで、冷媒凝縮器1の製造方法の一例を
図8〜図12に基づいて説明する。図9、図10に示す
ように、チューブ2の両端に縦割りセパレータ10、1
4を固定するための溝20を加工しておく。同様に入口
側ヘッダ5および出口側ヘッダ6にも溝21を加工して
おく。また、図11、図12に示すように入口側ヘッダ
5および出口側ヘッダ6に、横割りセパレータ14を挿
入するための開口部22を加工する。そして、図8に示
すようにチューブ2およびレシーバチューブ9を入口、
出口両ヘッダ5、6間に勘合する。コルゲートフィン3
をチューブ2の層間に配する。次に、図9、図10に示
すようにチューブ2と両ヘッダ5、6の間に縦割りセパ
レータ10、14を上部から前記溝20、21を介して
勘合する。さらに図11、図12に示すように横割りセ
パレータ11、15を前記開口部22へスライドさせて
勘合し、両ヘッダ5、6の上下面にふたをする。最後に
両ヘッダ5、6にクラッド剤を塗っておき熱処理すれ
ば、以上全てが結合される。
Here, an example of a method for manufacturing the refrigerant condenser 1 will be described with reference to FIGS. As shown in FIGS. 9 and 10, the vertical split separators 10, 1 are provided at both ends of the tube 2.
The groove 20 for fixing 4 is processed. Similarly, the groove 21 is also processed in the inlet side header 5 and the outlet side header 6. Further, as shown in FIGS. 11 and 12, the inlet 22 and the outlet header 6 are formed with openings 22 for inserting the lateral separators 14. Then, as shown in FIG. 8, the tube 2 and the receiver tube 9 are introduced,
Fit between the outlet headers 5 and 6. Corrugated fin 3
Are placed between the layers of tube 2. Next, as shown in FIGS. 9 and 10, the vertical separators 10 and 14 are fitted between the tube 2 and the headers 5 and 6 from above through the grooves 20 and 21. Further, as shown in FIGS. 11 and 12, the horizontally divided separators 11 and 15 are slid into the openings 22 and fitted together, and the upper and lower surfaces of both headers 5 and 6 are covered. Finally, a clad agent is applied to both headers 5 and 6 and heat-treated to bond them.

【0012】次に、本実施例の作動について説明する。
図13は、本発明の冷媒凝縮器1を適用する冷凍サイク
ルの構成図である。冷凍サイクルは圧縮機30、冷媒凝
縮器1、膨張手段を構成する膨張弁31、蒸発器32を
備えている。圧縮機30は、図示しない自動車用エンジ
ンの駆動力をうけて冷媒を断熱圧縮し吐出する。本発明
の冷媒凝縮器1は圧縮機30にて断熱圧縮された高温高
圧のガス状冷媒を図示しない凝縮ファンからの冷却空気
との熱交換により凝縮し、さらに過冷却して液冷媒とす
る。膨張弁31はこの液冷媒を断熱膨張して低温低圧の
気液2相冷媒とする。このとき膨張弁31は蒸発器32
出口部に位置する感熱筒31aにより、蒸発器32出口
部のガス冷媒が常に一定のスーパーヒートを持つように
冷媒流量を制御している。蒸発器32は室内へ送られる
空気との熱交換によってこの気液2相冷媒を気化させ
る。
Next, the operation of this embodiment will be described.
FIG. 13 is a configuration diagram of a refrigeration cycle to which the refrigerant condenser 1 of the present invention is applied. The refrigeration cycle includes a compressor 30, a refrigerant condenser 1, an expansion valve 31 that constitutes expansion means, and an evaporator 32. The compressor 30 receives the driving force of an automobile engine (not shown) to adiabatically compress and discharge the refrigerant. The refrigerant condenser 1 of the present invention condenses the high-temperature high-pressure gaseous refrigerant adiabatically compressed by the compressor 30 by heat exchange with cooling air from a condensation fan (not shown), and further supercools it into a liquid refrigerant. The expansion valve 31 adiabatically expands this liquid refrigerant into a low-temperature low-pressure gas-liquid two-phase refrigerant. At this time, the expansion valve 31 is moved to the evaporator 32.
The heat sensitive cylinder 31a located at the outlet controls the refrigerant flow rate so that the gas refrigerant at the outlet of the evaporator 32 always has a constant superheat. The evaporator 32 vaporizes this gas-liquid two-phase refrigerant by heat exchange with the air sent to the room.

【0013】圧縮機30より吐出された高温高圧のガス
状冷媒は、冷媒凝縮器1の入口プラグ7を介して、入口
側ヘッダ5の第1空間12に流入する。第1空間12か
らガス状冷媒は、主凝縮部2aを構成する第1チューブ
群に流入し、コルゲートフィン3を介して図示しない冷
却ファンからの冷却空気40と熱交換することによって
凝縮され気液2相冷媒となる。この気液2相冷媒は出口
側ヘッダ6の第3空間16を経て流れる向きを変え、レ
シーバチューブ9に流入する。レシーバチューブ9は内
容積が大きいので、レシーバチューブ9を流れる気液2
相冷媒は、ほとんど凝縮されず、レシーバチューブ9に
流入するときとほぼ同じ乾き度の状態でレシーバチュー
ブ9を流出する。
The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 30 flows into the first space 12 of the inlet-side header 5 via the inlet plug 7 of the refrigerant condenser 1. The gaseous refrigerant from the first space 12 flows into the first tube group forming the main condenser section 2a and is condensed by exchanging heat with the cooling air 40 from a cooling fan (not shown) through the corrugated fins 3 to form a gas-liquid mixture. It becomes a two-phase refrigerant. The gas-liquid two-phase refrigerant changes its direction of flow through the third space 16 of the outlet-side header 6 and flows into the receiver tube 9. Since the receiver tube 9 has a large internal volume, the gas / liquid 2 flowing through the receiver tube 9
The phase refrigerant is hardly condensed and flows out of the receiver tube 9 in a state of almost the same dryness as when flowing into the receiver tube 9.

【0014】その後、入口側ヘッダ5の第2空間13に
おいて再び流れの向きを変え、過冷却部2bを構成する
第2チューブ群を通過して出口側ヘッダ6の第4空間1
7へ流入したあと、出口プラグ8より流出する。ここ
で、過冷却部2bを通過する冷媒が完全に液化され、さ
らに過冷却されて、過冷却を有した状態で冷媒凝縮器1
を流出する。以上の冷媒の流れの簡略図を図7に示して
おく。
After that, the flow direction is changed again in the second space 13 of the inlet-side header 5 and passes through the second tube group constituting the supercooling section 2b to pass through the fourth space 1 of the outlet-side header 6.
After flowing into 7, it flows out from the outlet plug 8. Here, the refrigerant passing through the subcooling unit 2b is completely liquefied and further supercooled, and the refrigerant condenser 1
Outflow. A simplified diagram of the flow of the above refrigerant is shown in FIG.

【0015】上記の作動において、レシーバチューブ9
に流入する気液2相の冷媒は、その冷媒流量が少ないと
きには、重力の作用によってレシーバチューブ9の入口
からすぐに上下方向に完全分離してレシーバチューブ9
内を流れることになる。この時、気相冷媒のほうが液相
冷媒より速く流れるため、レシーバチューブ9内には液
冷媒が溜まる。
In the above operation, the receiver tube 9
When the flow rate of the refrigerant is small, the gas-liquid two-phase refrigerant flowing into the receiver is completely separated vertically from the inlet of the receiver tube 9 by the action of gravity, and is completely separated in the vertical direction.
It will flow inside. At this time, since the gas-phase refrigerant flows faster than the liquid-phase refrigerant, the liquid refrigerant accumulates in the receiver tube 9.

【0016】一方、冷媒流量が多いときには、レシーバ
チューブ9の入口からすぐに気液分離することなく、し
ばらくは気相と液相とが混合した2相状態で流れる。こ
のため、気相冷媒と液相冷媒とが等速で流れることか
ら、レシーバチューブ9内には、あまり液冷媒が溜まら
ない。このレシーバチューブ9の作用により、冷凍サイ
クル内の循環冷媒量は、高流量のときに多く、低流量の
ときに少なくなる。つまり、冷房負荷の高いときにはレ
シーバチューブ9内に液冷媒が少ない分だけ、レシーバ
チューブ9より上流の主凝縮部および下流の過冷却部を
流れる冷媒量が増えて、過冷却度(サブクール)が増加
する。また、冷房負荷が低いときには、レシーバチュー
ブ9内に液冷媒が多い分だけ、逆にサブクールは減少す
る。
On the other hand, when the flow rate of the refrigerant is large, the gas and liquid are not immediately separated from the inlet of the receiver tube 9 and flow in a two-phase state in which the gas phase and the liquid phase are mixed for a while. Therefore, since the vapor-phase refrigerant and the liquid-phase refrigerant flow at the same speed, the liquid refrigerant does not collect much in the receiver tube 9. Due to the action of the receiver tube 9, the amount of circulating refrigerant in the refrigeration cycle is large at high flow rates and small at low flow rates. That is, when the cooling load is high, the amount of the refrigerant flowing in the main condensing portion upstream of the receiver tube 9 and the subcooling portion downstream of the receiver tube 9 increases due to the small amount of the liquid refrigerant in the receiver tube 9, and the degree of subcooling increases. To do. On the other hand, when the cooling load is low, the amount of liquid refrigerant in the receiver tube 9 is large and conversely the subcooling decreases.

【0017】このように、本実施例の冷媒凝縮器1で
は、冷房負荷の状態の変化に応じてレシーバチューブ9
より下流の過冷却部を流れる循環冷媒量が変化すること
により、負荷に対して最も冷房効率が高くなるサブク−
ルをとることが可能となる。また、熱交換を行わないレ
シーバチューブ9を凝縮器の最下端部に配置し、過冷却
部をもっとも冷却風が当たりやすい風上側に配置する構
造としているので、さらに冷房効率を向上させることが
できる。
As described above, in the refrigerant condenser 1 of this embodiment, the receiver tube 9 is changed according to the change of the cooling load condition.
By changing the amount of circulating refrigerant flowing in the subcooling section on the further downstream side, the sub-cooling with the highest cooling efficiency with respect to the load
It is possible to take Further, since the receiver tube 9 that does not perform heat exchange is arranged at the lowermost end of the condenser and the supercooling portion is arranged on the windward side where the cooling air is most likely to hit, the cooling efficiency can be further improved. .

【0018】なお、上記実施例ではレシーバチューブ9
を凝縮器の下端部に配置したが、要は冷却風が良く当た
る部分を占めなければ良いわけなので、凝縮器の上端部
に配置してもよい。また、横割りセパレータの数を変え
ることによって、主凝縮部あるいは過冷却部における冷
媒のターン回数を調節することができ、入口プラグと出
口プラグを一つのヘッダに設置してヘッダの数を一つに
することもできる。
In the above embodiment, the receiver tube 9
Is arranged at the lower end of the condenser, but the point is that it does not have to occupy the portion that the cooling air hits well, so it may be arranged at the upper end of the condenser. Also, by changing the number of horizontal separators, it is possible to adjust the number of turns of the refrigerant in the main condensing part or the supercooling part, and install the inlet plug and the outlet plug in one header to reduce the number of headers to one. You can also

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷媒凝縮器の構造を示す図である。FIG. 1 is a diagram showing a structure of a refrigerant condenser of the present invention.

【図2】図1のA方向矢視図である。FIG. 2 is a view on arrow A in FIG.

【図3】図1のB方向矢視図である。FIG. 3 is a view on arrow B in FIG.

【図4】本発明の冷媒凝縮器の上面図である。FIG. 4 is a top view of the refrigerant condenser of the present invention.

【図5】本発明の冷媒凝縮器の正面図である。FIG. 5 is a front view of the refrigerant condenser of the present invention.

【図6】図4のC部の詳細である。FIG. 6 is a detail of part C of FIG.

【図7】冷媒の流れを説明する簡略図である。FIG. 7 is a simplified diagram illustrating a flow of a refrigerant.

【図8】本発明の冷媒凝縮器の組付け方法を説明する図
である。
FIG. 8 is a diagram illustrating a method of assembling the refrigerant condenser of the present invention.

【図9】本発明の冷媒凝縮器の組付け方法を説明する図
である。
FIG. 9 is a diagram illustrating a method of assembling the refrigerant condenser of the present invention.

【図10】本発明の冷媒凝縮器の組付け方法を説明する
図である。
FIG. 10 is a diagram illustrating a method of assembling the refrigerant condenser of the present invention.

【図11】本発明の冷媒凝縮器の組付け方法を説明する
図である。
FIG. 11 is a diagram illustrating a method of assembling the refrigerant condenser of the present invention.

【図12】本発明の冷媒凝縮器の組付け方法を説明する
図である。
FIG. 12 is a diagram illustrating a method of assembling the refrigerant condenser of the present invention.

【図13】冷凍サイクルを示す図である。FIG. 13 is a diagram showing a refrigeration cycle.

【図14】従来の冷媒凝縮器の構造である。FIG. 14 is a structure of a conventional refrigerant condenser.

【符号の説明】[Explanation of symbols]

1 冷媒凝縮器 2 チューブ 3 コルゲートフィン 4 熱交換部 5 入口側ヘッダ 6 出口側ヘッダ 9 レシーバチューブ 10 縦割りセパレータ(入口側ヘッダ) 11 横割りセパレータ(出口側ヘッダ) 14 縦割りセパレータ(入口側ヘッダ) 15 横割りセパレータ(出口側ヘッダ) 1 Refrigerant Condenser 2 Tube 3 Corrugated Fin 4 Heat Exchange Section 5 Inlet Header 6 Outlet Header 9 Receiver Tube 10 Vertical Separator (Inlet Header) 11 Horizontal Separator (Outlet Header) 14 Vertical Separator (Inlet Header) ) 15 Horizontal separator (outlet header)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷媒通路を構成する上下方向に積層され
た複数のチューブと、このチューブに接合されたフィン
とを備え、前記チューブ内を流通する冷媒流を前記フィ
ンを介して冷却風と熱交換することにより凝縮する冷媒
凝縮器であって、 前記チューブの端部に接合され、前記チューブを前記冷
却風の風下側の第1のチューブ群と風上側の第2のチュ
ーブ群とに分割する仕切り板を備えたヘッダと、 前記第1のチューブ群により構成される主凝縮部と、前
記第2のチューブ群により構成される過冷却部とにより
構成される熱交換部と、 前記熱交換部の上端もしくは下端のいずれか一方に配さ
れ、前記第1のチューブ群の出口部と前記第2のチュー
ブ群の出口部とを連通するレシーバチューブとを備えて
いることを特徴とする冷媒凝縮器。
1. A plurality of vertically stacked tubes forming a refrigerant passage and fins joined to the tubes are provided, and a refrigerant flow flowing in the tubes is cooled by a cooling wind and heat via the fins. A refrigerant condenser that condenses by exchanging, which is joined to an end of the tube and divides the tube into a first tube group on the leeward side and a second tube group on the upwind side of the cooling air. A header provided with a partition plate, a main condensing section composed of the first tube group, a heat exchange section composed of a supercooling section composed of the second tube group, and the heat exchange section And a receiver tube disposed at either one of the upper end and the lower end of the first tube group and connecting the outlet section of the first tube group and the outlet section of the second tube group to each other. .
JP13028793A 1993-06-01 1993-06-01 Refrigerant condenser Withdrawn JPH06341736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13028793A JPH06341736A (en) 1993-06-01 1993-06-01 Refrigerant condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13028793A JPH06341736A (en) 1993-06-01 1993-06-01 Refrigerant condenser

Publications (1)

Publication Number Publication Date
JPH06341736A true JPH06341736A (en) 1994-12-13

Family

ID=15030713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13028793A Withdrawn JPH06341736A (en) 1993-06-01 1993-06-01 Refrigerant condenser

Country Status (1)

Country Link
JP (1) JPH06341736A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211279A (en) * 1998-01-22 1999-08-06 Showa Alum Corp Sobcool system condenser
US6851271B2 (en) * 2002-04-30 2005-02-08 Carrier Commercial Refrigeration Refrigerated merchandiser with foul-resistant condenser
JP2012067971A (en) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp Heat exchanger and apparatus
WO2012143136A1 (en) * 2011-04-21 2012-10-26 Valeo Systemes Thermiques Heat exchanger for a heating, ventilation and/or air-conditioning unit
JP2016164062A (en) * 2015-02-27 2016-09-08 株式会社デンソー Air conditioner for vehicle
JP2017155992A (en) * 2016-02-29 2017-09-07 三菱重工業株式会社 Heat exchanger and air conditioner
JPWO2021192192A1 (en) * 2020-03-27 2021-09-30

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211279A (en) * 1998-01-22 1999-08-06 Showa Alum Corp Sobcool system condenser
US6851271B2 (en) * 2002-04-30 2005-02-08 Carrier Commercial Refrigeration Refrigerated merchandiser with foul-resistant condenser
JP2012067971A (en) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp Heat exchanger and apparatus
WO2012143136A1 (en) * 2011-04-21 2012-10-26 Valeo Systemes Thermiques Heat exchanger for a heating, ventilation and/or air-conditioning unit
FR2974409A1 (en) * 2011-04-21 2012-10-26 Valeo Systemes Thermiques HEAT EXCHANGER FOR A HEATING, VENTILATION AND / OR AIR CONDITIONING INSTALLATION
JP2016164062A (en) * 2015-02-27 2016-09-08 株式会社デンソー Air conditioner for vehicle
JP2017155992A (en) * 2016-02-29 2017-09-07 三菱重工業株式会社 Heat exchanger and air conditioner
WO2017149989A1 (en) * 2016-02-29 2017-09-08 三菱重工業株式会社 Heat exchanger and air conditioner
JPWO2021192192A1 (en) * 2020-03-27 2021-09-30

Similar Documents

Publication Publication Date Title
JP3627382B2 (en) Refrigerant condensing device and refrigerant condenser
JP3301169B2 (en) Refrigeration equipment
KR102198311B1 (en) Air conditioning system
JPH11304293A (en) Refrigerant condenser
TW200921030A (en) Economized vapor compression circuit
JP4069804B2 (en) Condenser with integrated heat exchanger and receiver
EP1426714A1 (en) Refrigerating system and condenser for decompression tube system
JPH0510633A (en) Condenser
JPH07103612A (en) Liquid receiver-integrated refrigerant condenser
JPH07159000A (en) Refrigerant condenser
JPH06341736A (en) Refrigerant condenser
JP2001235255A (en) Condenser
JP2806379B2 (en) Refrigerant condenser
JPH06194000A (en) Air conditioner
JP3158509B2 (en) Refrigerant condenser
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
JP2001221535A (en) Refrigerant evaporator
JP2004232924A (en) Refrigeration cycle device
JPH0395368A (en) Condenser
US6684662B2 (en) Refrigeration system, and condenser for use in decompressing-tube system
JPH0650615A (en) Freezing cycle
JPH06129732A (en) Refrigerant condenser
JPH0332904Y2 (en)
CN221005577U (en) Condenser and refrigerant circulation system
JP2003170734A (en) Refrigeration cycle device and condenser

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801