JPH0510633A - Condenser - Google Patents

Condenser

Info

Publication number
JPH0510633A
JPH0510633A JP16446491A JP16446491A JPH0510633A JP H0510633 A JPH0510633 A JP H0510633A JP 16446491 A JP16446491 A JP 16446491A JP 16446491 A JP16446491 A JP 16446491A JP H0510633 A JPH0510633 A JP H0510633A
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
tube
liquid
refrigerant passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16446491A
Other languages
Japanese (ja)
Inventor
Hisao Nagashima
久夫 永島
Hideaki Sato
英明 佐藤
Shin Honda
伸 本田
Toshio Ohara
敏夫 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP16446491A priority Critical patent/JPH0510633A/en
Publication of JPH0510633A publication Critical patent/JPH0510633A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0443Condensers with an integrated receiver the receiver being positioned horizontally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To produce a condenser which is capable of forming a stabilized refrigeration cycle with improvement in refrigerating capacity and coefficient of performance by supercooling refrigerant in the condenser. CONSTITUTION:Refrigerant flowing through refrigerant tubes 10a, 10c undergoes condensation through release of heat through radiating fins 12a, 12c. Between the refrigerant tubes 10a placed upstream and the refrigerant tubes 10c placed downstream there is provided a receiver tube 26 which forms a passageway with a larger area than the passageway in the refrigerant tubes 10a, 10c. The passageway for refrigerant inside the receiver tube 26 is divided into two channels one channel 31 above the other channel 33 with a plate 32 used as a partition. Through the plate 32 holes 40 are opened by which the upper and lower channels 31, 33 communicate. By virtue of the condenser the receiver tube 26 in this condenser serves to separate the refrigerant into two phases of gas and liquid in the manner of a receiver and, moreover, has the function of a subcooler for supercooling liquid refrigerant at a subsidiary condensation part 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カーエアコン等に用い
られる凝縮器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condenser used for car air conditioners and the like.

【0002】[0002]

【従来の技術】カーエアコン用の凝縮器として、例えば
実開平2−38055号公報に示されるように、凝縮器
と受液器とを一体化した凝縮器が知られている。このも
のは、凝縮器の冷媒出口での過冷却度が常に零に制御さ
れている。
2. Description of the Related Art As a condenser for a car air conditioner, there is known a condenser in which a condenser and a liquid receiver are integrated, as disclosed in Japanese Utility Model Laid-Open No. 38055/1990. In this case, the degree of supercooling at the refrigerant outlet of the condenser is always controlled to zero.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の凝縮器によると、エンジンルーム内からの熱
等により凝縮器の冷媒出口に接続される配管途中で液冷
媒が加熱され、液冷媒中に気泡が発生し、この気泡が膨
張弁に入ると冷凍サイクルが不安定になり、十分な冷凍
能力が得られないだけでなく騒音をも発生するという問
題がある。
However, according to such a conventional condenser, the liquid refrigerant is heated in the middle of the pipe connected to the refrigerant outlet of the condenser due to heat from the inside of the engine room and the like. When air bubbles are generated in the expansion valve and the air bubbles enter the expansion valve, the refrigeration cycle becomes unstable, which causes a problem that not only a sufficient refrigeration capacity is not obtained but also noise is generated.

【0004】本発明は、このような問題点を解決するた
めになされたもので、凝縮器中で冷媒を過冷却すること
で冷凍能力および成績係数を向上し、安定した冷凍サイ
クルを形成可能な凝縮器を提供することを目的とする。
The present invention has been made in order to solve such a problem, and it is possible to improve the refrigerating capacity and the coefficient of performance by supercooling the refrigerant in the condenser and to form a stable refrigerating cycle. The purpose is to provide a condenser.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
の本発明の第1発明による凝縮器は、冷媒通路を構成す
る冷媒通路管と、この冷媒通路管に接合されたフィンと
を備え、前記冷媒通路管内を流通する冷媒流を前記フィ
ンを介して放熱させることにより凝縮する凝縮器であっ
て、前記冷媒通路の途中に、前記冷媒通路の通路面積よ
り大きい通路面積を有するとともに、この冷媒通路を上
下二段の室に仕切りかつ上側の室と下側の室を連通する
穴をもつ仕切板を設けたレシーバチューブと、前記レシ
ーバチューブ内で前記下側の室に分離された冷媒流をさ
らに過冷却するように、冷媒通路を構成する冷媒通路管
と、この冷媒通路管に接合されたフィンとからなる補コ
ンデンサ部とを備えたことを特徴とする。
A condenser according to a first aspect of the present invention for achieving the above object comprises a refrigerant passage pipe constituting a refrigerant passage, and a fin joined to the refrigerant passage pipe. A condenser that condenses by radiating heat through a flow of a refrigerant flowing through the refrigerant passage tube, the refrigerant passage having a passage area larger than the passage area of the refrigerant passage in the middle of the refrigerant passage, and the refrigerant. A receiver tube provided with a partition plate that divides the passage into upper and lower chambers and has a hole that communicates the upper chamber and the lower chamber, and the refrigerant flow separated into the lower chamber in the receiver tube. Further, it is characterized in that it is provided with a refrigerant passage pipe forming a refrigerant passage and an auxiliary condenser portion including fins joined to the refrigerant passage pipe so as to be supercooled.

【0006】本発明の第1発明による凝縮器は、前記穴
が仕切板の中央部より冷媒流の下流側に形成されること
を特徴とする。
The condenser according to the first aspect of the present invention is characterized in that the hole is formed downstream of the center of the partition plate in the refrigerant flow.

【0007】[0007]

【作用】本発明の凝縮器によると、レシーバチューブで
冷媒を気液二相に分離するレシーバ機能をもつだけでな
く、補コンデンサ部で液冷媒を過冷却するサブクーラ機
能をもつため、冷凍能力ならびに成績係数ともに向上さ
せられる。
According to the condenser of the present invention, not only has the receiver function of separating the refrigerant into gas-liquid two phases by the receiver tube, but also has the subcooler function of subcooling the liquid refrigerant in the auxiliary condenser section. Both the coefficient of performance can be improved.

【0008】[0008]

【実施例】以下、本発明の実施例を図面にもとづいて説
明する。冷凍サイクルを構成する冷媒回路は、図2に示
すように、圧縮機1と凝縮器2と膨張弁3とエバポレー
タ4からなる。このうち凝縮器2は、積層型コンデンサ
で、凝縮機能と受液器の機能と過冷却の機能とを有す
る。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 2, the refrigerant circuit that constitutes the refrigeration cycle includes a compressor 1, a condenser 2, an expansion valve 3 and an evaporator 4. Of these, the condenser 2 is a laminated condenser and has a condensing function, a liquid receiver function, and a supercooling function.

【0009】凝縮器2は、その構造が図1に示されるよ
うに、主コンデンサ部6と、気液分離部7と、補コンデ
ンサ部8とからなる。主コンデンサ部6は、ヘッダ型に
構成されており、冷媒チューブ10aと放熱用フィン1
2aを交互に積層したコア部13と、このコア部13の
左右両側に連結されるヘッダ部15、17とからなる。
冷媒チューブ10aは、例えば単管扁平チューブまたは
内部を複数個の通路に区画した多孔扁平チューブにより
形成されており、放熱用フィン12aはプレートフィン
あるいはコルゲートフィンにより形成されている。放熱
用フィン12aは冷媒チューブ10aの側面にろう付け
あるいはハンダ付け等により接合される。またヘッダ部
15には冷媒入口パイプ16が接続され、ヘッダ部15
の内部に仕切壁14を設ける。ヘッダ部17の内部には
仕切壁18を設ける。
As shown in FIG. 1, the condenser 2 comprises a main condenser portion 6, a gas-liquid separation portion 7, and an auxiliary condenser portion 8. The main condenser portion 6 is configured as a header type, and includes the refrigerant tube 10a and the heat radiation fin 1
The core portion 13 is formed by alternately laminating 2a, and the header portions 15 and 17 connected to both left and right sides of the core portion 13.
The refrigerant tube 10a is formed of, for example, a single tube flat tube or a porous flat tube whose inside is divided into a plurality of passages, and the heat radiation fins 12a are formed of plate fins or corrugated fins. The heat radiation fin 12a is joined to the side surface of the refrigerant tube 10a by brazing, soldering or the like. Further, the refrigerant inlet pipe 16 is connected to the header portion 15, and the header portion 15
A partition wall 14 is provided inside. A partition wall 18 is provided inside the header portion 17.

【0010】気液分離部7は、主コンデンサ部6の冷媒
チューブ10aよりも径の大きい矩形型チューブよりな
るレシーバチューブ26から構成され、主コンデンサ部
6からの冷媒を補コンデンサ部8へ送出する。レシーバ
チューブ26は、図3、図4および図5に示すように、
矩形状のチューブ30の内部を上下2段に仕切るプレー
ト32が長手方向に嵌合されており、このプレート32
によって上下に仕切られる上段の流路31の右端に上側
キャップ34が嵌合され、下段の流路33の左端に下側
キャップ36が嵌合されている。プレート32の下流部
には内径約5mmの4個の穴40が長手方向に等間隔に
幅方向中央部に形成されている。これらの穴40は図5
で中央部よりも右側に形成されている。これは中央部よ
りも右側に穴40を形成すると液冷媒をガス冷媒に優先
して上段の流路31から下段の流路33に通すことがで
きるからである。プレート32に形成する穴の個数、内
径、位置については前記述に限定されるものでない。
The gas-liquid separating section 7 is composed of a receiver tube 26 which is a rectangular tube having a diameter larger than that of the refrigerant tube 10a of the main condenser section 6, and sends the refrigerant from the main condenser section 6 to the auxiliary condenser section 8. . The receiver tube 26, as shown in FIGS. 3, 4 and 5,
A plate 32 for partitioning the inside of the rectangular tube 30 into upper and lower two stages is fitted in the longitudinal direction.
The upper cap 34 is fitted to the right end of the upper flow path 31 partitioned by the upper and lower parts, and the lower cap 36 is fitted to the left end of the lower flow path 33. In the downstream portion of the plate 32, four holes 40 having an inner diameter of about 5 mm are formed in the widthwise central portion at equal intervals in the longitudinal direction. These holes 40 are shown in FIG.
It is formed on the right side of the central part. This is because when the hole 40 is formed on the right side of the central portion, the liquid refrigerant can be passed through the upper channel 31 to the lower channel 33 in preference to the gas refrigerant. The number, the inner diameter, and the position of the holes formed in the plate 32 are not limited to those described above.

【0011】レシーバチューブ26の製造方法について
図6〜図8にもとづいて説明する。アルミニウム材から
なる図6に示す断面矩形状のチューブ30を押出成形に
より製作する。また図7に示すように、アルミニウム材
のプレート32の長さ方向の中央部以降に数個の穴40
を形成する。このプレート32をチューブ30の溝部3
0aに挿入する。次いでアルミニウム材からなるキャッ
プ34をチューブ30の片側の端面の一通路側に嵌合し
ろう付けする。反対側の端面の反対の通路側にアルミウ
ム材からなるキャップ36を嵌合しろう付けする。この
とき冷媒の流れる方向の後方に穴40が来るようにし、
また穴40側の端面でキャップ34が上段側に来るよう
にする。
A method of manufacturing the receiver tube 26 will be described with reference to FIGS. A tube 30 made of an aluminum material and having a rectangular cross section shown in FIG. 6 is manufactured by extrusion molding. Further, as shown in FIG. 7, several holes 40 are formed after the central portion of the aluminum plate 32 in the longitudinal direction.
To form. This plate 32 is used as the groove portion 3 of the tube 30.
Insert into 0a. Then, a cap 34 made of an aluminum material is fitted and brazed to one passage side of the end surface of the tube 30 on one side. A cap 36 made of an aluminum material is fitted and brazed to the passage side opposite to the opposite end face. At this time, the hole 40 should come to the rear of the direction in which the refrigerant flows,
Further, the cap 34 is arranged so as to come to the upper stage side at the end surface on the hole 40 side.

【0012】次にヘッダ部の構造について図9および図
10にもとづいて説明する。円筒状のヘッダ部15、1
7に冷媒チューブ10a、10cを挿入可能な穴52
と、レシーバチューブ26を挿入可能な穴54を形成
し、これらの穴52、54に冷媒チューブ10a、10
c並びにレシーバチューブ26を挿入し、これらヘッダ
部15、17、冷媒チューブ10a、10cおよびレシ
ーバチューブ26を一体にろう付け接合する。ヘッダ部
は扁平状の形状にすることもできる。
Next, the structure of the header portion will be described with reference to FIGS. 9 and 10. Cylindrical header part 15, 1
Hole 52 into which the refrigerant tubes 10a and 10c can be inserted
And holes 54 into which the receiver tubes 26 can be inserted are formed, and the refrigerant tubes 10a, 10
c and the receiver tube 26 are inserted, and the header portions 15 and 17, the refrigerant tubes 10a and 10c, and the receiver tube 26 are integrally brazed and joined. The header portion can also have a flat shape.

【0013】補コンデンサ部8は、主コンデンサ部6と
同様にヘッダ型に構成されており、冷媒チューブ10c
と放熱用フィン12cとを交互に積層したコア部13
と、左右のヘッダ部22、20とからなる。補コンデン
サ部8は、気液分離部7からの冷媒流が凝縮された液冷
媒をさらに過冷却する機能をもつ。次に、冷媒の凝縮さ
れる様子を図1にもとづいて詳述する。
The auxiliary condenser section 8 is of a header type like the main condenser section 6, and has a refrigerant tube 10c.
13 in which heat radiation fins 12c are alternately laminated
And left and right header parts 22 and 20. The auxiliary condenser section 8 has a function of further supercooling the liquid refrigerant in which the refrigerant flow from the gas-liquid separating section 7 is condensed. Next, how the refrigerant is condensed will be described in detail with reference to FIG.

【0014】主コンデンサ部6のヘッダ部15の内部に
は冷媒入口パイプ16からガス冷媒が供給される。供給
されたガス冷媒は、ヘッダ部15とヘッダ部17を結ぶ
冷媒チューブ10a内を流通し、この間に冷却されてヘ
ッダ部17に至る。ガス冷媒は、主コンデンサ部1の冷
媒チューブ10aを通過する間に放熱用フィン12aを
介して外気と熱交換して放熱し、凝縮されて凝縮液(液
冷媒)と気体(ガス冷媒)との気液2相の状態となる。
そして凝縮液の占める割合が多くなって気液分離部7へ
と送出される。
A gas refrigerant is supplied to the inside of the header portion 15 of the main condenser portion 6 from a refrigerant inlet pipe 16. The supplied gas refrigerant flows through the refrigerant tube 10a that connects the header portion 15 and the header portion 17, and is cooled during this period to reach the header portion 17. The gas refrigerant exchanges heat with the outside air through the heat radiating fins 12a to radiate heat while passing through the refrigerant tube 10a of the main condenser unit 1, and is condensed to form a condensed liquid (liquid refrigerant) and a gas (gas refrigerant). It becomes a gas-liquid two-phase state.
Then, the proportion of the condensed liquid increases and the condensed liquid is sent to the gas-liquid separation unit 7.

【0015】主コンデンサ部6で凝縮液と気体の気液2
相状態となった冷媒流は、次に気液分離部7の冷媒通路
すなわちレシーバチューブ26に導入される。このレシ
ーバチューブ26内の冷媒は、気液2相で気液の流速比
はあるが、気液の割合は変化することなしに冷媒流はレ
シーバチューブ26内を図1で右方向に流れる。その途
中でガスと液とが重力の影響で上下に分離されて、そし
てガス冷媒よりも液冷媒が優先的に上段の流路31から
穴40を通して下段の流路33に落下し、この液冷媒が
ヘッダ部20に送られる。この液冷媒は冷媒チューブ1
0cを通りヘッダ部22に送出される。この液冷媒は、
補コンデンサ部8の冷媒チューブ10cを通過する間に
放熱用フィン12cを介して外気と熱交換して放熱し、
過冷却状態となり過冷却の液冷媒がヘッダ部22に送出
される。
In the main condenser section 6, the condensed liquid and the gas-liquid 2
The refrigerant flow in the phase state is then introduced into the refrigerant passage of the gas-liquid separating section 7, that is, the receiver tube 26. The refrigerant in the receiver tube 26 has a gas-liquid two-phase flow rate ratio of gas-liquid, but the refrigerant flow flows in the receiver tube 26 in the right direction in FIG. 1 without changing the gas-liquid ratio. On the way, the gas and the liquid are separated vertically due to the influence of gravity, and the liquid refrigerant preferentially drops from the gas refrigerant from the upper flow passage 31 through the hole 40 to the lower flow passage 33. Is sent to the header section 20. This liquid refrigerant is the refrigerant tube 1
It is sent to the header section 22 through 0c. This liquid refrigerant is
While passing through the refrigerant tube 10c of the auxiliary condenser portion 8, heat is exchanged with the outside air through the heat radiating fins 12c to radiate heat.
The supercooled state is established and the supercooled liquid refrigerant is sent to the header portion 22.

【0016】次にこの冷媒の冷凍サイクルを図11に示
すモリエル線図にもとづいて説明する。A状態の乾き冷
媒蒸気は、図2に示す圧縮機1で圧縮され、B状態の高
温高圧になる。この高温高圧の冷媒蒸気は、主コンデン
サ部6で放熱して一部が液化し、気液2相のC状態とな
る。次いで気液分離部7に入り、気相と液相に分離し、
液冷媒が補コンデンサ部8に入る。このとき過冷却度が
零の状態であるが、これよりさらに補コンデンサ部8で
過冷却されE状態の過冷却域に来る。E状態では過冷却
された液冷媒の状態である。この液冷媒が膨張弁3を通
って絞り膨張し低温低圧の気液混合状態となりF状態と
なりエバポレータ4に入る。エバポレータ4では冷媒は
周囲の空気から熱を奪って気化し、過熱域のA状態とな
り再び圧縮機1に入り、以上の冷凍サイクルを繰り返
す。
Next, the refrigerating cycle of this refrigerant will be explained based on the Mollier diagram shown in FIG. The dry refrigerant vapor in the A state is compressed by the compressor 1 shown in FIG. 2 and becomes high temperature and high pressure in the B state. This high-temperature, high-pressure refrigerant vapor radiates heat in the main condenser portion 6 and is partly liquefied to be in a gas-liquid two-phase C state. Next, it enters the gas-liquid separation section 7 and separates into a gas phase and a liquid phase,
The liquid refrigerant enters the auxiliary condenser section 8. At this time, the degree of supercooling is zero, but further subcooling is performed in the auxiliary condenser unit 8 to reach the supercooling region in the E state. In the E state, the liquid refrigerant is supercooled. This liquid refrigerant passes through the expansion valve 3 and squeezes and expands into a low-temperature low-pressure gas-liquid mixed state and enters the evaporator 4 into the F state. In the evaporator 4, the refrigerant takes heat from the surrounding air to be vaporized, enters the overheated region A state, enters the compressor 1 again, and repeats the above refrigeration cycle.

【0017】従来の比較例では、前記D状態の位置の過
冷却度零の状態で止まりそれ以上過冷却されることはな
いがためにエバポレータ4での冷凍能力のエンタルピー
差(r1 )が小さい。これに対し前記実施例においては
エンタルピー差(r2 )が相対的に大きい。なおWは圧
縮機の仕事量を示す。高負荷状態では冷凍サイクルの曲
線が右上に上昇した線図を描く。
In the conventional comparative example, the enthalpy difference (r 1 ) of the refrigerating capacity in the evaporator 4 is small because it stops at the position of the D state where the degree of supercooling is zero and is not further cooled. . On the other hand, in the above embodiment, the enthalpy difference (r 2 ) is relatively large. Note that W indicates the work of the compressor. In the high load condition, the curve of the refrigeration cycle is drawn in the upper right.

【0018】次に本発明の前記実施例による実験データ
を図12〜図14に示す。実験による負荷条件は、凝縮
器の温度35℃、風速4.5m/s、エバポレータの温
度27℃、湿度50%、ブロア風量300m3 /分、圧
縮機の回転数1800rpmであった。過冷却度を0℃
から増していくと、図12で圧縮機の動力はある範囲ま
ではあまり変わらないが、ある過冷却度を超すと、圧縮
機の動力は増加してしまう。また、図13では、ある範
囲までは冷凍能力は向上するが、それ以上は向上しなく
なる。図12と図13から、ある過度な過冷却度をとれ
ば過冷却度が0℃よりも成績係数が向上することが理解
できる。
Next, experimental data according to the above embodiment of the present invention are shown in FIGS. The experimental load conditions were a condenser temperature of 35 ° C., a wind speed of 4.5 m / s, an evaporator temperature of 27 ° C., a humidity of 50%, a blower air volume of 300 m 3 / min, and a compressor rotation speed of 1800 rpm. Supercooling degree 0 ℃
As shown in FIG. 12, the power of the compressor does not change so much to a certain range. However, if it exceeds a certain degree of supercooling, the power of the compressor increases. Further, in FIG. 13, the refrigerating capacity is improved up to a certain range, but it is not improved any further. It can be understood from FIGS. 12 and 13 that the coefficient of performance is improved when the supercooling degree is 0 ° C. when the supercooling degree is excessive.

【0019】次に本発明をサーペンタイン型凝縮器に適
用した第2実施例を図15および図16に示す。この第
2実施例は、コルゲートチューブ型コンデンサであっ
て、パイプ状の冷媒チューブ60を蛇行させ、途中にレ
シーバチューブ62を設け、このレシーバチューブ62
の下流端に補コンデンサ部70からなる冷媒チューブ6
4を形成した例である。図15において、主コンデンサ
部66、気液分離部68、補コンデンサ部70が構成さ
れる。冷媒チューブ60の隣り合う冷媒チューブ60間
には放熱用フィン72がろう付け、ハンダ付け等により
接合されている。レシーバチューブ62は上下2段に仕
切り壁74が形成され、この仕切り壁74の下流側に数
個の穴76が形成される。冷媒入口78から入った冷媒
は主コンデンサ部66で放熱し、気液混合状態となり気
液分離部68に入り、そのうちの液冷媒が穴76を通っ
て下段の流路に落ちて補コンデンサ部70の冷媒チュー
ブ64を流れ過冷却された液冷媒となり冷媒出口82か
ら送出される。
Next, a second embodiment in which the present invention is applied to a serpentine type condenser is shown in FIGS. 15 and 16. The second embodiment is a corrugated tube type condenser, in which a pipe-shaped refrigerant tube 60 is meandered and a receiver tube 62 is provided in the middle thereof.
Refrigerant tube 6 including an auxiliary condenser unit 70 at the downstream end of the
4 is an example in which No. 4 is formed. In FIG. 15, a main condenser unit 66, a gas-liquid separating unit 68, and a supplementary condenser unit 70 are configured. Radiating fins 72 are joined between the adjacent refrigerant tubes 60 of the refrigerant tubes 60 by brazing, soldering or the like. The receiver tube 62 has partition walls 74 formed in upper and lower two stages, and several holes 76 are formed on the downstream side of the partition walls 74. The refrigerant that has entered from the refrigerant inlet 78 radiates heat in the main condenser portion 66, becomes a gas-liquid mixed state, and enters the gas-liquid separation portion 68, and the liquid refrigerant thereof falls through the hole 76 into the lower flow path and the auxiliary condenser portion 70. Flowing through the refrigerant tube 64 to become a supercooled liquid refrigerant and is sent out from the refrigerant outlet 82.

【0020】前記実施例で示したように、本発明では、
コンデンサ、レシーバ、補コンデンサ部を一体化させ、
レシーバチューブを特殊な形状にし2段に仕切ることで
液冷媒とガス冷媒とを効果的に分離する機能をもたせ
た。
As shown in the above embodiment, according to the present invention,
Integrate the condenser, receiver and auxiliary condenser,
The receiver tube has a special shape and is divided into two stages to effectively separate the liquid refrigerant and the gas refrigerant.

【0021】[0021]

【発明の効果】以上説明したように、本発明の凝縮器に
よれば、コンデンサ部と気液分離部と過冷却機能をもっ
た補コンデンサ部とを配管で繋ぐことなくこれら各部を
一体構造にした構成にしたため、冷凍サイクルの冷凍能
力および成績係数を向上させることができるとともに冷
媒回路の配管を無くすことにより省スペース化およびコ
ンパクト化を図ることができるという効果がある。
As described above, according to the condenser of the present invention, the condenser portion, the gas-liquid separating portion, and the auxiliary condenser portion having a supercooling function are integrated into each other without connecting them by piping. With this configuration, the refrigerating capacity and the coefficient of performance of the refrigerating cycle can be improved, and there is an effect that space saving and compactness can be achieved by eliminating the piping of the refrigerant circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例による凝縮器を示す概略構
成図である。
FIG. 1 is a schematic configuration diagram showing a condenser according to a first embodiment of the present invention.

【図2】本発明の第1実施例による凝縮器を適用した冷
凍サイクルを示す冷媒回路図である。
FIG. 2 is a refrigerant circuit diagram showing a refrigeration cycle to which the condenser according to the first embodiment of the present invention is applied.

【図3】本発明の第1実施例によるレシーバチューブを
示す縦断面図である。
FIG. 3 is a vertical sectional view showing a receiver tube according to the first embodiment of the present invention.

【図4】(A)は図3に示すA矢視図である。(B)は
図3に示すB矢視図である。
FIG. 4A is a view on arrow A shown in FIG. (B) is a view on arrow B shown in FIG. 3.

【図5】図3に示すプレートのC矢視図である。5 is a view on arrow C of the plate shown in FIG. 3. FIG.

【図6】レシーバチューブの部分側面図である。FIG. 6 is a partial side view of a receiver tube.

【図7】レシーバチューブのチューブにプレートを取付
ける工程を示す説明図である。
FIG. 7 is an explanatory diagram showing a step of attaching a plate to a tube of a receiver tube.

【図8】レシーバチューブのチューブにキャップを取付
ける状態を示す説明図である。
FIG. 8 is an explanatory diagram showing a state in which a cap is attached to the tube of the receiver tube.

【図9】ヘッダ部を示す部分斜視図である。FIG. 9 is a partial perspective view showing a header portion.

【図10】ヘッダ部を示す平面図である。FIG. 10 is a plan view showing a header section.

【図11】本発明の第1実施例による冷凍サイクルと従
来の比較例による冷凍サイクルを対比したモリエル線図
である。
FIG. 11 is a Mollier diagram comparing the refrigeration cycle according to the first embodiment of the present invention with the refrigeration cycle according to the conventional comparative example.

【図12】本発明の第1実施例の実験データによる過冷
却度と圧縮機必要動力の関係を示す特性図である。
FIG. 12 is a characteristic diagram showing the relationship between the degree of supercooling and the required power of the compressor according to the experimental data of the first embodiment of the present invention.

【図13】本発明の第1実施例の実験データによる過冷
却度と冷凍能力の関係を示す特性図である。
FIG. 13 is a characteristic diagram showing the relationship between the degree of supercooling and the refrigerating capacity according to the experimental data of the first embodiment of the present invention.

【図14】本発明の第1実施例の実験データによる過冷
却度と成績係数の関係を示す特性図である。
FIG. 14 is a characteristic diagram showing the relationship between the degree of supercooling and the coefficient of performance according to the experimental data of the first embodiment of the present invention.

【図15】本発明の第2実施例による凝縮器を示す概略
構成図である。
FIG. 15 is a schematic configuration diagram showing a condenser according to a second embodiment of the present invention.

【図16】本発明の第2実施例による冷媒チューブとレ
シーバチューブとの取付け状態を示す部分斜視図であ
る。
FIG. 16 is a partial perspective view showing a mounted state of a refrigerant tube and a receiver tube according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

6 主コンデンサ部 7 気液分離部 8 補コンデンサ部 10a、10c 冷媒チューブ(冷媒通路管) 12a、12c 放熱用フィン 26 レシーバチューブ 31、33 流路(室) 32 プレート(仕切板) 40 穴 6 Main capacitor section 7 Gas-liquid separation section 8 Auxiliary capacitor section 10a, 10c Refrigerant tube (refrigerant passage tube) 12a, 12c Heat dissipation fin 26 receiver tube 31, 33 Channel (room) 32 plates (partition plate) 40 holes

フロントページの続き (72)発明者 大原 敏夫 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内Continued front page    (72) Inventor Toshio Ohara             Nihonden, 1-1, Showa-cho, Kariya city, Aichi prefecture             Sozo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】冷媒通路を構成する冷媒通路管と、この冷
媒通路管に接合されたフィンとを備え、前記冷媒通路管
内を流通する冷媒流を前記フィンを介して放熱させるこ
とにより凝縮する凝縮器であって、 前記冷媒通路の途中に、前記冷媒通路の通路面積より大
きい通路面積を有するとともに、この冷媒通路を上下二
段の室に仕切りかつ上側の室と下側の室を連通する穴を
もつ仕切板を設けたレシーバチューブと、 前記レシーバチューブ内で前記下側の室に分離された冷
媒流をさらに過冷却するように、冷媒通路を構成する冷
媒通路管と、この冷媒通路管に接合されたフィンとから
なる補コンデンサ部とを備えたことを特徴とする凝縮
器。
1. A condenser comprising a refrigerant passage pipe forming a refrigerant passage and fins joined to the refrigerant passage pipe, wherein the refrigerant flow flowing in the refrigerant passage pipe is radiated through the fins to condense to condense. And a hole having a passage area larger than the passage area of the refrigerant passage in the middle of the refrigerant passage and partitioning the refrigerant passage into upper and lower two-stage chambers and connecting the upper chamber and the lower chamber. A receiver tube provided with a partition plate having, a refrigerant passage tube that constitutes a refrigerant passage and a refrigerant passage tube that constitutes a refrigerant passage so as to further subcool the refrigerant flow separated into the lower chamber in the receiver tube. A condenser, comprising: an auxiliary condenser section including joined fins.
【請求項2】前記穴は仕切板の中央部より冷媒流の下流
側に形成されることを特徴とする請求項1に記載の凝縮
器。
2. The condenser according to claim 1, wherein the hole is formed on the downstream side of the refrigerant flow from the central portion of the partition plate.
JP16446491A 1991-07-04 1991-07-04 Condenser Pending JPH0510633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16446491A JPH0510633A (en) 1991-07-04 1991-07-04 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16446491A JPH0510633A (en) 1991-07-04 1991-07-04 Condenser

Publications (1)

Publication Number Publication Date
JPH0510633A true JPH0510633A (en) 1993-01-19

Family

ID=15793677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16446491A Pending JPH0510633A (en) 1991-07-04 1991-07-04 Condenser

Country Status (1)

Country Link
JP (1) JPH0510633A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1163741A (en) * 1997-08-25 1999-03-05 Denso Corp Receiver in freezing cycle
FR2807824A1 (en) * 2000-04-14 2001-10-19 Behr Gmbh & Co CONDENSER FOR AN AIR CONDITIONING SYSTEM, PARTICULARLY FOR AN AIR CONDITIONING SYSTEM OF A MOTOR VEHICLE
FR2808869A1 (en) 2000-05-09 2001-11-16 Sanden Corp CONDENSER TYPE A SUB-COOLING
US6684662B2 (en) 1999-07-06 2004-02-03 Showa Denko K.K. Refrigeration system, and condenser for use in decompressing-tube system
JP2004044873A (en) * 2002-07-10 2004-02-12 National Institute Of Advanced Industrial & Technology Heat exchanger
WO2006070923A1 (en) * 2004-12-28 2006-07-06 Showa Denko K.K. Heat exchanger
WO2006088247A1 (en) * 2005-02-18 2006-08-24 Showa Denko K.K. Heat exchanger
DE4245046C8 (en) * 1992-11-18 2008-08-21 Behr Gmbh & Co. Kg Condenser for an air conditioning system of a vehicle
JP2012067939A (en) * 2010-09-21 2012-04-05 Denso Corp Condenser
CN103148642A (en) * 2011-12-07 2013-06-12 现代自动车株式会社 Condenser for vehicle
CN103206814A (en) * 2013-04-12 2013-07-17 南京佳力图空调机电有限公司 Supercooling device for magnetic suspension refrigerating system with natural cold source
KR101385029B1 (en) * 2007-04-11 2014-04-14 한라비스테온공조 주식회사 A Condenser
JP2016133268A (en) * 2015-01-20 2016-07-25 株式会社デンソー Condenser
CN117287875A (en) * 2023-11-22 2023-12-26 广州全正汽车配件有限公司 Double-layer condenser for automobile

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4245046C8 (en) * 1992-11-18 2008-08-21 Behr Gmbh & Co. Kg Condenser for an air conditioning system of a vehicle
JPH1163741A (en) * 1997-08-25 1999-03-05 Denso Corp Receiver in freezing cycle
US6684662B2 (en) 1999-07-06 2004-02-03 Showa Denko K.K. Refrigeration system, and condenser for use in decompressing-tube system
FR2807824A1 (en) * 2000-04-14 2001-10-19 Behr Gmbh & Co CONDENSER FOR AN AIR CONDITIONING SYSTEM, PARTICULARLY FOR AN AIR CONDITIONING SYSTEM OF A MOTOR VEHICLE
FR2808869A1 (en) 2000-05-09 2001-11-16 Sanden Corp CONDENSER TYPE A SUB-COOLING
US6470703B2 (en) 2000-05-09 2002-10-29 Sanden Corporation Subcooling-type condenser
DE10122360B4 (en) * 2000-05-09 2005-04-21 Sanden Corp., Isesaki While cooling condenser
JP2004044873A (en) * 2002-07-10 2004-02-12 National Institute Of Advanced Industrial & Technology Heat exchanger
WO2006070923A1 (en) * 2004-12-28 2006-07-06 Showa Denko K.K. Heat exchanger
WO2006088247A1 (en) * 2005-02-18 2006-08-24 Showa Denko K.K. Heat exchanger
KR101385029B1 (en) * 2007-04-11 2014-04-14 한라비스테온공조 주식회사 A Condenser
JP2012067939A (en) * 2010-09-21 2012-04-05 Denso Corp Condenser
CN103148642A (en) * 2011-12-07 2013-06-12 现代自动车株式会社 Condenser for vehicle
KR101326841B1 (en) * 2011-12-07 2013-11-11 현대자동차주식회사 Condenser for vehicle
CN103148642B (en) * 2011-12-07 2016-09-14 现代自动车株式会社 Condenser for vehicle
CN103206814A (en) * 2013-04-12 2013-07-17 南京佳力图空调机电有限公司 Supercooling device for magnetic suspension refrigerating system with natural cold source
JP2016133268A (en) * 2015-01-20 2016-07-25 株式会社デンソー Condenser
CN117287875A (en) * 2023-11-22 2023-12-26 广州全正汽车配件有限公司 Double-layer condenser for automobile
CN117287875B (en) * 2023-11-22 2024-02-09 广州全正汽车配件有限公司 Double-layer condenser for automobile

Similar Documents

Publication Publication Date Title
KR100865982B1 (en) Duplex-type heat exchanger and refrigeration system equipped with said heat exchanger
AU703687B2 (en) Refrigerant evaporator, improved for uniform temperature of air blown out therefrom
JP3627382B2 (en) Refrigerant condensing device and refrigerant condenser
US5099913A (en) Tubular plate pass for heat exchanger with high volume gas expansion side
JPH06137695A (en) Refrigerating cycle
JPH0510633A (en) Condenser
JP2009085569A (en) Evaporator unit
KR20030080081A (en) Layered heat exchanger, layered evaporator for motor vehicle air conditioners and refrigeration system
KR20160131577A (en) Heat exchanger for air conditioner
US20070039337A1 (en) Ejector cycle device
JP2002130866A (en) Condenser for air conditioning
JP4069804B2 (en) Condenser with integrated heat exchanger and receiver
JPH07180930A (en) Liquid receiver integrated type refrigerant condenser
EP1426714A1 (en) Refrigerating system and condenser for decompression tube system
JPH07159000A (en) Refrigerant condenser
JPH07103612A (en) Liquid receiver-integrated refrigerant condenser
JP2001012823A (en) Refrigerant condenser
JP2001221535A (en) Refrigerant evaporator
JP2002228299A (en) Composite heat exchanger
JPH06341736A (en) Refrigerant condenser
JP3158509B2 (en) Refrigerant condenser
US6684662B2 (en) Refrigeration system, and condenser for use in decompressing-tube system
JPH10267462A (en) Evaporator
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
JPH0395368A (en) Condenser