WO2017149989A1 - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
WO2017149989A1
WO2017149989A1 PCT/JP2017/002082 JP2017002082W WO2017149989A1 WO 2017149989 A1 WO2017149989 A1 WO 2017149989A1 JP 2017002082 W JP2017002082 W JP 2017002082W WO 2017149989 A1 WO2017149989 A1 WO 2017149989A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
horizontal
partition plate
region
refrigerant
Prior art date
Application number
PCT/JP2017/002082
Other languages
French (fr)
Japanese (ja)
Inventor
秀哲 立野井
鈴木 孝幸
近藤 喜之
青木 泰高
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP17759461.1A priority Critical patent/EP3425320A4/en
Publication of WO2017149989A1 publication Critical patent/WO2017149989A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Definitions

  • the present invention relates to a heat exchanger and an air conditioner.
  • Priority is claimed on Japanese Patent Application No. 2016-038354, filed Feb. 29, 2016, the content of which is incorporated herein by reference.
  • a plurality of heat transfer tubes extending in the horizontal direction are arranged at intervals in the vertical direction, and fins are provided on the outer surface of each heat transfer tube. Both ends of the plurality of heat transfer tubes are respectively connected to a pair of vertically extending headers.
  • a heat exchanger is introduced again into one of the headers, and the refrigerant that has flowed through the heat transfer pipe and the other through the heat transfer tube is again transmitted in the other header. It is configured to return to one of the headers through the heat pipe.
  • Patent Document 1 describes that a dividing plate extending in the vertical direction is provided in the header, and the flow velocity in the header is increased by reducing the flow passage cross-sectional area in the header.
  • the refrigerant introduced into one region (first region) in the header via the heat transfer tube is not limited to the fact that all of the refrigerant is vaporized, and the liquid phase refrigerant It is in the state of a gas-liquid two-phase refrigerant mixed with a gas phase refrigerant.
  • a gas-liquid two-phase refrigerant is introduced to the lower part of the other region (second region) in the header via the connection pipe, the liquid refrigerant having a high density hardly reaches the upper heat transfer pipe . Therefore, as the refrigerant flows in the upper heat transfer pipe, the flow rate of the liquid-phase refrigerant decreases.
  • the present invention provides a heat exchanger capable of suppressing performance degradation, and an air conditioner using the heat exchanger.
  • the heat exchanger extends horizontally and allows the refrigerant to flow therein, and a plurality of heat transfer tubes arranged at intervals in the vertical direction, and a tubular extending in the vertical direction
  • a main vertical partition plate that divides the outlet side area to which the heat transfer pipes are connected and an inflow side area to which the flow passage is connected;
  • a portion facing the first chamber of the main vertical partition plate further including an inflow side vertical partition plate which is adjacent to each other in the circumferential direction and which is divided into a first chamber and a second chamber respectively communicating with the flow passage;
  • a first horizontal penetration connecting the first chamber and the outflow side region A hole is formed, and the second chamber and the outflow side region are communicated with each other at a portion facing the second chamber of the main longitudinal partition plate
  • the refrigerant is introduced into each of the first chamber and the second chamber in the header portion via the flow passage.
  • the refrigerant introduced into the first chamber reaches the outflow side area in the header through the first horizontal through hole.
  • the refrigerant introduced into the second chamber reaches the outflow side region in the header portion via the second horizontal through hole. That is, the refrigerant supplied to the first chamber and the second chamber is forcibly guided to the first horizontal through hole or the second horizontal through hole, and is supplied to the outflow side region.
  • the moving path of the refrigerant can be made longer by moving the refrigerant vertically in the first chamber or the second chamber toward the first horizontal through hole or the second horizontal through hole.
  • the refrigerant is supplied to the outflow side region from different vertical positions. Thereby, the refrigerant can be supplied to a wider vertical range in the outflow side region. Further, the refrigerant supplied from the first horizontal through hole and the second horizontal through hole are mixed with each other, so that the gas-liquid ratio of the refrigerant can be made uniform in the entire outflow side region. Therefore, it is possible to effectively introduce the liquid phase refrigerant also into the heat transfer tube disposed relatively upward.
  • a plurality of the first horizontal through holes are formed at mutually different vertical positions, and the second horizontal through holes are different from each other in the vertical direction.
  • a plurality of positions may be formed.
  • the refrigerant can be supplied from a plurality of different positions in the vertical direction from the first chamber to the outflow side area. Furthermore, the refrigerant can be supplied from a plurality of different positions in the vertical direction from the second chamber to the outflow side region. Therefore, equalization of the gas-liquid ratio of the refrigerant can be further achieved in the entire outflow side region.
  • a plurality of the first horizontal through holes are formed at different horizontal positions, and the second horizontal through holes have different horizontal directions.
  • a plurality of positions may be formed.
  • the refrigerant can be supplied from a plurality of different horizontal positions from the first chamber to the outflow side area. Furthermore, the refrigerant can be supplied from a plurality of different horizontal positions from the second chamber to the outflow side region. Therefore, it is possible to further equalize the gas-liquid ratio of the refrigerant as the entire outflow side region. Further, by forming the first horizontal through hole and the second horizontal through hole at the same vertical position in the horizontal direction, it is possible to adjust the flow rate and pressure loss of the individual flow paths in the header portion.
  • the first chamber faces the first chamber upstream region to which the flow passage is connected and the main vertical partition plate in a horizontal cross-sectional view.
  • a first chamber longitudinal partition plate partitioned into a first chamber downstream region, a second chamber upstream region connected with the flow passage, and the main longitudinal partition plate in a horizontal sectional view of the second chamber
  • a second chamber longitudinal partition plate partitioned into a second chamber downstream region, and the first chamber longitudinal partition plate is disposed at a portion different from the first horizontal through hole in the vertical direction and the first chamber upstream region;
  • a third horizontal through hole communicating with the first chamber downstream region is formed, and the second chamber upstream region and the second chamber vertical partition plate are different in position in the vertical direction from the second horizontal through hole.
  • a fourth horizontal through hole may be formed to communicate with the second chamber downstream region.
  • the refrigerant supplied to the first chamber travels while moving up and down in the first chamber upstream region and the first chamber downstream region before reaching the outflow side region.
  • the refrigerant supplied to the second chamber travels while moving up and down in the second chamber upstream region and the second chamber downstream region before reaching the outflow side region.
  • the heat exchanger includes the first chamber, a first chamber lower region connected to the flow passage, and a second chamber disposed above the first chamber lower region.
  • a first chamber horizontal partition plate which is divided into one chamber upper region, a second chamber lower region to which the flow passage is connected, and a second chamber disposed above the second chamber lower region
  • the refrigerant advancing upward collides with the first chamber lateral partition plate or the second chamber lateral partition plate The gas-liquid two-phase flow refrigerant can be homogenized.
  • the refrigerant introduced into the outflow side region after passing through the first chamber upper region and the second chamber upper region of the first chamber and the second chamber is directed upward through the upper and lower through holes, As the flow velocity increases, the refrigerant can be more easily spread to the upper side. As a result, the liquid phase of the refrigerant can be more effectively supplied to the heat transfer tube disposed above.
  • the circumferential direction position of the connection portion to the header portion is the same as the inflow side vertical partition plate in the flow passage.
  • the connection portion of the flow passage to the header portion may straddle the first chamber and the second chamber.
  • the flow passage communicates with a first-class passage connected in communication with the first chamber in the header portion and with the second chamber in the header portion It may have a second flow passage connected in a state.
  • the refrigerant can be forcibly supplied to each of the first chamber and the second chamber.
  • an air conditioner comprises any of the above heat exchangers.
  • the heat exchanger and the air conditioner of the present invention it is possible to suppress the performance deterioration due to the nonuniformization of the refrigerant flowing through the plurality of heat transfer pipes.
  • the air conditioner 1 provided with the heat exchanger 10 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • the air conditioner 1 includes a compressor 2, an indoor heat exchanger 3 (heat exchanger 10), an expansion valve 4, an outdoor heat exchanger 5 (heat exchanger 10), a four-way valve 6, and And a pipe 7 for connecting them, and constitute a refrigerant circuit composed of these.
  • the compressor 2 compresses the refrigerant and supplies the compressed refrigerant to the refrigerant circuit.
  • the indoor heat exchanger 3 exchanges heat between the refrigerant and the indoor air.
  • the indoor heat exchanger 3 is used as an evaporator at the time of cooling operation, absorbs heat from the room, and is used as a condenser at the time of heating operation, and releases heat to the room.
  • the outdoor heat exchanger 5 performs heat exchange between the refrigerant and the air outside the room.
  • the expansion valve 4 reduces the pressure by expanding a high pressure refrigerant liquefied by heat exchange in the condenser.
  • the outdoor heat exchanger 5 is used as a condenser and dissipates heat to the outside during cooling operation, and is used as an evaporator and absorbs heat from outside during heating operation.
  • the four-way valve 6 switches the flow direction of the refrigerant between the heating operation and the cooling operation.
  • the refrigerant circulates in the order of the compressor 2, the outdoor heat exchanger 5, the expansion valve 4, and the indoor heat exchanger 3.
  • the refrigerant circulates in the order of the compressor 2, the indoor heat exchanger 3, the expansion valve 4, and the outdoor heat exchanger 5.
  • the heat exchanger 10 used as the indoor heat exchanger 3 and the outdoor heat exchanger 5 will be described with reference to FIGS. 2 to 4.
  • the heat exchanger 10 includes a plurality of heat transfer pipes 20, a plurality of fins 23, a pair of headers 30, a connection pipe 55, a main longitudinal partition plate 60, and an inflow side longitudinal partition plate 70. .
  • the heat transfer tube 20 is a tubular member extending linearly in the horizontal direction, and a flow passage in which the refrigerant flows is formed inside.
  • a plurality of such heat transfer tubes 20 are arranged at intervals in the vertical direction, and are arranged in parallel to each other.
  • each heat transfer tube 20 has a flat tubular shape, and inside the heat transfer tube 20, a plurality of flow paths arranged in parallel in the horizontal direction orthogonal to the extending direction of the heat transfer tube 20 are formed. ing.
  • the plurality of flow paths are arranged in parallel to one another.
  • the outer shape of the cross section orthogonal to the extending direction of the heat transfer tube 20 is flat with the horizontal direction orthogonal to the extending direction of the heat transfer tube 20 as the longitudinal direction.
  • the fins 23 are respectively disposed between the heat transfer tubes 20 arranged as described above.
  • the heat transfer tubes 20 extend in a so-called corrugated shape so as to alternately contact the heat transfer tubes 20 vertically adjacent to each other in the extending direction of the heat transfer tubes 20.
  • the shape of the fins 23 is not limited to this, and may be any shape as long as it is provided so as to project from the outer peripheral surface of the heat transfer tube 20.
  • the pair of headers 30 is provided at both ends of the plurality of heat transfer tubes 20 so as to sandwich the heat transfer tubes 20.
  • One of the pair of headers 30 is an inlet / outlet header 40 serving as an inlet / outlet of the refrigerant into the heat exchanger 10 from the outside, and the other is a return side header 50 for the refrigerant to be folded back in the heat exchanger 10. It is assumed.
  • the inlet / outlet side header 40 is a cylindrical member extending in the vertical direction, and the upper end and the lower end are closed and the inside is divided into two upper and lower areas by a partition plate.
  • a lower region divided by the in / out side partition plate 41 is a lower in / out region 42, and an upper region is a upper in / out region 43.
  • the lower access area 42 and the upper access area 43 are out of communication with each other in the access header 40.
  • the piping 7 which comprises a refrigerant circuit is each connected to these lower in-and-out area
  • the heat transfer pipe 20 connected in communication with the lower entrance / exit area 42 is taken as a first heat transfer pipe 21 and is connected in communication with the upper entrance / exit area 43.
  • the heat transfer pipe 20 is a second heat transfer pipe 22 (heat transfer pipe 20).
  • the return side header 50 includes the header main body 51 and the return side partition plate 54.
  • the header body 51 is a cylindrical member extending in the vertical direction, and the upper end and the lower end are closed.
  • the return side partition plate 54 is provided in the header main body 51, and divides the space in the header main body 51 into upper and lower two regions.
  • the lower portion of the return side partition plate 54 of the header main body 51 is the first header portion 52
  • the upper portion of the return side partition plate 54 of the header main body 51 is the second header portion 53 (header portion) There is. That is, in the present embodiment, by dividing the inside of the header main body 51 by the folding side partition plate 54, the first header portion 52 and the second header portion 53 having a space inside are formed in the folding side header 50, respectively. ing. In other words, the first header portion 52 and the second header portion 53 constitute the return side header 50.
  • the first heat transfer pipe 21 is connected to the first header portion 52 from one side (first side) in the horizontal direction so as to be in communication with the inside of the first header portion 52, respectively.
  • the second heat transfer tubes 22 are connected to the second header portion 53 from one side (first side) in the horizontal direction so as to be in communication with the inside of the second header portion 53, respectively.
  • the heat transfer pipe 20 connected to the first header portion 52 is the first heat transfer pipe 21
  • the heat transfer pipe 20 connected to the second header portion 53 is the second heat transfer pipe 22.
  • connection pipe 55 is a tubular member in which a flow path is formed.
  • One end (first end) of the connection pipe 55 is connected to the first header portion 52 in communication with the inside of the first header portion 52.
  • the other end (second end) of the connection pipe 55 is connected to the second header portion 53 in communication with the inside of the second header portion 53. More specifically, one end (first end) of the connection pipe 55 is connected to the central portion in the vertical direction of the first header portion 52.
  • the other end (second end) of the connection pipe 55 is connected to the lower portion of the second header portion 53.
  • Connection pipe 55 is opposite to first header portion 52 and second header portion 53 in the horizontal direction one side (first side) to which first heat transfer pipe 21 and second heat transfer pipe 22 are connected. Are connected from the other side (second side) in the horizontal direction.
  • a flow passage formed inside the connection pipe 55 is a flow passage 56 which enables the flow of the refrigerant between the inside of the first header portion 52 and the inside of the second header portion 53.
  • the main vertical partition plate 60 is a plate-like member extending in the vertical direction, and is provided in the second header portion 53.
  • the main vertical partition plate 60 divides the space in the second header portion 53 into two regions of a region to which the second heat transfer pipes 22 are connected and a region to which the connection tubes 55 are connected in a horizontal cross-sectional view. ing.
  • An area to which the second heat transfer pipe 22 divided by the main vertical partition plate 60 is connected is an outflow side area 63.
  • An area to which the connection pipe 55 divided by the main vertical partition plate 60 is connected is an inflow side area 64.
  • the header 30 has a cylindrical shape extending in the vertical direction, and along with this, the internal space also has a cylindrical shape.
  • the main vertical partition plate 60 is arrange
  • region 63 each have comprised the semicircle shape in horizontal cross section view.
  • the inflow side vertical partition plate 70 is a plate-like member extending in the vertical direction, and is provided in the inflow side area 64 in the second header portion 53.
  • the inflow side vertical partition plate 70 divides the inflow side area 64 into two areas adjacent to each other in the circumferential direction of the second header portion 53 in a horizontal cross-sectional view. Of these two areas, the area on the left side viewed from the other side (second side) in the horizontal direction, which is the connection direction of the connection pipe 55, is the first chamber 71, and the area on the right side is the second chamber 72. ing.
  • the inflow side vertical partition plate 70 is disposed along the radial direction in the horizontal cross sectional view of the internal space of the cylindrical second header portion 53. Further, the inflow side vertical partition plate 70 is disposed to extend orthogonal to the main vertical partition plate 60, whereby the volumes of the first chamber 71 and the second chamber 72 are made the same.
  • a first horizontal through hole 61 for communicating the first chamber 71 and the outflow side region 63 is formed in a portion of the main vertical partition plate 60 facing the first chamber 71.
  • a second horizontal through hole 62 communicating the second chamber 72 with the outflow side region 63 is formed in a portion of the main vertical partition plate 60 facing the second chamber 72.
  • the first horizontal through holes 61 and the second horizontal through holes 62 are arranged at different positions in the vertical direction.
  • the first horizontal through hole 61 is formed in the lower portion of the main vertical partition plate 60 and near the lowermost portion of the second header portion 53.
  • the second horizontal through holes 62 are formed in the upper part of the main vertical partition plate 60 and at a position close to the uppermost part of the second header portion 53.
  • the vertical direction positions of the first horizontal through hole 61 and the second horizontal through hole 62 are different from the vertical direction position of the connection portion of the connection pipe 55 to the second header portion 53. Note that only one of the first horizontal through hole 61 and the second horizontal through hole 62 may be different in the position in the vertical direction from the connection point of the connection pipe 55 to the second header portion 53.
  • connection point between the connection pipe 55 and the second header portion 53 is the same as the circumferential position of the second header portion 53 of the inflow side vertical partition plate 70.
  • connection portion of the connection pipe 55 to the second header portion 53 is disposed across the first chamber 71 and the second chamber 72. Therefore, the refrigerant introduced from the connection pipe 55 to the second header portion 53 is introduced to both the first chamber 71 and the second chamber 72.
  • the heat exchanger 10 is the indoor heat exchanger 3, it is used as an evaporator during the cooling operation of the air conditioner 1, and in the case of the outdoor heat exchanger 5, it evaporates during the heating operation of the air conditioner 1. It will be used as a container.
  • a gas-liquid two-phase refrigerant having a large amount of liquid phase is supplied from the pipe 7 to the lower entrance / exit area 42 of the entrance / exit side header 40 shown in FIG.
  • the refrigerant is distributed and supplied into the plurality of first heat transfer pipes 21 in the lower entrance / exit area 42, and heat is exchanged with the external atmosphere of the first heat transfer pipes 21 in the process of flowing through the first heat transfer pipes 21. Evaporation is prompted.
  • the refrigerant supplied from the first heat transfer pipe 21 into the first header portion 52 of the return side header 50 is a gas-liquid two-phase gas in which the liquid phase ratio is reduced by the partial change from the liquid phase to the gas phase. It becomes a refrigerant.
  • the refrigerant in the gas-liquid two-phase state supplied into the first header portion 52 is introduced into the connection pipe 55 connected to the first header portion 52, and the second header via the connection pipe 55. Introduced in section 53.
  • the connection portion of the connection pipe 55 to the second header portion 53 spans the first chamber 71 and the second chamber 72, the inside of the first chamber 71 and the second chamber 72 is A refrigerant is introduced into each of the
  • the refrigerant introduced into the first chamber 71 is introduced into the lower part of the outflow side area 63 via the first horizontal through hole 61 formed in the lower part of the second header portion 53. At this time, when the flow rate of the refrigerant is small, the refrigerant is not stored in the first chamber 71 and introduced into the lower part of the outflow side region 63 via the first horizontal through hole 61. On the other hand, when the flow rate of the refrigerant is large, the refrigerant is sequentially introduced to the lower part of the outflow side area 63 through the first horizontal through hole 61 in a state where the refrigerant is stored to some extent in the first chamber 71.
  • the refrigerant introduced into the second chamber 72 sequentially moves upward in the second chamber 72 as the refrigerant continues to be supplied, and the second horizontal through hole 62 formed in the upper portion of the second header portion 53 It is introduced into the upper part of the outflow side area 63 via That is, while the connection portion between the connection pipe 55 and the second header portion 53 is disposed at the lower portion of the second header portion 53, the second horizontal portion in which the second chamber 72 and the outflow side region 63 are communicated. Since the through hole 62 is disposed at the upper part of the second header part 53, the refrigerant introduced into the second chamber 72 moves from the lower part to the upper part of the second chamber 72 and then introduced to the upper part of the outflow side area 63. Be done.
  • the refrigerants in the gas-liquid two-phase state introduced from the first chamber 71 and the second chamber 72 in the outflow side area 63 are mixed with each other in the outflow side area 63, and then the second header portion 53 is It is introduced into each connected heat transfer tube 20. Thereafter, the refrigerant exchanges heat with the outside atmosphere of the second heat transfer pipe 22 in the process of flowing through the second heat transfer pipe 22 to promote evaporation again. As a result, the liquid phase remaining in the refrigerant in the second heat transfer pipe 22 changes to the gas phase, and the refrigerant in the gas phase is supplied to the upper entrance / exit area 43 of the entrance / exit side header 40. Then, the refrigerant is introduced into the pipe 7 from the upper entrance / exit area 43 and circulates in the refrigerant circuit.
  • the refrigerant supplied to the first chamber 71 and the second chamber 72 is forcibly forced to be the first horizontal through hole 61 or the second horizontal through hole 62. , And supplied to the outflow side area 63.
  • the second horizontal through hole 62 is at a position separated upward from the introduction point of the refrigerant, the movement path until the refrigerant introduced into the second chamber 72 is introduced into the outflow side region 63 Become longer. This can promote mixing of the gas-liquid two-phase refrigerant in the second chamber 72.
  • the refrigerant is supplied to the outflow side region 63 from different vertical positions.
  • the refrigerant is introduced from the lowermost part and the uppermost part of the outflow side area 63, the gas-liquid ratio of the refrigerant in the whole area in the vertical direction of the outflow side area 63 can be averaged. Therefore, the liquid-phase refrigerant can be effectively introduced also into the second heat transfer pipe 22 disposed relatively upward. As a result, in the air conditioner using the heat exchanger 10 of the present embodiment, the cooling performance and the heating performance are not impaired.
  • the heat exchanger 80 of the second embodiment is a first embodiment in that a plurality of first horizontal through holes 61 and second horizontal through holes 62 are formed in the main vertical partition plate 60. It is different from the form.
  • first horizontal through holes 61 are formed, and the first horizontal through hole 61 is a lower portion of the main longitudinal partition plate 60 as in the first embodiment, and the second header portion It is formed on the 53 radial outer part.
  • the second first horizontal through hole 61 is formed at the central portion in the vertical direction of the main vertical partition plate 60 and at the radially inner side of the second header portion 53.
  • two second horizontal through holes 62 are formed, and the first second horizontal through hole 62 is an upper portion of the main vertical partition plate 60 as in the first embodiment, and the second It is formed on the radially outer portion of the header portion 53.
  • a second second horizontal through hole 62 is formed at a central portion in the vertical direction of the main vertical partition plate 60 and in a radially inner portion of the second header portion 53.
  • the second second horizontal through hole 62 is formed above the second first horizontal through hole 61, the positional relationship in the vertical direction may be reversed.
  • the refrigerant introduced into the first chamber 71 is added to the lower first horizontal through hole 61 and the outflow side area 63 through the first horizontal through hole 61 at the center in the vertical direction. be introduced. Further, the refrigerant introduced into the second chamber 72 is introduced into the outflow side area 63 through the second horizontal through hole 62 in the middle in the vertical direction in addition to the upper second horizontal through hole 62. As a result, the refrigerant can be supplied from the first chamber 71 to the outflow side area 63 from a plurality of different positions in the vertical direction. Furthermore, the refrigerant can be supplied from the second chamber 72 to the outflow side area 63 from a plurality of different positions in the vertical direction.
  • the gas-liquid ratio of the refrigerant can be made more uniform throughout the outflow side region 63.
  • a plurality of first horizontal through holes 61 having different horizontal positions may be formed at the same vertical position, and a plurality of second horizontal through holes 62 having different horizontal positions may be at the same vertical position. You may form. By this, it is possible to adjust the flow rate and pressure loss of the individual flow paths in the header portion.
  • the horizontal positions of the two first horizontal through holes 61 and the second horizontal through holes 62 are different from each other. Therefore, the refrigerant can be supplied from the first chamber 71 to the outflow side area 63 from not only the position in the vertical direction but also from a plurality of different positions in the horizontal direction. Furthermore, the refrigerant can be supplied from the second chamber 72 to the outflow side area 63 from not only the vertical position but also from a plurality of different horizontal positions. Therefore, the gas-liquid ratio of the refrigerant can be further equalized in the entire outflow side region 63.
  • a heat exchanger 90 according to a third embodiment of the present invention will be described with reference to FIGS. 7 and 8.
  • the same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the detailed description thereof is omitted.
  • the heat exchanger 90 of the third embodiment is different from the first embodiment in that the first chamber partition plate 91 and the second chamber vertical partition plate 95 are provided.
  • the first chamber vertical partition plate 91 is a plate-like member extending in the vertical direction, and is disposed in the first chamber 71.
  • the first chamber longitudinal partition plate 91 divides the inside of the first chamber 71 into two regions in a horizontal cross sectional view. Of the two regions, the region on the side where the connection pipe 55 is connected is the first chamber upstream region 93, and the region facing the main vertical partition plate 60 is the first chamber downstream region 94.
  • the first chamber longitudinal partition plate 91 is arranged to extend in parallel with the main longitudinal partition plate 60. Further, in the first chamber longitudinal partition plate 91, a third horizontal through hole 92 is formed, which allows the first chamber upstream region 93 and the first chamber downstream region 94 to communicate with each other.
  • the third horizontal through holes 92 are formed so that the positions of the first horizontal through holes 61 formed in the main vertical partition plate 60 in the vertical direction are different from each other.
  • the third horizontal through hole 92 is disposed below the first horizontal through hole 61. Further, the horizontal positions of the first horizontal through hole 61 and the third horizontal through hole 92 are different from each other.
  • the first horizontal through hole 61 is formed radially inward of the second header portion 53
  • the third horizontal through hole 92 is formed radially outward of the second header portion 53.
  • the second chamber vertical partition plate 95 is a plate-like member extending in the vertical direction, and is disposed in the second chamber 72.
  • the second chamber longitudinal partition plate 95 divides the inside of the second chamber 72 into two regions in a horizontal cross sectional view. Of the two regions, the region on the side where the connection pipe 55 is connected is the second chamber upstream region 97, and the region facing the main vertical partition plate 60 is the second chamber downstream region 98.
  • the second chamber vertical partition plate 95 is disposed so as to extend in parallel with the main vertical partition plate 60. Further, in the second chamber longitudinal partition plate 95, a fourth horizontal through hole 96 for communicating the second chamber upstream region 97 and the second chamber downstream region 98 with each other is formed.
  • the fourth horizontal through holes 96 are formed such that the positions of the second horizontal through holes 62 formed in the main vertical partition plate 60 in the vertical direction are different from each other.
  • the fourth horizontal through hole 96 is disposed above the second horizontal through hole 62. Further, the horizontal positions of the second horizontal through hole 62 and the fourth horizontal through hole 96 are different from each other.
  • the second horizontal through hole 62 is formed radially inward of the second header portion 53
  • the fourth horizontal through hole 96 is formed radially outward of the second header portion 53.
  • the refrigerant supplied to the first chamber 71 vertically moves the first chamber upstream region 93 and the first chamber downstream region 94 before reaching the outflow side region 63. It moves while moving.
  • the refrigerant supplied to the second chamber 72 travels while moving up and down in the second chamber upstream region 97 and the second chamber downstream region 98 before reaching the outflow side region 63.
  • the movement path of the refrigerant introduced into the first chamber 71 and the second chamber 72 until reaching the outflow side region 63 can be lengthened. Therefore, the gas-liquid two-phase flow refrigerant can be further homogenized in the movement path.
  • the first chamber longitudinal partition plate 91 and the second chamber longitudinal partition plate 95 in the first chamber 71 or in the second chamber 72, respectively. may be disposed along the radial direction of the second header portion 53. This also makes it possible to lengthen the movement path of the refrigerant as described above.
  • the heat exchanger 100 of 4th embodiment is a point which is equipped with the 1st chamber horizontal partition plate 101 and the 2nd chamber horizontal partition plate 105, and differs from 1st embodiment.
  • the first chamber horizontal partition plate 101 is a plate-like member extending in the horizontal direction, and is disposed in the first chamber 71.
  • the first chamber horizontal partition plate 101 divides the inside of the first chamber 71 into two upper and lower regions. Of the two regions, the lower region to which the connection pipe 55 is connected is the first chamber lower region 103, and the upper region is the first chamber upper region 104.
  • first upper and lower through holes 102 are formed to allow the first chamber lower region 103 and the first chamber upper region 104 to communicate with each other.
  • the second chamber lateral partition plate 105 is a horizontally extending plate-like member, and is disposed in the second chamber 72.
  • the second chamber lateral partition plate 105 divides the inside of the second chamber 72 into two upper and lower regions. Of the two regions, the lower region to which the connection pipe 55 is connected is the second chamber lower region 107, and the upper region is the second chamber upper region 108.
  • a second upper and lower through hole 106 is formed in the second chamber lateral partition plate 105 to allow the second chamber lower area 107 and the second chamber upper area 108 to communicate with each other.
  • the first horizontal through holes 61 formed in the main vertical partition plate 60 communicate the first chamber lower area 103 and the outflow side area 63 with each other. Further, the second horizontal through holes 62 formed in the main vertical partition plate 60 communicate the second chamber upper area 108 with the outflow side area 63.
  • the refrigerant traveling upward is the first chamber horizontal partition plate 101 or It collides with the second chamber horizontal partition plate 105. Since the refrigerant
  • coolant can be achieved further.
  • the refrigerant in the second chamber 72 introduced into the outflow side region 63 after passing through the second chamber upper region 108 in particular is increased in flow velocity when going upward through the second upper and lower through holes 106. It becomes easy to distribute the refrigerant to the upper side. As a result, the liquid phase of the refrigerant can be more effectively supplied to the second heat transfer pipe 22 disposed above.
  • the 1st up-and-down through-hole 102 is formed in the 1st chamber horizontal partition plate 101, it does not necessarily need to be formed. If the first upper and lower through holes 102 are formed, for example, if the flow rate of the refrigerant is relatively large, there is an advantage that the refrigerant can be temporarily stored in the first chamber upper region 104. There is also an advantage that pressure resistance can be improved by reducing the internal pressure difference between the first chamber upper area 104 and the other area.
  • the refrigerant introduced from the connection pipe 55 into the first chamber lower region 103 is directed to the outflow side region 63 through the first horizontal through hole 61, so the first chamber upper portion The liquid phase refrigerant does not reach the region 104.
  • the first vertical chamber partition plate 91 and the second chamber vertical partition plate 95 described in the third embodiment may be provided.
  • connection pipe 55 is connected to the second header portion 53 so as to straddle the first chamber 71 and the second chamber 72.
  • two connection pipes 55 are connected. Are connected to the second header portion 53.
  • Each of the connection pipes 55 is also connected to the first header portion 52, and the inside thereof is a communication passage. Even in this case, the refrigerant can be forcibly introduced into the first chamber 71 and the second chamber 72 as in the first to fourth embodiments.
  • transduced into the 1st chamber 71 and the 2nd chamber 72 can be suitably adjusted by changing the flow-path cross-sectional area of the connection pipe
  • the refrigerants having different flow rates can be intentionally introduced to the connection pipes 55 so as to optimize the heat exchange rate.
  • the heat exchanger and the air conditioner it is possible to suppress the performance deterioration due to the non-uniformization of the refrigerant flowing through the plurality of heat transfer pipes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This heat exchanger (10) includes: heat-transfer pipes (20); a header part to which one end of the heat-transfer pipes (20) is connected so as to be in communication with an internal space; a flow passage (56) that is connected to the inside of the header part so as to be in communication therewith and that has a refrigerant flowing therethrough; a main vertical partition plate (60) that divides a horizontal cross-section of the inside of the header part into an outflow-side region (63) that is connected to the heat-transfer pipes (20) and an inflow-side region (64) that is connected to the flow passage (56); and an inflow-side vertical partition plate (70) that divides a horizontal cross-section of the inflow-side region (64) into a first chamber (71) and a second chamber (72) that are adjacent to each other in the circumferential direction of the header part and that are in communication with the flow passage (56). A section of the main vertical partition plate (60) facing the first chamber (71) has formed therein a first horizontal through hole (61) that allows the first chamber (71) to communicate with the outflow-side region (63). A section of the main vertical partition plate (60) facing the second chamber (72) and at a different vertical-direction position from the first horizontal through hole (61) has formed therein a second horizontal through hole (62) that allows the second chamber (72) to communicate with the outflow-side region (63).

Description

熱交換器及び空気調和機Heat exchanger and air conditioner
 本発明は、熱交換器及び空気調和機に関する。本願は、2016年2月29日に、日本に出願された特願2016-038354号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a heat exchanger and an air conditioner. Priority is claimed on Japanese Patent Application No. 2016-038354, filed Feb. 29, 2016, the content of which is incorporated herein by reference.
 空気調和機の熱交換器として、水平方向に延びる伝熱管を上下方向に間隔をあけて複数配置し、各伝熱管の外面にフィンを設けたものが知られている。複数の伝熱管の両端は上下方向に延びる一対のヘッダにそれぞれ接続されている。このような熱交換器は、冷媒の流路長さを確保するため、一方のヘッダに導入されて伝熱管を経て他方のヘッダに流通した冷媒が、前記他方のヘッダで折り返すようにして再度伝熱管を経て一方のヘッダに戻るように構成されている。 As heat exchangers of air conditioners, a plurality of heat transfer tubes extending in the horizontal direction are arranged at intervals in the vertical direction, and fins are provided on the outer surface of each heat transfer tube. Both ends of the plurality of heat transfer tubes are respectively connected to a pair of vertically extending headers. In order to secure the flow path length of the refrigerant, such a heat exchanger is introduced again into one of the headers, and the refrigerant that has flowed through the heat transfer pipe and the other through the heat transfer tube is again transmitted in the other header. It is configured to return to one of the headers through the heat pipe.
 折り返し側のヘッダ内は、前記ヘッダ内を上下方向に区画する仕切板によって複数の領域が区画されている。これによって、ヘッダ内の一の領域(第一領域)内に伝熱管を経て導入された冷媒は、接続管を介してヘッダ内の他の領域(第二領域)に導入された後に、前記他の領域(第二領域)に接続された複数の伝熱管を経由して出入口側の一方のヘッダに戻される。
 例えば特許文献1には、ヘッダ内に上下方向に延びる仕切板を設け、ヘッダ内の流路断面積を小さくすることで前記ヘッダ内の冷媒流速を増加させることが記載されている。
In the header on the return side, a plurality of regions are partitioned by partition plates partitioning the inside of the header in the vertical direction. Thus, the refrigerant introduced through the heat transfer pipe into one area (first area) in the header is introduced into the other area (second area) in the header through the connection pipe, Is returned to one of the headers on the inlet / outlet side via a plurality of heat transfer tubes connected to the region (second region).
For example, Patent Document 1 describes that a dividing plate extending in the vertical direction is provided in the header, and the flow velocity in the header is increased by reducing the flow passage cross-sectional area in the header.
特開2015-55405号公報JP, 2015-55405, A
 上記熱交換器を蒸発器として用いる場合、伝熱管を介してヘッダ内の一の領域(第一領域)に導入される冷媒は、その全てが気化しているとは限らず、液相冷媒と気相冷媒とが混在した気液二相冷媒の状態にある。このような気液二相冷媒が接続管を介してヘッダ内の他の領域(第二領域)の下部に導入された場合、密度の大きい液相冷媒分は上方の伝熱管まで到達し難くなる。そのため、上方の伝熱管を流れる冷媒程、液相冷媒流量が小さくなる。その結果、所望の熱交換器の性能を得られないことがある。
 上記特許文献1の技術では、特に冷媒流量が少ない場合には、上方の伝熱管に液相の冷媒を供給し難くなり、やはり熱交換器の性能低下を招いてしまう。
When the heat exchanger is used as an evaporator, the refrigerant introduced into one region (first region) in the header via the heat transfer tube is not limited to the fact that all of the refrigerant is vaporized, and the liquid phase refrigerant It is in the state of a gas-liquid two-phase refrigerant mixed with a gas phase refrigerant. When such a gas-liquid two-phase refrigerant is introduced to the lower part of the other region (second region) in the header via the connection pipe, the liquid refrigerant having a high density hardly reaches the upper heat transfer pipe . Therefore, as the refrigerant flows in the upper heat transfer pipe, the flow rate of the liquid-phase refrigerant decreases. As a result, the desired heat exchanger performance may not be obtained.
In the technique of Patent Document 1, particularly when the flow rate of the refrigerant is small, it becomes difficult to supply the refrigerant in the liquid phase to the upper heat transfer pipe, and the performance of the heat exchanger is also reduced.
 本発明は、性能低下を抑制することができる熱交換器、及び、前記熱交換器を用いた空気調和機を提供する。 The present invention provides a heat exchanger capable of suppressing performance degradation, and an air conditioner using the heat exchanger.
 本発明の第一の態様によれば、熱交換器は、水平方向に延びて内部に冷媒が流通するとともに、上下方向に間隔をあけて複数が配列された伝熱管と、上下方向に延びる管状をなして複数の前記伝熱管の一端が内部空間に連通状態で接続されたヘッダ部と、前記ヘッダ部内に連通状態で接続されて冷媒が流通する流通路と、前記ヘッダ部内を水平断面視にて、各前記伝熱管が接続された流出側領域と、前記流通路が接続された流入側領域とに区画する主縦仕切板と、前記流入側領域を水平断面視にて、前記ヘッダ部の周方向に互いに隣り合い、それぞれ前記流通路と連通する第一室及び第二室に区画する流入側縦仕切板と、をさらに有し、前記主縦仕切板の前記第一室に面する部分に、前記第一室と前記流出側領域とを連通させる第一水平貫通孔が形成され、前記主縦仕切板の前記第二室に面する部分であって前記第一水平貫通孔と異なる上下方向位置の部分に、前記第二室と前記流出側領域とを連通させる第二水平貫通孔が形成されている。 According to the first aspect of the present invention, the heat exchanger extends horizontally and allows the refrigerant to flow therein, and a plurality of heat transfer tubes arranged at intervals in the vertical direction, and a tubular extending in the vertical direction A header portion to which one end of the plurality of heat transfer tubes is connected in communication with the internal space, a flow passage connected to the inside of the header portion in communication and circulating the refrigerant, and the header portion in a horizontal cross section A main vertical partition plate that divides the outlet side area to which the heat transfer pipes are connected and an inflow side area to which the flow passage is connected; A portion facing the first chamber of the main vertical partition plate, further including an inflow side vertical partition plate which is adjacent to each other in the circumferential direction and which is divided into a first chamber and a second chamber respectively communicating with the flow passage; A first horizontal penetration connecting the first chamber and the outflow side region A hole is formed, and the second chamber and the outflow side region are communicated with each other at a portion facing the second chamber of the main longitudinal partition plate and at a position in the vertical direction different from the first horizontal through hole. A second horizontal through hole is formed.
 このような熱交換器によれば、流通路を介してヘッダ部内の第一室及び第二室のそれぞれに冷媒が導入される。第一室に導入された冷媒は、第一水平貫通孔を介してヘッダ部内の流出側領域に到達する。第二室に導入された冷媒は、第二水平貫通孔を介してヘッダ部内の流出側領域に到達する。即ち、第一室及び第二室に供給された冷媒は、それぞれ強制的に第一水平貫通孔又は第二水平貫通孔に案内されて流出側領域に供給されることになる。この際、第一室又は第二室内を冷媒が第一水平貫通孔又は第二水平貫通孔に向けて上下方向に移動することで、冷媒の移動経路を長くすることができる。これによって、第一室及び第二室内での気液二相状態の冷媒の混合促進を図ることができる。
 さらに、第一水平貫通孔と第二水平貫通孔とは異なる上下方向位置に形成されているため、流出側領域にはそれぞれ異なる上下方向位置から冷媒が供給される。これにより、流出側領域内におけるより広い上下方向範囲に冷媒を供給することができる。また、第一水平貫通孔、第二水平貫通孔それぞれから供給された冷媒が互いに混合されることにより、流出側領域全体として冷媒の気液割合の均一化を図ることができる。そのため、比較的上方に配置された伝熱管にも液相の冷媒を効果的に導入することができる。
According to such a heat exchanger, the refrigerant is introduced into each of the first chamber and the second chamber in the header portion via the flow passage. The refrigerant introduced into the first chamber reaches the outflow side area in the header through the first horizontal through hole. The refrigerant introduced into the second chamber reaches the outflow side region in the header portion via the second horizontal through hole. That is, the refrigerant supplied to the first chamber and the second chamber is forcibly guided to the first horizontal through hole or the second horizontal through hole, and is supplied to the outflow side region. At this time, the moving path of the refrigerant can be made longer by moving the refrigerant vertically in the first chamber or the second chamber toward the first horizontal through hole or the second horizontal through hole. This can promote mixing of the gas-liquid two-phase refrigerant in the first chamber and the second chamber.
Furthermore, since the first horizontal through hole and the second horizontal through hole are formed at different vertical positions, the refrigerant is supplied to the outflow side region from different vertical positions. Thereby, the refrigerant can be supplied to a wider vertical range in the outflow side region. Further, the refrigerant supplied from the first horizontal through hole and the second horizontal through hole are mixed with each other, so that the gas-liquid ratio of the refrigerant can be made uniform in the entire outflow side region. Therefore, it is possible to effectively introduce the liquid phase refrigerant also into the heat transfer tube disposed relatively upward.
 本発明の第二の態様によれば、上記熱交換器では、前記第一水平貫通孔が、互いに異なる上下方向位置に複数が形成されており、前記第二水平貫通孔が、互いに異なる上下方向位置に複数が形成されていてもよい。 According to the second aspect of the present invention, in the heat exchanger, a plurality of the first horizontal through holes are formed at mutually different vertical positions, and the second horizontal through holes are different from each other in the vertical direction. A plurality of positions may be formed.
 これによって、第一室から流出側領域に対して上下方向位置の互いに異なる複数個所から冷媒を供給することができる。さらに、第二室から流出側領域に対して上下方向位置の互いに異なる複数個所から冷媒を供給することができる。そのため、流出側領域全体としてより冷媒の気液割合の均一化を図ることができる。 Thus, the refrigerant can be supplied from a plurality of different positions in the vertical direction from the first chamber to the outflow side area. Furthermore, the refrigerant can be supplied from a plurality of different positions in the vertical direction from the second chamber to the outflow side region. Therefore, equalization of the gas-liquid ratio of the refrigerant can be further achieved in the entire outflow side region.
 本発明の第三の態様によれば、上記熱交換器では、前記第一水平貫通孔は、互いに異なる水平方向位置に複数が形成されており、前記第二水平貫通孔は、互いに異なる水平方向位置に複数が形成されていてもよい。 According to the third aspect of the present invention, in the heat exchanger, a plurality of the first horizontal through holes are formed at different horizontal positions, and the second horizontal through holes have different horizontal directions. A plurality of positions may be formed.
 これによって、第一室から流出側領域に対して水平方向位置の互いに異なる複数個所から冷媒を供給することができる。さらに、第二室から流出側領域に対して水平方向位置の互いに異なる複数個所から冷媒を供給することができる。そのため、流出側領域全体としてより一層冷媒の気液割合の均一化を図ることができる。また、水平方向の同一の上下方向位置に第一水平貫通孔、第二水平貫通孔を形成することで、ヘッダ部内の個々の流路の流量や圧損を調整することができる。 Thus, the refrigerant can be supplied from a plurality of different horizontal positions from the first chamber to the outflow side area. Furthermore, the refrigerant can be supplied from a plurality of different horizontal positions from the second chamber to the outflow side region. Therefore, it is possible to further equalize the gas-liquid ratio of the refrigerant as the entire outflow side region. Further, by forming the first horizontal through hole and the second horizontal through hole at the same vertical position in the horizontal direction, it is possible to adjust the flow rate and pressure loss of the individual flow paths in the header portion.
 本発明の第四の態様によれば、上記熱交換器では、前記第一室を水平断面視にて、前記流通路が接続された第一室上流領域と、前記主縦仕切板に面する第一室下流領域とに区画する第一室縦仕切板と、前記第二室を水平断面視にて、前記流通路が接続された第二室上流領域と、前記主縦仕切板に面する第二室下流領域とに区画する第二室縦仕切板と、を備え、前記第一室縦仕切板に、前記第一水平貫通孔と上下方向位置の異なる部分で前記第一室上流領域と前記第一室下流領域とを連通させる第三水平貫通孔が形成され、前記第二室縦仕切板に、前記第二水平貫通孔と上下方向位置の異なる部分で前記第二室上流領域と前記第二室下流領域とを連通させる第四水平貫通孔が形成されていてもよい。 According to the fourth aspect of the present invention, in the heat exchanger, the first chamber faces the first chamber upstream region to which the flow passage is connected and the main vertical partition plate in a horizontal cross-sectional view. A first chamber longitudinal partition plate partitioned into a first chamber downstream region, a second chamber upstream region connected with the flow passage, and the main longitudinal partition plate in a horizontal sectional view of the second chamber A second chamber longitudinal partition plate partitioned into a second chamber downstream region, and the first chamber longitudinal partition plate is disposed at a portion different from the first horizontal through hole in the vertical direction and the first chamber upstream region; A third horizontal through hole communicating with the first chamber downstream region is formed, and the second chamber upstream region and the second chamber vertical partition plate are different in position in the vertical direction from the second horizontal through hole. A fourth horizontal through hole may be formed to communicate with the second chamber downstream region.
 これにより、第一室に供給された冷媒は、流出側領域に到達する前に、第一室上流領域と第一室下流領域とを上下方向に移動しながら進行していく。一方で、第二室に供給された冷媒は、流出側領域に到達する前に、第二室上流領域と第二室下流領域とを上下方向に移動しながら進行していく。これにより、第一室、第二室に導入された冷媒における流出側領域に到達するまでの移動経路の長大化を図ることができる。そのため、移動経路中で気液二相流冷媒の均質化をより一層図ることができる。 Thereby, the refrigerant supplied to the first chamber travels while moving up and down in the first chamber upstream region and the first chamber downstream region before reaching the outflow side region. On the other hand, the refrigerant supplied to the second chamber travels while moving up and down in the second chamber upstream region and the second chamber downstream region before reaching the outflow side region. As a result, it is possible to lengthen the movement path until the refrigerant introduced to the first chamber and the second chamber reaches the outflow side region. Therefore, the gas-liquid two-phase flow refrigerant can be further homogenized in the movement path.
 本発明の第五の態様によれば、上記熱交換器は、前記第一室を、前記流通路が接続された第一室下部領域と、前記第一室下部領域の上方に配置された第一室上部領域とに区画する第一室横仕切板と、前記第二室を、前記流通路が接続された第二室下部領域と、前記第二室下部領域の上方に配置された第二室上部領域とに区画する第二室横仕切板と、を備え、前記第一室横仕切板と前記第二室横仕切板とのうち少なくとも一方に、上下の領域を連通させる上下貫通孔が形成されていてもよい。 According to a fifth aspect of the present invention, the heat exchanger includes the first chamber, a first chamber lower region connected to the flow passage, and a second chamber disposed above the first chamber lower region. A first chamber horizontal partition plate which is divided into one chamber upper region, a second chamber lower region to which the flow passage is connected, and a second chamber disposed above the second chamber lower region An upper and lower through holes for communicating upper and lower areas to at least one of the first chamber horizontal partition plate and the second chamber horizontal partition plate; It may be formed.
 これによって、流通路から第一室下部領域又は第二室下部領域に導入された冷媒のうち上方に進行する冷媒は、第一室横仕切板又は第二室横仕切板に衝突することにより、気液二相流冷媒の均質化を図ることができる。また、第一室と第二室とのうち、第一室上部領域、第二室上部領域を通過してから流出側領域に導入される冷媒は、上下貫通孔を介して上方に向かう際に流速が増大することで、より上方まで冷媒を行き渡らせ易くなる。これによって、上方に配置された伝熱管にもより効果的に冷媒の液相分を供給することができる。 As a result, among the refrigerant introduced into the first chamber lower region or the second chamber lower region from the flow passage, the refrigerant advancing upward collides with the first chamber lateral partition plate or the second chamber lateral partition plate, The gas-liquid two-phase flow refrigerant can be homogenized. Further, when the refrigerant introduced into the outflow side region after passing through the first chamber upper region and the second chamber upper region of the first chamber and the second chamber is directed upward through the upper and lower through holes, As the flow velocity increases, the refrigerant can be more easily spread to the upper side. As a result, the liquid phase of the refrigerant can be more effectively supplied to the heat transfer tube disposed above.
 本発明の第六の態様によれば、上記熱交換器では、前記流通路は、前記ヘッダ部への接続箇所の前記周方向位置が前記流入側縦仕切板と同一箇所とされていることにより、前記流通路の前記ヘッダ部への接続箇所が第一室と第二室とに跨っていてもよい。
 本発明の第七の態様によれば、上記熱交換器では、前記流通路が、前記ヘッダ部内の第一室に連通状態で接続された第一流通路と、前記ヘッダ部内の第二室に連通状態で接続された第二流通路とを有していてもよい。
 これによって、第一室及び第二室のそれぞれに冷媒を強制的に供給することができる。
According to the sixth aspect of the present invention, in the heat exchanger, the circumferential direction position of the connection portion to the header portion is the same as the inflow side vertical partition plate in the flow passage. The connection portion of the flow passage to the header portion may straddle the first chamber and the second chamber.
According to the seventh aspect of the present invention, in the heat exchanger, the flow passage communicates with a first-class passage connected in communication with the first chamber in the header portion and with the second chamber in the header portion It may have a second flow passage connected in a state.
Thus, the refrigerant can be forcibly supplied to each of the first chamber and the second chamber.
 本発明の第八の態様によれば、空気調和機は、上記いずれかの熱交換器を備える。
 これによって、ヘッダ部内から伝熱管に供給される冷媒の均一化を図ることができ、冷房及び暖房性能の低下を回避することができる。
According to an eighth aspect of the present invention, an air conditioner comprises any of the above heat exchangers.
By this, equalization | homogenization of the refrigerant | coolant supplied to a heat exchanger tube from the inside of a header part can be achieved, and the fall of cooling and heating performance can be avoided.
 本発明の熱交換器及び空気調和機によれば、複数の伝熱管を流通する冷媒の不均一化による性能低下を抑制することができる。 According to the heat exchanger and the air conditioner of the present invention, it is possible to suppress the performance deterioration due to the nonuniformization of the refrigerant flowing through the plurality of heat transfer pipes.
本発明の第一実施形態に係る空気調和機の全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the air conditioner concerning 1st embodiment of this invention. 本発明の第一実施形態に係る熱交換器の縦断面図である。It is a longitudinal cross-sectional view of the heat exchanger concerning a first embodiment of the present invention. 本発明の第一実施形態に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger concerning a first embodiment of the present invention. 本発明の第一実施形態に係る熱交換器の第二ヘッダ部の水平断面図である。It is a horizontal sectional view of the 2nd header part of the heat exchanger concerning a first embodiment of the present invention. 本発明の第二実施形態に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger concerning a second embodiment of the present invention. 本発明の第二実施形態に係る熱交換器の第二ヘッダ部の水平断面図である。It is a horizontal sectional view of the 2nd header part of the heat exchanger concerning a second embodiment of the present invention. 本発明の第三実施形態に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger concerning a third embodiment of the present invention. 本発明の第三実施形態に係る熱交換器の第二ヘッダ部の水平断面図である。It is a horizontal sectional view of the 2nd header part of the heat exchanger concerning a third embodiment of the present invention. 本発明の第三実施形態の変形例に係る熱交換器の第二ヘッダ部の水平断面図である。It is a horizontal sectional view of the 2nd header part of the heat exchanger concerning the modification of a third embodiment of the present invention. 本発明の第四実施形態に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger concerning a fourth embodiment of the present invention. 本発明の第四実施形態に係る熱交換器の第二ヘッダ部の水平断面図である。It is a horizontal sectional view of the 2nd header part of the heat exchanger concerning a 4th embodiment of the present invention. 本発明の第五実施形態に係る熱交換器の第二ヘッダ部の水平断面図である。It is a horizontal sectional view of the 2nd header part of the heat exchanger concerning a fifth embodiment of the present invention.
 以下、本発明の第一実施形態に係る熱交換器10を備えた空気調和機1について図1から4を参照して説明する。
 図1に示すように、空気調和機1は、圧縮機2、室内熱交換器3(熱交換器10)、膨張弁4、室外熱交換器5(熱交換器10)、四方弁6、及び、これらを接続する配管7を備えており、これらからなる冷媒回路を構成している。
Hereinafter, the air conditioner 1 provided with the heat exchanger 10 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
As shown in FIG. 1, the air conditioner 1 includes a compressor 2, an indoor heat exchanger 3 (heat exchanger 10), an expansion valve 4, an outdoor heat exchanger 5 (heat exchanger 10), a four-way valve 6, and And a pipe 7 for connecting them, and constitute a refrigerant circuit composed of these.
 圧縮機2は、冷媒を圧縮し、圧縮した冷媒を冷媒回路に供給する。
 室内熱交換器3は、冷媒と室内の空気との間で熱交換を行う。室内熱交換器3は、冷房運転時には蒸発器として用いられ室内から吸熱し、暖房運転時には凝縮器として用いられ室内へ放熱する。室外熱交換器5は、冷媒と室外の空気との間で熱交換を行う。
 膨張弁4は、凝縮器で熱交換をすることで液化した高圧の冷媒を膨張させることで低圧化する。
 室外熱交換器5は、冷房運転時には、凝縮器として用いられ室外へ放熱し、暖房運転時には、蒸発器として用いられ室外から吸熱する。
 四方弁6は、暖房運転時と冷房運転時とで冷媒の流通する方向を切り替える。これにより、冷房運転時には、冷媒が、圧縮機2、室外熱交換器5、膨張弁4及び室内熱交換器3の順に循環する。一方、暖房運転時には、冷媒が、圧縮機2、室内熱交換器3、膨張弁4及び室外熱交換器5、の順に循環する。
The compressor 2 compresses the refrigerant and supplies the compressed refrigerant to the refrigerant circuit.
The indoor heat exchanger 3 exchanges heat between the refrigerant and the indoor air. The indoor heat exchanger 3 is used as an evaporator at the time of cooling operation, absorbs heat from the room, and is used as a condenser at the time of heating operation, and releases heat to the room. The outdoor heat exchanger 5 performs heat exchange between the refrigerant and the air outside the room.
The expansion valve 4 reduces the pressure by expanding a high pressure refrigerant liquefied by heat exchange in the condenser.
The outdoor heat exchanger 5 is used as a condenser and dissipates heat to the outside during cooling operation, and is used as an evaporator and absorbs heat from outside during heating operation.
The four-way valve 6 switches the flow direction of the refrigerant between the heating operation and the cooling operation. Thus, during the cooling operation, the refrigerant circulates in the order of the compressor 2, the outdoor heat exchanger 5, the expansion valve 4, and the indoor heat exchanger 3. On the other hand, during the heating operation, the refrigerant circulates in the order of the compressor 2, the indoor heat exchanger 3, the expansion valve 4, and the outdoor heat exchanger 5.
 次に、上記室内熱交換器3及び室外熱交換器5として用いられる熱交換器10について、図2から図4について説明する。
 図2から図4に示すように、熱交換器10は、複数の伝熱管20、複数のフィン23、一対のヘッダ30、接続管55、主縦仕切板60及び流入側縦仕切板70を備える。
Next, the heat exchanger 10 used as the indoor heat exchanger 3 and the outdoor heat exchanger 5 will be described with reference to FIGS. 2 to 4.
As shown in FIGS. 2 to 4, the heat exchanger 10 includes a plurality of heat transfer pipes 20, a plurality of fins 23, a pair of headers 30, a connection pipe 55, a main longitudinal partition plate 60, and an inflow side longitudinal partition plate 70. .
 伝熱管20は、水平方向に直線状に延びる管状の部材であって、内部に冷媒が流通する流路が形成されている。このような伝熱管20は、上下方向に間隔をあけて複数が配列されており、互いに平行に配置されている。
 本実施形態では、各伝熱管20は扁平管状をなしており、伝熱管20の内部には、前記伝熱管20の延在方向に直交する水平方向に並設された複数の流路が形成されている。これら複数の流路は互いに平行に配列されている。これにより、伝熱管20の延在方向に直交する断面の外形は、伝熱管20の延在方向に直交する水平方向を長手方向とした扁平状とされている。
The heat transfer tube 20 is a tubular member extending linearly in the horizontal direction, and a flow passage in which the refrigerant flows is formed inside. A plurality of such heat transfer tubes 20 are arranged at intervals in the vertical direction, and are arranged in parallel to each other.
In the present embodiment, each heat transfer tube 20 has a flat tubular shape, and inside the heat transfer tube 20, a plurality of flow paths arranged in parallel in the horizontal direction orthogonal to the extending direction of the heat transfer tube 20 are formed. ing. The plurality of flow paths are arranged in parallel to one another. Thus, the outer shape of the cross section orthogonal to the extending direction of the heat transfer tube 20 is flat with the horizontal direction orthogonal to the extending direction of the heat transfer tube 20 as the longitudinal direction.
 フィン23は、上記のように配列された伝熱管20の間にそれぞれ配置されている。本実施形態では、各伝熱管20の延在方向に向かうにしたがって上下に隣り合う伝熱管20に交互に接触するように延びるいわゆるコルゲート状に延びている。なお、フィン23の形状はこれに限定されることはなく、伝熱管20の外周面から張り出すように設けられていれば、いかなる形状であってもよい。 The fins 23 are respectively disposed between the heat transfer tubes 20 arranged as described above. In the present embodiment, the heat transfer tubes 20 extend in a so-called corrugated shape so as to alternately contact the heat transfer tubes 20 vertically adjacent to each other in the extending direction of the heat transfer tubes 20. The shape of the fins 23 is not limited to this, and may be any shape as long as it is provided so as to project from the outer peripheral surface of the heat transfer tube 20.
 一対のヘッダ30は、上記複数の伝熱管20の両端にこれら伝熱管20を挟み込むように設けられている。これら一対のヘッダ30の一方は、外部から熱交換器10内への冷媒の出入り口となる出入口側ヘッダ40とされており、他方は、熱交換器10内で冷媒が折り返すための折り返し側ヘッダ50とされている。 The pair of headers 30 is provided at both ends of the plurality of heat transfer tubes 20 so as to sandwich the heat transfer tubes 20. One of the pair of headers 30 is an inlet / outlet header 40 serving as an inlet / outlet of the refrigerant into the heat exchanger 10 from the outside, and the other is a return side header 50 for the refrigerant to be folded back in the heat exchanger 10. It is assumed.
 出入口側ヘッダ40は、上下方向に延びる筒状の部材であって、上端及び下端が閉塞されるとともに内部が仕切板によって上下二つの領域に区画されている。出入側仕切板41によって区画された下方の領域は下部出入領域42とされ、上方の領域は上部出入領域43とされている。これら下部出入領域42と上部出入領域43とは出入口側ヘッダ40内で互いに非連通状態とされている。これら下部出入領域42及び上部出入領域43は、冷媒回路を構成する配管7がそれぞれ接続されている。
 ここで、複数の伝熱管20のうち、下部出入領域42と連通状態で接続されている伝熱管20は、第一伝熱管21とされており、上部出入領域43と連通状態で接続されている伝熱管20は、第二伝熱管22(伝熱管20)とされている。
The inlet / outlet side header 40 is a cylindrical member extending in the vertical direction, and the upper end and the lower end are closed and the inside is divided into two upper and lower areas by a partition plate. A lower region divided by the in / out side partition plate 41 is a lower in / out region 42, and an upper region is a upper in / out region 43. The lower access area 42 and the upper access area 43 are out of communication with each other in the access header 40. The piping 7 which comprises a refrigerant circuit is each connected to these lower in-and-out area | region 42 and the upper in-and-out area | region 43. As shown in FIG.
Here, among the plurality of heat transfer pipes 20, the heat transfer pipe 20 connected in communication with the lower entrance / exit area 42 is taken as a first heat transfer pipe 21 and is connected in communication with the upper entrance / exit area 43. The heat transfer pipe 20 is a second heat transfer pipe 22 (heat transfer pipe 20).
 折り返し側ヘッダ50は、ヘッダ本体51及び折り返し側仕切板54を備えている。
 ヘッダ本体51は、上下方向に延びる筒状をなす部材であって、上端及び下端が閉塞されている。折り返し側仕切板54は、ヘッダ本体51内に設けられ、前記ヘッダ本体51内の空間を上下二つの領域に区画している。ヘッダ本体51の折り返し側仕切板54の下方の部分は第一ヘッダ部52とされており、ヘッダ本体51の折り返し側仕切板54の上方の部分は第二ヘッダ部53(ヘッダ部)とされている。即ち、本実施形態では、ヘッダ本体51内が折り返し側仕切板54によって区画されることで、折り返し側ヘッダ50に、それぞれ内部に空間を有する第一ヘッダ部52及び第二ヘッダ部53が形成されている。
 換言すれば、第一ヘッダ部52及び第二ヘッダ部53によって折り返し側ヘッダ50が構成されている。
The return side header 50 includes the header main body 51 and the return side partition plate 54.
The header body 51 is a cylindrical member extending in the vertical direction, and the upper end and the lower end are closed. The return side partition plate 54 is provided in the header main body 51, and divides the space in the header main body 51 into upper and lower two regions. The lower portion of the return side partition plate 54 of the header main body 51 is the first header portion 52, and the upper portion of the return side partition plate 54 of the header main body 51 is the second header portion 53 (header portion) There is. That is, in the present embodiment, by dividing the inside of the header main body 51 by the folding side partition plate 54, the first header portion 52 and the second header portion 53 having a space inside are formed in the folding side header 50, respectively. ing.
In other words, the first header portion 52 and the second header portion 53 constitute the return side header 50.
 上記第一伝熱管21は、それぞれ第一ヘッダ部52内と連通状態となるように前記第一ヘッダ部52に水平方向一方側(第一側)から接続されている。また、上記第二伝熱管22は、それぞれ第二ヘッダ部53内と連通状態となるように水平方向一方側(第一側)から前記第二ヘッダ部53に接続されている。換言すれば、第一ヘッダ部52に接続されている伝熱管20が第一伝熱管21とされ、第二ヘッダ部53に接続されている伝熱管20が第二伝熱管22とされている。 The first heat transfer pipe 21 is connected to the first header portion 52 from one side (first side) in the horizontal direction so as to be in communication with the inside of the first header portion 52, respectively. Further, the second heat transfer tubes 22 are connected to the second header portion 53 from one side (first side) in the horizontal direction so as to be in communication with the inside of the second header portion 53, respectively. In other words, the heat transfer pipe 20 connected to the first header portion 52 is the first heat transfer pipe 21, and the heat transfer pipe 20 connected to the second header portion 53 is the second heat transfer pipe 22.
 接続管55は、内部に流路が形成された管状の部材である。接続管55の一端(第一端)は、第一ヘッダ部52に対して前記第一ヘッダ部52の内部と連通状態で接続されている。接続管55の他端(第二端)は、第二ヘッダ部53に対して前記第二ヘッダ部53の内部と連通状態で接続されている。より詳細には、接続管55の一端(第一端)は、第一ヘッダ部52における上下方向の中央部に接続されている。一方で、接続管55の他端(第二端)は、第二ヘッダ部53における下部に接続されている。なお、接続管55は、第一ヘッダ部52及び第二ヘッダ部53に対して、第一伝熱管21及び第二伝熱管22が接続される水平方向一方側(第一側)とは反対側の水平方向他方側(第二側)から接続されている。
 この接続管55の内側に形成された流路が、第一ヘッダ部52内と第二ヘッダ部53内との間で冷媒の流通を可能とする流通路56とされている。
The connection pipe 55 is a tubular member in which a flow path is formed. One end (first end) of the connection pipe 55 is connected to the first header portion 52 in communication with the inside of the first header portion 52. The other end (second end) of the connection pipe 55 is connected to the second header portion 53 in communication with the inside of the second header portion 53. More specifically, one end (first end) of the connection pipe 55 is connected to the central portion in the vertical direction of the first header portion 52. On the other hand, the other end (second end) of the connection pipe 55 is connected to the lower portion of the second header portion 53. Connection pipe 55 is opposite to first header portion 52 and second header portion 53 in the horizontal direction one side (first side) to which first heat transfer pipe 21 and second heat transfer pipe 22 are connected. Are connected from the other side (second side) in the horizontal direction.
A flow passage formed inside the connection pipe 55 is a flow passage 56 which enables the flow of the refrigerant between the inside of the first header portion 52 and the inside of the second header portion 53.
 図2及び図3に示すように、主縦仕切板60は、上下方向に延びる板状の部材であって、第二ヘッダ部53内に設けられている。主縦仕切板60は、第二ヘッダ部53内の空間を水平断面視にて、各第二伝熱管22が接続された領域と接続管55が接続された領域との二つの領域に区画している。主縦仕切板60によって区画された第二伝熱管22が接続された領域は、流出側領域63とされている。主縦仕切板60によって区画された接続管55が接続された領域は流入側領域64とされている。 As shown in FIGS. 2 and 3, the main vertical partition plate 60 is a plate-like member extending in the vertical direction, and is provided in the second header portion 53. The main vertical partition plate 60 divides the space in the second header portion 53 into two regions of a region to which the second heat transfer pipes 22 are connected and a region to which the connection tubes 55 are connected in a horizontal cross-sectional view. ing. An area to which the second heat transfer pipe 22 divided by the main vertical partition plate 60 is connected is an outflow side area 63. An area to which the connection pipe 55 divided by the main vertical partition plate 60 is connected is an inflow side area 64.
 本実施形態では、ヘッダ30は上下方向に延びる円筒形状をなしており、これにともなって内部空間も円筒状をなしている。そして、主縦仕切板60は、円筒状をなす第二ヘッダ部53の内部空間の水平断面視における直径方向に沿うようにして配置されている。これによって、流入側領域64及び流出側領域63はそれぞれ水平断面視が半円形状をなしている。 In the present embodiment, the header 30 has a cylindrical shape extending in the vertical direction, and along with this, the internal space also has a cylindrical shape. And the main vertical partition plate 60 is arrange | positioned so that the diameter direction in the horizontal cross sectional view of the internal space of the 2nd header part 53 which makes a cylindrical shape may be met. Thereby, the inflow side area | region 64 and the outflow side area | region 63 each have comprised the semicircle shape in horizontal cross section view.
 流入側縦仕切板70は、上下方向に延びる板状の部材であって、第二ヘッダ部53内の流入側領域64に設けられている。流入側縦仕切板70は、流入側領域64を水平断面視にて、第二ヘッダ部53の周方向に互いに隣り合う二つの領域に区画している。この二つの領域のうち、接続管55の接続方向である水平方向他方側(第二側)から見て左側の領域は第一室71とされており、右側の領域は第二室72とされている。 The inflow side vertical partition plate 70 is a plate-like member extending in the vertical direction, and is provided in the inflow side area 64 in the second header portion 53. The inflow side vertical partition plate 70 divides the inflow side area 64 into two areas adjacent to each other in the circumferential direction of the second header portion 53 in a horizontal cross-sectional view. Of these two areas, the area on the left side viewed from the other side (second side) in the horizontal direction, which is the connection direction of the connection pipe 55, is the first chamber 71, and the area on the right side is the second chamber 72. ing.
 本実施形態では、流入側縦仕切板70は、円筒状をなす第二ヘッダ部53の内部空間の水平断面視における半径方向に沿うように配置されている。また、流入側縦仕切板70は、主縦仕切板60に直交して延在するように配置されており、これによって第一室71と第二室72との容積は同一とされている。 In the present embodiment, the inflow side vertical partition plate 70 is disposed along the radial direction in the horizontal cross sectional view of the internal space of the cylindrical second header portion 53. Further, the inflow side vertical partition plate 70 is disposed to extend orthogonal to the main vertical partition plate 60, whereby the volumes of the first chamber 71 and the second chamber 72 are made the same.
 ここで、主縦仕切板60における第一室71に面する部分には、前記第一室71と流出側領域63とを連通させる第一水平貫通孔61が形成されている。また、主縦仕切板60における第二室72に面する部分には、前記第二室72と流出側領域63とを連通させる第二水平貫通孔62が形成されている。 Here, in a portion of the main vertical partition plate 60 facing the first chamber 71, a first horizontal through hole 61 for communicating the first chamber 71 and the outflow side region 63 is formed. Further, in a portion of the main vertical partition plate 60 facing the second chamber 72, a second horizontal through hole 62 communicating the second chamber 72 with the outflow side region 63 is formed.
 これら第一水平貫通孔61及び第二水平貫通孔62は、互いに上下方向位置が異なる箇所に配置されている。本実施形態では、第一水平貫通孔61は、主縦仕切板60の下部であって第二ヘッダ部53の最下部に近い箇所に形成されている。また、第二水平貫通孔62は、主縦仕切板60の上部であって第二ヘッダ部53最上部に近い箇所に形成されている。さらに、第一水平貫通孔61及び第二水平貫通孔62の上下方向位置は、接続管55の第二ヘッダ部53への接続箇所の上下方向位置と互いに異なる位置とされている。なお、第一水平貫通孔61及び第二水平貫通孔62の一方のみが接続管55の第二ヘッダ部53への接続箇所と上下方向位置が違っていてもよい。 The first horizontal through holes 61 and the second horizontal through holes 62 are arranged at different positions in the vertical direction. In the present embodiment, the first horizontal through hole 61 is formed in the lower portion of the main vertical partition plate 60 and near the lowermost portion of the second header portion 53. Further, the second horizontal through holes 62 are formed in the upper part of the main vertical partition plate 60 and at a position close to the uppermost part of the second header portion 53. Furthermore, the vertical direction positions of the first horizontal through hole 61 and the second horizontal through hole 62 are different from the vertical direction position of the connection portion of the connection pipe 55 to the second header portion 53. Note that only one of the first horizontal through hole 61 and the second horizontal through hole 62 may be different in the position in the vertical direction from the connection point of the connection pipe 55 to the second header portion 53.
 そして、上記接続管55の第二ヘッダ部53との接続箇所は、流入側縦仕切板70の第二ヘッダ部53における周方向位置と同一箇所とされている。これにより、接続管55の第二ヘッダ部53への接続箇所は第一室71と第二室72とに跨って配置されている。したがって、接続管55から第二ヘッダ部53に導入される冷媒は、第一室71と第二室72との双方に導入されることになる。 The connection point between the connection pipe 55 and the second header portion 53 is the same as the circumferential position of the second header portion 53 of the inflow side vertical partition plate 70. Thus, the connection portion of the connection pipe 55 to the second header portion 53 is disposed across the first chamber 71 and the second chamber 72. Therefore, the refrigerant introduced from the connection pipe 55 to the second header portion 53 is introduced to both the first chamber 71 and the second chamber 72.
 次に上記熱交換器10が蒸発器として用いられる場合の作用及び効果について説明する。
 なお、熱交換器10が室内熱交換器3の場合は空気調和機1の冷房運転時に蒸発器として用いられることになり、室外熱交換器5の場合には空気調和機1の暖房運転時に蒸発器として用いられることになる。
Next, the operation and effect of the case where the heat exchanger 10 is used as an evaporator will be described.
When the heat exchanger 10 is the indoor heat exchanger 3, it is used as an evaporator during the cooling operation of the air conditioner 1, and in the case of the outdoor heat exchanger 5, it evaporates during the heating operation of the air conditioner 1. It will be used as a container.
 熱交換器10が蒸発器として用いられる際には、図2に示す出入口側ヘッダ40の下部出入領域42に配管7から液相分の多い気液二相冷媒が供給される。この冷媒は、下部出入領域42で複数の第一伝熱管21内に分配供給され、第一伝熱管21を流通する過程で前記第一伝熱管21の外部雰囲気との間で熱交換することで蒸発が促される。これにより、第一伝熱管21から折り返し側ヘッダ50の第一ヘッダ部52内に供給される冷媒は、一部が液相から気相に変化したことで液相割合が減少した気液二相冷媒となる。 When the heat exchanger 10 is used as an evaporator, a gas-liquid two-phase refrigerant having a large amount of liquid phase is supplied from the pipe 7 to the lower entrance / exit area 42 of the entrance / exit side header 40 shown in FIG. The refrigerant is distributed and supplied into the plurality of first heat transfer pipes 21 in the lower entrance / exit area 42, and heat is exchanged with the external atmosphere of the first heat transfer pipes 21 in the process of flowing through the first heat transfer pipes 21. Evaporation is prompted. As a result, the refrigerant supplied from the first heat transfer pipe 21 into the first header portion 52 of the return side header 50 is a gas-liquid two-phase gas in which the liquid phase ratio is reduced by the partial change from the liquid phase to the gas phase. It becomes a refrigerant.
 そして、第一ヘッダ部52内に供給される気液二相状態の冷媒は、前記第一ヘッダ部52に接続された接続管55内に導入され、前記接続管55を介して前記第二ヘッダ部53に導入される。この際、図4に示すように、接続管55の第二ヘッダ部53への接続箇所が第一室71及び第二室72に跨っているため、これら第一室71及び第二室72内のそれぞれに冷媒が導入される。 Then, the refrigerant in the gas-liquid two-phase state supplied into the first header portion 52 is introduced into the connection pipe 55 connected to the first header portion 52, and the second header via the connection pipe 55. Introduced in section 53. At this time, as shown in FIG. 4, since the connection portion of the connection pipe 55 to the second header portion 53 spans the first chamber 71 and the second chamber 72, the inside of the first chamber 71 and the second chamber 72 is A refrigerant is introduced into each of the
 第一室71に導入された冷媒は、第二ヘッダ部53の下部に形成された第一水平貫通孔61を介して流出側領域63の下部に導入される。この際、冷媒の流量が小さい場合には、第一室71内に冷媒が貯留されることなく第一水平貫通孔61を介して流出側領域63の下部に導入される。一方、冷媒の流量が大きい場合には、第一室71内にある程度冷媒が貯留された状態で、前記冷媒が順次第一水平貫通孔61を介して流出側領域63の下部に導入される。 The refrigerant introduced into the first chamber 71 is introduced into the lower part of the outflow side area 63 via the first horizontal through hole 61 formed in the lower part of the second header portion 53. At this time, when the flow rate of the refrigerant is small, the refrigerant is not stored in the first chamber 71 and introduced into the lower part of the outflow side region 63 via the first horizontal through hole 61. On the other hand, when the flow rate of the refrigerant is large, the refrigerant is sequentially introduced to the lower part of the outflow side area 63 through the first horizontal through hole 61 in a state where the refrigerant is stored to some extent in the first chamber 71.
 一方、第二室72に導入された冷媒は、冷媒が供給され続けるにしたがって順次第二室72内を上方に移動し、第二ヘッダ部53の上部に形成された第二水平貫通孔62を介して流出側領域63の上部に導入される。即ち、接続管55と第二ヘッダ部53との接続箇所が第二ヘッダ部53の下部に配置されているのに対して、第二室72と流出側領域63とを連通される第二水平貫通孔62は第二ヘッダ部53の上部に配置されているため、第二室72に導入された冷媒は前記第二室72を下方から上方にわたって移動した上で流出側領域63の上部に導入される。 On the other hand, the refrigerant introduced into the second chamber 72 sequentially moves upward in the second chamber 72 as the refrigerant continues to be supplied, and the second horizontal through hole 62 formed in the upper portion of the second header portion 53 It is introduced into the upper part of the outflow side area 63 via That is, while the connection portion between the connection pipe 55 and the second header portion 53 is disposed at the lower portion of the second header portion 53, the second horizontal portion in which the second chamber 72 and the outflow side region 63 are communicated. Since the through hole 62 is disposed at the upper part of the second header part 53, the refrigerant introduced into the second chamber 72 moves from the lower part to the upper part of the second chamber 72 and then introduced to the upper part of the outflow side area 63. Be done.
 そして、第一室71及び第二室72から流出側領域63で導入されたそれぞれ気液二相状態の冷媒は、前記流出側領域63にて互いに混合された上で、第二ヘッダ部53に接続された各伝熱管20内に導入される。その後、冷媒は、第二伝熱管22を流通する過程で前記第二伝熱管22の外部雰囲気との間で熱交換することで、再度蒸発が促される。これにより、第二伝熱管22内にて、冷媒における残存していた液相が気相に変化し、出入口側ヘッダ40の上部出入領域43には気相状態の冷媒が供給される。そして、この冷媒は上部出入領域43から配管7に導入され、冷媒回路を循環することになる。 The refrigerants in the gas-liquid two-phase state introduced from the first chamber 71 and the second chamber 72 in the outflow side area 63 are mixed with each other in the outflow side area 63, and then the second header portion 53 is It is introduced into each connected heat transfer tube 20. Thereafter, the refrigerant exchanges heat with the outside atmosphere of the second heat transfer pipe 22 in the process of flowing through the second heat transfer pipe 22 to promote evaporation again. As a result, the liquid phase remaining in the refrigerant in the second heat transfer pipe 22 changes to the gas phase, and the refrigerant in the gas phase is supplied to the upper entrance / exit area 43 of the entrance / exit side header 40. Then, the refrigerant is introduced into the pipe 7 from the upper entrance / exit area 43 and circulates in the refrigerant circuit.
 以上のように、本実施形態の熱交換器10によれば、第一室71及び第二室72に供給された冷媒は、それぞれ強制的に第一水平貫通孔61又は第二水平貫通孔62に案内されて流出側領域63に供給されることになる。本実施形態では、第二水平貫通孔62が冷媒の導入箇所から上方に離間した位置とされているため、第二室72に導入された冷媒が流出側領域63に導入されるまでの移動経路が長大化する。これによって、気液二相状態の冷媒の第二室72内での混合促進を図ることができる。 As described above, according to the heat exchanger 10 of the present embodiment, the refrigerant supplied to the first chamber 71 and the second chamber 72 is forcibly forced to be the first horizontal through hole 61 or the second horizontal through hole 62. , And supplied to the outflow side area 63. In the present embodiment, since the second horizontal through hole 62 is at a position separated upward from the introduction point of the refrigerant, the movement path until the refrigerant introduced into the second chamber 72 is introduced into the outflow side region 63 Become longer. This can promote mixing of the gas-liquid two-phase refrigerant in the second chamber 72.
 さらに、第一水平貫通孔61と第二水平貫通孔62とは異なる上下方向位置に形成されているため、流出側領域63にはそれぞれ異なる上下方向位置から冷媒が供給される。本実施形態では、流出側領域63の最下部及び最上部のそれぞれから冷媒が導入されるため、流出側領域63の内の上下方向全域での冷媒の気液割合を平均化させることができる。
 そのため、比較的上方に配置された第二伝熱管22にも液相の冷媒を効果的に導入することができる。その結果、本実施形態の熱交換器10を用いた空気調和機では、冷房性能や暖房性能が損なわれることはない。
Furthermore, since the first horizontal through holes 61 and the second horizontal through holes 62 are formed at different vertical positions, the refrigerant is supplied to the outflow side region 63 from different vertical positions. In the present embodiment, since the refrigerant is introduced from the lowermost part and the uppermost part of the outflow side area 63, the gas-liquid ratio of the refrigerant in the whole area in the vertical direction of the outflow side area 63 can be averaged.
Therefore, the liquid-phase refrigerant can be effectively introduced also into the second heat transfer pipe 22 disposed relatively upward. As a result, in the air conditioner using the heat exchanger 10 of the present embodiment, the cooling performance and the heating performance are not impaired.
 次に本発明の第二実施形態に係る熱交換器80について、図5及び図6を参照して説明する。なお、第二実施形態では、第一実施形態と同様の構成要素については、前記第一実施形態同一の符号を付して詳細な説明を省略する。
 図5及び6に示すように、第二実施形態の熱交換器80は、主縦仕切板60に第一水平貫通孔61及び第二水平貫通孔62が複数形成されている点で第一実施形態と相違する。
Next, a heat exchanger 80 according to a second embodiment of the present invention will be described with reference to FIGS. 5 and 6. In the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the detailed description thereof is omitted.
As shown in FIGS. 5 and 6, the heat exchanger 80 of the second embodiment is a first embodiment in that a plurality of first horizontal through holes 61 and second horizontal through holes 62 are formed in the main vertical partition plate 60. It is different from the form.
 本実施形態では第一水平貫通孔61が二つ形成されており、一つ目の第一水平貫通孔61は第一実施形態同様、主縦仕切板60の下部であって、第二ヘッダ部53の径方向外側の部分に形成されている。一方、二つ目の第一水平貫通孔61は、主縦仕切板60の上下方向中央部であって、第二ヘッダ部53の径方向内側の部分に形成されている。 In the present embodiment, two first horizontal through holes 61 are formed, and the first horizontal through hole 61 is a lower portion of the main longitudinal partition plate 60 as in the first embodiment, and the second header portion It is formed on the 53 radial outer part. On the other hand, the second first horizontal through hole 61 is formed at the central portion in the vertical direction of the main vertical partition plate 60 and at the radially inner side of the second header portion 53.
 また、本実施形態では第二水平貫通孔62が二つ形成されており、一つ目の第二水平貫通孔62は第一実施形態同様、主縦仕切板60の上部であって、第二ヘッダ部53の径方向外側の部分に形成されている。一方、二つ目の第二水平貫通孔62は、主縦仕切板60の上下方向中央部であって、第二ヘッダ部53の径方向内側の部分に形成されている。なお、二つ目の第二水平貫通孔62は、二つ目の第一水平貫通孔61よりも上方に形成されているが、上下方向位置の関係はこの逆であってもよい。 Further, in the present embodiment, two second horizontal through holes 62 are formed, and the first second horizontal through hole 62 is an upper portion of the main vertical partition plate 60 as in the first embodiment, and the second It is formed on the radially outer portion of the header portion 53. On the other hand, a second second horizontal through hole 62 is formed at a central portion in the vertical direction of the main vertical partition plate 60 and in a radially inner portion of the second header portion 53. Although the second second horizontal through hole 62 is formed above the second first horizontal through hole 61, the positional relationship in the vertical direction may be reversed.
 この熱交換器80によれば、第一室71に導入された冷媒は、下部の第一水平貫通孔61に加えて上下方向中央部の第一水平貫通孔61を介して流出側領域63に導入される。
 また、第二室72に導入された冷媒は、上部の第二水平貫通孔62に加えて上下方向中央部の第二水平貫通孔62を介して流出側領域63に導入される。
 これによって、第一室71から流出側領域63に対して上下方向位置の互いに異なる複数個所から冷媒を供給することができる。さらに、第二室72から流出側領域63に対して上下方向位置の互いに異なる複数個所から冷媒を供給することができる。そのため、流出側領域63全体として冷媒の気液割合の均一化をより図ることができる。
 なお、水平方向位置の異なる複数の第一水平貫通孔61を同一の上下方向位置に形成してもよく、また、水平方向位置の異なる複数の第二水平貫通孔62を同一の上下方向位置に形成してもよい。これによって、ヘッダ部内の個々の流路の流量や圧損を調整することができる。
According to this heat exchanger 80, the refrigerant introduced into the first chamber 71 is added to the lower first horizontal through hole 61 and the outflow side area 63 through the first horizontal through hole 61 at the center in the vertical direction. be introduced.
Further, the refrigerant introduced into the second chamber 72 is introduced into the outflow side area 63 through the second horizontal through hole 62 in the middle in the vertical direction in addition to the upper second horizontal through hole 62.
As a result, the refrigerant can be supplied from the first chamber 71 to the outflow side area 63 from a plurality of different positions in the vertical direction. Furthermore, the refrigerant can be supplied from the second chamber 72 to the outflow side area 63 from a plurality of different positions in the vertical direction. Therefore, the gas-liquid ratio of the refrigerant can be made more uniform throughout the outflow side region 63.
A plurality of first horizontal through holes 61 having different horizontal positions may be formed at the same vertical position, and a plurality of second horizontal through holes 62 having different horizontal positions may be at the same vertical position. You may form. By this, it is possible to adjust the flow rate and pressure loss of the individual flow paths in the header portion.
 さらに本実施形態では、それぞれ2つの第一水平貫通孔61及び第二水平貫通孔62の水平方向位置が互いに異なっている。そのため、第一室71から流出側領域63に対して上下方向位置のみならず水平方向位置の互いに異なる複数個所から冷媒を供給することができる。さらに、第二室72から流出側領域63に対して上下方向位置のみならず水平方向位置の互いに異なる複数個所から冷媒を供給することができる。そのため、流出側領域63全体としてより一層冷媒の気液割合の均一化を図ることができる。 Furthermore, in the present embodiment, the horizontal positions of the two first horizontal through holes 61 and the second horizontal through holes 62 are different from each other. Therefore, the refrigerant can be supplied from the first chamber 71 to the outflow side area 63 from not only the position in the vertical direction but also from a plurality of different positions in the horizontal direction. Furthermore, the refrigerant can be supplied from the second chamber 72 to the outflow side area 63 from not only the vertical position but also from a plurality of different horizontal positions. Therefore, the gas-liquid ratio of the refrigerant can be further equalized in the entire outflow side region 63.
 次に本発明の第三実施形態に係る熱交換器90について、図7及び図8を参照して説明する。なお、第三実施形態では、第一実施形態と同様の構成要素については、前記第一実施形態同一の符号を付して詳細な説明を省略する。
 図7及び8に示すように、第三実施形態の熱交換器90は、第一室仕切板91及び第二室縦仕切板95を備えている点で第一実施形態と相違する。
Next, a heat exchanger 90 according to a third embodiment of the present invention will be described with reference to FIGS. 7 and 8. In the third embodiment, the same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the detailed description thereof is omitted.
As shown in FIGS. 7 and 8, the heat exchanger 90 of the third embodiment is different from the first embodiment in that the first chamber partition plate 91 and the second chamber vertical partition plate 95 are provided.
 第一室縦仕切板91は上下方向に延びる板状の部材であって、第一室71内に配置されている。この第一室縦仕切板91は、第一室71内を水平断面視にて2つの領域に区画している。この2つの領域のうち接続管55が接続された側の領域は第一室上流領域93とされており、主縦仕切板60に面する領域が第一室下流領域94とされている。 The first chamber vertical partition plate 91 is a plate-like member extending in the vertical direction, and is disposed in the first chamber 71. The first chamber longitudinal partition plate 91 divides the inside of the first chamber 71 into two regions in a horizontal cross sectional view. Of the two regions, the region on the side where the connection pipe 55 is connected is the first chamber upstream region 93, and the region facing the main vertical partition plate 60 is the first chamber downstream region 94.
 この第一室縦仕切板91は、主縦仕切板60と平行に延びるように配置されている。また、第一室縦仕切板91には、第一室上流領域93と第一室下流領域94とを互いに連通させる第三水平貫通孔92が形成されている。この第三水平貫通孔92は、主縦仕切板60に形成された第一水平貫通孔61を上下方向の位置が互いに異なるように形成されている。本実施形態では、第三水平貫通孔92は、第一水平貫通孔61よりも下方に配置されている。
 また、第一水平貫通孔61と第三水平貫通孔92の水平方向位置は互いに異なっている。本実施形態では、第一水平貫通孔61は第二ヘッダ部53の径方向内側に形成されており、第三水平貫通孔92は第二ヘッダ部53の径方向外側に形成されている。
The first chamber longitudinal partition plate 91 is arranged to extend in parallel with the main longitudinal partition plate 60. Further, in the first chamber longitudinal partition plate 91, a third horizontal through hole 92 is formed, which allows the first chamber upstream region 93 and the first chamber downstream region 94 to communicate with each other. The third horizontal through holes 92 are formed so that the positions of the first horizontal through holes 61 formed in the main vertical partition plate 60 in the vertical direction are different from each other. In the present embodiment, the third horizontal through hole 92 is disposed below the first horizontal through hole 61.
Further, the horizontal positions of the first horizontal through hole 61 and the third horizontal through hole 92 are different from each other. In the present embodiment, the first horizontal through hole 61 is formed radially inward of the second header portion 53, and the third horizontal through hole 92 is formed radially outward of the second header portion 53.
 第二室縦仕切板95は上下方向に延びる板状の部材であって、第二室72内に配置されている。この第二室縦仕切板95は、第二室72内を水平断面視にて2つの領域に区画している。この2つの領域のうち接続管55が接続された側の領域は第二室上流領域97とされており、主縦仕切板60に面する領域が第二室下流領域98とされている。 The second chamber vertical partition plate 95 is a plate-like member extending in the vertical direction, and is disposed in the second chamber 72. The second chamber longitudinal partition plate 95 divides the inside of the second chamber 72 into two regions in a horizontal cross sectional view. Of the two regions, the region on the side where the connection pipe 55 is connected is the second chamber upstream region 97, and the region facing the main vertical partition plate 60 is the second chamber downstream region 98.
 この第二室縦仕切板95は、第一室縦仕切板91と同様に主縦仕切板60と平行に延びるように配置されている。また、第二室縦仕切板95には、第二室上流領域97と第二室下流領域98とを互いに連通させる第四水平貫通孔96が形成されている。この第四水平貫通孔96は、主縦仕切板60に形成された第二水平貫通孔62を上下方向の位置が互いに異なるように形成されている。本実施形態では、第四水平貫通孔96は、第二水平貫通孔62よりも上方に配置されている。
 また、第二水平貫通孔62と第四水平貫通孔96の水平方向位置は互いに異なっている。本実施形態では、第二水平貫通孔62は第二ヘッダ部53の径方向内側に形成されており、第四水平貫通孔96は第二ヘッダ部53の径方向外側に形成されている。
Similar to the first chamber vertical partition plate 91, the second chamber vertical partition plate 95 is disposed so as to extend in parallel with the main vertical partition plate 60. Further, in the second chamber longitudinal partition plate 95, a fourth horizontal through hole 96 for communicating the second chamber upstream region 97 and the second chamber downstream region 98 with each other is formed. The fourth horizontal through holes 96 are formed such that the positions of the second horizontal through holes 62 formed in the main vertical partition plate 60 in the vertical direction are different from each other. In the present embodiment, the fourth horizontal through hole 96 is disposed above the second horizontal through hole 62.
Further, the horizontal positions of the second horizontal through hole 62 and the fourth horizontal through hole 96 are different from each other. In the present embodiment, the second horizontal through hole 62 is formed radially inward of the second header portion 53, and the fourth horizontal through hole 96 is formed radially outward of the second header portion 53.
 このような熱交換器90によれば、第一室71に供給された冷媒は、流出側領域63に到達する前に、第一室上流領域93と第一室下流領域94とを上下方向に移動しながら進行していく。一方で、第二室72に供給された冷媒は、流出側領域63に到達する前に、第二室上流領域97と第二室下流領域98とを上下方向に移動しながら進行していく。これにより、第一室71、第二室72に導入された冷媒における流出側領域63に到達するまでの移動経路の長大化を図ることができる。そのため、移動経路中で気液二相流冷媒の均質化をより一層図ることができる。 According to such a heat exchanger 90, the refrigerant supplied to the first chamber 71 vertically moves the first chamber upstream region 93 and the first chamber downstream region 94 before reaching the outflow side region 63. It moves while moving. On the other hand, the refrigerant supplied to the second chamber 72 travels while moving up and down in the second chamber upstream region 97 and the second chamber downstream region 98 before reaching the outflow side region 63. As a result, the movement path of the refrigerant introduced into the first chamber 71 and the second chamber 72 until reaching the outflow side region 63 can be lengthened. Therefore, the gas-liquid two-phase flow refrigerant can be further homogenized in the movement path.
 なお、第三実施形態の変形例として、例えば図9に示すように、第一室縦仕切板91と第二室縦仕切板95とをそれぞれ第一室71内又は第二室72内にて、第二ヘッダ部53の半径方向に沿うように配置してもよい。これによっても、上記同様に冷媒の移動経路の長大化を図ることができる。 As a modification of the third embodiment, for example, as shown in FIG. 9, the first chamber longitudinal partition plate 91 and the second chamber longitudinal partition plate 95 in the first chamber 71 or in the second chamber 72, respectively. , And may be disposed along the radial direction of the second header portion 53. This also makes it possible to lengthen the movement path of the refrigerant as described above.
 次に本発明の第四実施形態に係る熱交換器100について、図10及び図11を参照して説明する。なお、第四実施形態では、第一実施形態と同様の構成要素については、前記第一実施形態同一の符号を付して詳細な説明を省略する。
 図10及図11に示すように、第四実施形態の熱交換器100は、第一室横仕切板101及び第二室横仕切板105を備えている点で第一実施形態と相違する。
Next, a heat exchanger 100 according to a fourth embodiment of the present invention will be described with reference to FIGS. 10 and 11. In the fourth embodiment, the same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the detailed description thereof is omitted.
As shown to FIG. 10 and FIG. 11, the heat exchanger 100 of 4th embodiment is a point which is equipped with the 1st chamber horizontal partition plate 101 and the 2nd chamber horizontal partition plate 105, and differs from 1st embodiment.
 第一室横仕切板101は水平方向に延びる板状の部材であって、第一室71内に配置されている。この第一室横仕切板101は、第一室71内を上下に二つの領域に区画している。この2つの領域のうち接続管55が接続された下方の領域は第一室下部領域103とされており、上方の領域は第一室上部領域104とされている。
 この第一室横仕切板101には、第一室下部領域103と第一室上部領域104とを互いに連通させる第一上下貫通孔102が形成されている。
The first chamber horizontal partition plate 101 is a plate-like member extending in the horizontal direction, and is disposed in the first chamber 71. The first chamber horizontal partition plate 101 divides the inside of the first chamber 71 into two upper and lower regions. Of the two regions, the lower region to which the connection pipe 55 is connected is the first chamber lower region 103, and the upper region is the first chamber upper region 104.
In the first chamber horizontal partition plate 101, first upper and lower through holes 102 are formed to allow the first chamber lower region 103 and the first chamber upper region 104 to communicate with each other.
 第二室横仕切板105は水平方向に延びる板状の部材であって、第二室72内に配置されている。この第二室横仕切板105は、第二室72内を上下に二つの領域に区画している。この2つの領域のうち接続管55が接続された下方の領域は第二室下部領域107とされており、上方の領域は第二室上部領域108とされている。
 この第二室横仕切板105には、第二室下部領域107と第二室上部領域108とを互いに連通させる第二上下貫通孔106が形成されている。
The second chamber lateral partition plate 105 is a horizontally extending plate-like member, and is disposed in the second chamber 72. The second chamber lateral partition plate 105 divides the inside of the second chamber 72 into two upper and lower regions. Of the two regions, the lower region to which the connection pipe 55 is connected is the second chamber lower region 107, and the upper region is the second chamber upper region 108.
A second upper and lower through hole 106 is formed in the second chamber lateral partition plate 105 to allow the second chamber lower area 107 and the second chamber upper area 108 to communicate with each other.
 本実施形態では、主縦仕切板60に形成された第一水平貫通孔61は、第一室下部領域103と流出側領域63とを連通させている。また主縦仕切板60に形成された第二水平貫通孔62は、第二室上部領域108と流出側領域63とを連通させている。 In the present embodiment, the first horizontal through holes 61 formed in the main vertical partition plate 60 communicate the first chamber lower area 103 and the outflow side area 63 with each other. Further, the second horizontal through holes 62 formed in the main vertical partition plate 60 communicate the second chamber upper area 108 with the outflow side area 63.
 このような熱交換器100によれば、流通路56から第一室下部領域103又は第二室下部領域107に導入された冷媒のうち上方に進行する冷媒は、第一室横仕切板101又は第二室横仕切板105に衝突する。これによって、気液二相流状態の冷媒がより撹拌されることになるため、冷媒の均質化をより一層図ることができる。
 また、特に第二室上部領域108を通過してから流出側領域63に導入される第二室72の冷媒は、第二上下貫通孔106を介して上方に向かう際に流速が増大することで、より上方まで冷媒を行き渡らせ易くなる。これによって、上方に配置された第二伝熱管22にもより効果的に冷媒の液相分を供給することができる。
According to such a heat exchanger 100, among the refrigerant introduced from the flow passage 56 to the first chamber lower area 103 or the second chamber lower area 107, the refrigerant traveling upward is the first chamber horizontal partition plate 101 or It collides with the second chamber horizontal partition plate 105. Since the refrigerant | coolant of a gas-liquid two phase flow state will be stirred more by this, homogenization of a refrigerant | coolant can be achieved further.
In addition, the refrigerant in the second chamber 72 introduced into the outflow side region 63 after passing through the second chamber upper region 108 in particular is increased in flow velocity when going upward through the second upper and lower through holes 106. It becomes easy to distribute the refrigerant to the upper side. As a result, the liquid phase of the refrigerant can be more effectively supplied to the second heat transfer pipe 22 disposed above.
 なお、本実施形態では、第一室横仕切板101に第一上下貫通孔102が形成されているが、必ずしも形成されていなくてもよい。第一上下貫通孔102が形成されていれば、例えば冷媒の流量が比較的大きい場合には、一時的に第一室上部領域104に冷媒を貯留できるといった利点はある。また、第一室上部領域104と他の領域との内圧差を低減させることで耐圧性を向上させることができるといった利点もある。
 一方、冷媒の流量が比較的小さい場合には、第一室下部領域103に接続管55から導入された冷媒は第一水平貫通孔61を介して流出側領域63に向かうため、第一室上部領域104まで液相冷媒が到達することはない。
 なお、この第四実施形態では、第三実施形態で説明した第一縦室仕切板91及び第二室縦仕切板95を設けてもよい。
In addition, in this embodiment, although the 1st up-and-down through-hole 102 is formed in the 1st chamber horizontal partition plate 101, it does not necessarily need to be formed. If the first upper and lower through holes 102 are formed, for example, if the flow rate of the refrigerant is relatively large, there is an advantage that the refrigerant can be temporarily stored in the first chamber upper region 104. There is also an advantage that pressure resistance can be improved by reducing the internal pressure difference between the first chamber upper area 104 and the other area.
On the other hand, when the flow rate of the refrigerant is relatively small, the refrigerant introduced from the connection pipe 55 into the first chamber lower region 103 is directed to the outflow side region 63 through the first horizontal through hole 61, so the first chamber upper portion The liquid phase refrigerant does not reach the region 104.
In the fourth embodiment, the first vertical chamber partition plate 91 and the second chamber vertical partition plate 95 described in the third embodiment may be provided.
 次に本発明の第五実施形態に係る熱交換器110について、図12を参照して説明する。第一から第四実施形態では、一つの接続管55が第一室71及び第二室72に跨るように第二ヘッダ部53に接続されていたが、本実施形態では、二つの接続管55が第二ヘッダ部53に接続されている。この接続管55はそれぞれ第一ヘッダ部52にも接続されており、内部が連通路とされている。この場合であっても、第一から第四実施形態同様に第一室71及び第二室72に強制的に冷媒を導入することができる。
 また、接続管55の流路断面積を適宜変更することで、第一室71及び第二室72に導入する冷媒の流量を適宜調整することができる。さらに、各接続管55に流量の異なる冷媒は、気液割合の異なる冷媒を意図的に導入することで、熱交換率の最適化を図ることもできる。
Next, a heat exchanger 110 according to a fifth embodiment of the present invention will be described with reference to FIG. In the first to fourth embodiments, one connection pipe 55 is connected to the second header portion 53 so as to straddle the first chamber 71 and the second chamber 72. However, in the present embodiment, two connection pipes 55 are connected. Are connected to the second header portion 53. Each of the connection pipes 55 is also connected to the first header portion 52, and the inside thereof is a communication passage. Even in this case, the refrigerant can be forcibly introduced into the first chamber 71 and the second chamber 72 as in the first to fourth embodiments.
Moreover, the flow volume of the refrigerant | coolant introduce | transduced into the 1st chamber 71 and the 2nd chamber 72 can be suitably adjusted by changing the flow-path cross-sectional area of the connection pipe | tube 55 suitably. Furthermore, the refrigerants having different flow rates can be intentionally introduced to the connection pipes 55 so as to optimize the heat exchange rate.
 以上、本発明の実施の形態について説明したが、本発明はこれに限定されることなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。 As mentioned above, although embodiment of this invention was described, this invention can be suitably changed in the range which does not deviate from this within the technical idea of the invention, without being limited to this.
 この熱交換器及び空気調和機によれば、複数の伝熱管を流通する冷媒の不均一化による性能低下を抑制することができる。 According to the heat exchanger and the air conditioner, it is possible to suppress the performance deterioration due to the non-uniformization of the refrigerant flowing through the plurality of heat transfer pipes.
 1 空気調和機 
 2 圧縮機   
 3 室内熱交換器   
 4 膨張弁   
 5 室外熱交換器   
 6 四方弁   
 7 配管 
 10   熱交換器  
 20   伝熱管   
 21   第一伝熱管 
 22   第二伝熱管 
 23   フィン   
 30   ヘッダ   
 40   出入口側ヘッダ  
 41   出入側仕切板   
 42   下部出入領域   
 43   上部出入領域   
 50   折り返し側ヘッダ 
 51   ヘッダ本体 
 52   第一ヘッダ部   
 53   第二ヘッダ部   
 54   折り返し側仕切板 
 55   接続管   
 56   流通路   
 60   主縦仕切板 
 61   第一水平貫通孔  
 62   第二水平貫通孔  
 63   流出側領域 
 64   流入側領域 
 70   流入側縦仕切板  
 71   第一室   
 72   第二室   
 80   熱交換器  
 90   熱交換器  
 91   第一室縦仕切板  
 92   第三水平貫通孔  
 93   第一室上流領域  
 94   第一室下流領域  
 95   第二室縦仕切板  
 96   第四水平貫通孔  
 97   第二室上流領域  
 98   第二室下流領域  
 100  熱交換器  
 101  第一室横仕切板  
 102  第一上下貫通孔  
 103  第一室下部領域  
 104  第一室上部領域  
 105  第二室横仕切板  
 106  第二上下貫通孔  
 107  第二室下部領域  
 108  第二室上部領域  
 110  熱交換器  
1 Air conditioner
2 Compressor
3 Indoor heat exchanger
4 Expansion valve
5 Outdoor heat exchanger
6 four-way valve
7 Piping
10 heat exchanger
20 heat transfer tubes
21 first heat transfer tube
22 second heat transfer pipe
23 fins
30 header
40 Entry side header
41 Entry and exit side dividers
42 Lower access area
43 Top access area
50 return side header
51 header body
52 First header
53 Second header
54 Folded side dividers
55 connection pipe
56 channel
60 main vertical partition
61 First horizontal through hole
62 second horizontal through hole
63 Outflow side area
64 Inflow side area
70 inflow side vertical divider
71 First Room
72 second room
80 heat exchanger
90 heat exchanger
91 First room vertical divider
92 third horizontal through hole
93 first room upstream area
94 first room downstream area
95 Second chamber vertical divider
96 Fourth horizontal through hole
97 second chamber upstream area
98 Second room downstream area
100 heat exchanger
101 First room horizontal divider
102 First upper and lower through holes
103 first room lower area
104 First room upper area
105 Second Room Horizontal Divider
106 second upper and lower through holes
107 second chamber lower area
108 Second chamber upper area
110 heat exchanger

Claims (8)

  1.  水平方向に延びて内部に冷媒が流通するとともに、上下方向に間隔をあけて複数が配列された伝熱管と、
     上下方向に延びる管状をなして複数の前記伝熱管の一端が内部空間に連通状態で接続されたヘッダ部と、
     前記ヘッダ部内に連通状態で接続されて冷媒が流通する流通路と、
     前記ヘッダ部内を水平断面視にて、各前記伝熱管が接続された流出側領域と、前記流通路が接続された流入側領域とに区画する主縦仕切板と、
     前記流入側領域を水平断面視にて、前記ヘッダ部の周方向に互いに隣り合い、それぞれ前記流通路と連通する第一室及び第二室に区画する流入側縦仕切板と、
     をさらに有し、
     前記主縦仕切板の前記第一室に面する部分に、前記第一室と前記流出側領域とを連通させる第一水平貫通孔が形成され、
     前記主縦仕切板の前記第二室に面する部分であって前記第一水平貫通孔と異なる上下方向位置の部分に、前記第二室と前記流出側領域とを連通させる第二水平貫通孔が形成されている熱交換器。
    A heat transfer pipe extending in the horizontal direction to allow the refrigerant to flow therein, and a plurality of heat transfer tubes arranged at intervals in the vertical direction,
    A header portion having a tubular shape extending vertically and one end of the plurality of heat transfer tubes being connected in communication with the internal space;
    A flow passage connected in communication with the inside of the header portion and through which the refrigerant flows;
    A main vertical partition plate for dividing the inside of the header portion into an outflow side area to which each heat transfer pipe is connected and an inflow side area to which the flow passage is connected, as viewed in a horizontal cross section;
    The inflow side vertical partition plate which divides the inflow side area into a first chamber and a second chamber respectively adjacent to each other in the circumferential direction of the header section in a horizontal cross sectional view;
    And have
    A first horizontal through hole is formed in a portion facing the first chamber of the main longitudinal partition plate, which connects the first chamber and the outflow side region,
    A second horizontal through hole communicating the second chamber with the outflow side region at a portion facing the second chamber of the main longitudinal partition plate and at a position in the vertical direction different from the first horizontal through hole The heat exchanger that is being formed.
  2.  前記第一水平貫通孔は、互いに異なる上下方向位置に複数が形成されており、
     前記第二水平貫通孔は、互いに異なる上下方向位置に複数が形成されている請求項1に記載の熱交換器。
    A plurality of first horizontal through holes are formed at mutually different vertical positions,
    The heat exchanger according to claim 1, wherein a plurality of second horizontal through holes are formed at different vertical positions.
  3.  前記第一水平貫通孔は、互いに異なる水平方向位置に複数が形成されており、
     前記第二水平貫通孔は、互いに異なる水平方向位置に複数が形成されている請求項1又は2に記載の熱交換器。
    A plurality of first horizontal through holes are formed at different horizontal positions,
    The heat exchanger according to claim 1 or 2, wherein a plurality of second horizontal through holes are formed at different horizontal positions.
  4.  前記第一室を水平断面視にて、前記流通路が接続された第一室上流領域と、前記主縦仕切板に面する第一室下流領域とに区画する第一室縦仕切板と、
     前記第二室を水平断面視にて、前記流通路が接続された第二室上流領域と、前記主縦仕切板に面する第二室下流領域とに区画する第二室縦仕切板と、を備え、
     前記第一室縦仕切板に、前記第一水平貫通孔と上下方向位置の異なる部分で前記第一室上流領域と前記第一室下流領域とを連通させる第三水平貫通孔が形成され、
     前記第二室縦仕切板に、前記第二水平貫通孔と上下方向位置の異なる部分で前記第二室上流領域と前記第二室下流領域とを連通させる第四水平貫通孔が形成されている請求項1から3のいずれか一項に記載の熱交換器。
    A first chamber longitudinal partition plate that divides the first chamber into a first chamber upstream region connected to the flow passage and a first chamber downstream region facing the main longitudinal partition plate in a horizontal sectional view;
    A second chamber longitudinal partition plate that divides the second chamber into a second chamber upstream region connected to the flow passage and a second chamber downstream region facing the main longitudinal partition plate in a horizontal cross-sectional view; Equipped with
    The first chamber longitudinal partition plate is formed with a third horizontal through hole communicating the first chamber upstream region and the first chamber downstream region at portions different in position in the vertical direction from the first horizontal through hole,
    A fourth horizontal through hole is formed in the second chamber longitudinal partition plate to communicate the second chamber upstream region and the second chamber downstream region at different positions in the vertical direction from the second horizontal through hole. The heat exchanger according to any one of claims 1 to 3.
  5.  前記第一室を、前記流通路が接続された第一室下部領域と、前記第一室下部領域の上方に配置された第一室上部領域とに区画する第一室横仕切板と、
     前記第二室を、前記流通路が接続された第二室下部領域と、前記第二室下部領域の上方に配置された第二室上部領域とに区画する第二室横仕切板と、を備え、
     前記第一室横仕切板と前記第二室横仕切板とのうち少なくとも一方に、上下の領域を連通させる上下貫通孔が形成されている請求項1から4のいずれか一項に記載の熱交換器。
    A first chamber horizontal partition plate that divides the first chamber into a first chamber lower region connected to the flow passage and a first chamber upper region disposed above the first chamber lower region;
    A second chamber lateral partition plate that divides the second chamber into a second chamber lower region connected to the flow passage and a second chamber upper region disposed above the second chamber lower region; Equipped
    The heat according to any one of claims 1 to 4, wherein upper and lower through holes communicating upper and lower regions are formed in at least one of the first chamber horizontal partition plate and the second chamber horizontal partition plate. Exchanger.
  6.  前記流通路は、前記ヘッダ部への接続箇所の前記周方向位置が前記流入側縦仕切板と同一箇所とされていることにより、前記流通路の前記ヘッダ部への接続箇所が第一室と第二室とに跨っている請求項1から5のいずれか一項に記載の熱交換器。 In the flow passage, since the circumferential position of the connection portion to the header portion is the same as the inflow side vertical partition plate, the connection portion to the header portion of the flow passage is the first chamber The heat exchanger according to any one of claims 1 to 5, straddling a second chamber.
  7.  前記流通路は、
     前記ヘッダ部内の第一室に連通状態で接続された第一流通路と、
     前記ヘッダ部内の第二室に連通状態で接続された第二流通路とを有する請求項1から5のいずれか一項に記載の熱交換器。
    The flow passage is
    A first class passage connected in communication with the first chamber in the header section;
    The heat exchanger according to any one of claims 1 to 5, further comprising: a second flow passage connected in communication with the second chamber in the header portion.
  8.  請求項1から7のいずれか一項に記載の熱交換器を備える空気調和機。 An air conditioner comprising the heat exchanger according to any one of claims 1 to 7.
PCT/JP2017/002082 2016-02-29 2017-01-23 Heat exchanger and air conditioner WO2017149989A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17759461.1A EP3425320A4 (en) 2016-02-29 2017-01-23 Heat exchanger and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016038354A JP6202451B2 (en) 2016-02-29 2016-02-29 Heat exchanger and air conditioner
JP2016-038354 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017149989A1 true WO2017149989A1 (en) 2017-09-08

Family

ID=59742759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002082 WO2017149989A1 (en) 2016-02-29 2017-01-23 Heat exchanger and air conditioner

Country Status (3)

Country Link
EP (1) EP3425320A4 (en)
JP (1) JP6202451B2 (en)
WO (1) WO2017149989A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052784A (en) * 2017-09-13 2019-04-04 三菱電機株式会社 Heat exchanger and air conditioner
WO2020217271A1 (en) * 2019-04-22 2020-10-29 三菱電機株式会社 Refrigerant distributor, heat exchanger, and refrigeration cycle device
EP3951286A4 (en) * 2019-03-29 2022-12-28 Fujitsu General Limited Heat exchanger

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3075347B1 (en) * 2017-12-19 2020-05-15 Valeo Systemes Thermiques DEVICE FOR DISTRIBUTING A REFRIGERANT FLUID TO BE HOUSED IN A COLLECTOR BOX OF A HEAT EXCHANGER
JP6929451B2 (en) * 2018-04-27 2021-09-01 日立ジョンソンコントロールズ空調株式会社 Air conditioner and heat exchanger
CN108801008B (en) * 2018-09-13 2023-09-26 西安热工研究院有限公司 Printed circuit board type heat exchanger core body with transverse communication structure
US20220316804A1 (en) * 2019-02-04 2022-10-06 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus including the same
US11402161B2 (en) * 2019-04-22 2022-08-02 Hitachi-Johnson Controls Air Conditioning, Inc. Distributor, heat exchanger, indoor unit, outdoor unit, and air-conditioning device
JP7310655B2 (en) * 2020-03-03 2023-07-19 株式会社富士通ゼネラル Heat exchanger
JP6927352B1 (en) * 2020-03-23 2021-08-25 株式会社富士通ゼネラル Heat exchanger
JP6930622B1 (en) * 2020-03-24 2021-09-01 株式会社富士通ゼネラル Heat exchanger
JP7493585B2 (en) * 2020-03-27 2024-05-31 三菱電機株式会社 Heat exchanger, heat exchanger unit and refrigeration cycle device
IT202000024268A1 (en) * 2020-10-14 2022-04-14 Hudson Italiana Fbm HEAD-TUBE SYSTEM FOR THE OPTIMIZED DISTRIBUTION OF THE FLUID IN AN AIR COOLING DEVICE
DE102022112229A1 (en) * 2022-05-16 2023-11-16 Valeo Klimasysteme Gmbh Heat exchanger for a motor vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2044455A (en) * 1935-05-16 1936-06-16 Young Radiator Co Distributing head for evaporators
US4524823A (en) * 1983-03-30 1985-06-25 Suddeutsch Kuhlerfabrik Julius Fr. Behr GmbH & Co. KG Heat exchanger having a helical distributor located within the connecting tank
JPH04174297A (en) * 1990-11-07 1992-06-22 Zexel Corp Heat exchanger
JPH06341736A (en) * 1993-06-01 1994-12-13 Nippondenso Co Ltd Refrigerant condenser
US20080023185A1 (en) * 2006-07-25 2008-01-31 Henry Earl Beamer Heat exchanger assembly
CN201876184U (en) * 2010-09-01 2011-06-22 珠海格力电器股份有限公司 Current collecting pipe and heat exchanger with same
JP2014533819A (en) * 2011-11-18 2014-12-15 エルジー エレクトロニクス インコーポレイティド Heat exchanger
WO2015027783A1 (en) * 2013-08-30 2015-03-05 杭州三花研究院有限公司 Micro-channel heat exchanger and method for manufacturing same
JP2015055405A (en) 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger and air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100201686B1 (en) * 1996-12-31 1999-06-15 오상수 Condenser of an air conditioner for use in an automobile

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2044455A (en) * 1935-05-16 1936-06-16 Young Radiator Co Distributing head for evaporators
US4524823A (en) * 1983-03-30 1985-06-25 Suddeutsch Kuhlerfabrik Julius Fr. Behr GmbH & Co. KG Heat exchanger having a helical distributor located within the connecting tank
JPH04174297A (en) * 1990-11-07 1992-06-22 Zexel Corp Heat exchanger
JPH06341736A (en) * 1993-06-01 1994-12-13 Nippondenso Co Ltd Refrigerant condenser
US20080023185A1 (en) * 2006-07-25 2008-01-31 Henry Earl Beamer Heat exchanger assembly
CN201876184U (en) * 2010-09-01 2011-06-22 珠海格力电器股份有限公司 Current collecting pipe and heat exchanger with same
JP2014533819A (en) * 2011-11-18 2014-12-15 エルジー エレクトロニクス インコーポレイティド Heat exchanger
WO2015027783A1 (en) * 2013-08-30 2015-03-05 杭州三花研究院有限公司 Micro-channel heat exchanger and method for manufacturing same
JP2015055405A (en) 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger and air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3425320A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052784A (en) * 2017-09-13 2019-04-04 三菱電機株式会社 Heat exchanger and air conditioner
EP3951286A4 (en) * 2019-03-29 2022-12-28 Fujitsu General Limited Heat exchanger
US11846472B2 (en) 2019-03-29 2023-12-19 Fujitsu General Limited Heat exchanger
WO2020217271A1 (en) * 2019-04-22 2020-10-29 三菱電機株式会社 Refrigerant distributor, heat exchanger, and refrigeration cycle device
JPWO2020217271A1 (en) * 2019-04-22 2021-10-21 三菱電機株式会社 Refrigerant distributor, heat exchanger and refrigeration cycle equipment
JP7086279B2 (en) 2019-04-22 2022-06-17 三菱電機株式会社 Refrigerant distributor, heat exchanger and refrigeration cycle device

Also Published As

Publication number Publication date
EP3425320A4 (en) 2020-04-01
EP3425320A1 (en) 2019-01-09
JP6202451B2 (en) 2017-09-27
JP2017155992A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
WO2017149989A1 (en) Heat exchanger and air conditioner
JP6664558B1 (en) Heat exchanger, air conditioner with heat exchanger, and refrigerant circuit with heat exchanger
WO2013161799A1 (en) Heat exchanger, and refrigerating cycle device equipped with heat exchanger
WO2018116929A1 (en) Heat exchanger and air conditioner
WO2014188714A1 (en) Heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
WO2017150126A1 (en) Heat exchanger and air conditioner
JP2016095094A (en) Heat exchanger and refrigeration cycle device
JP2018194251A (en) Heat exchanger
WO2017149950A1 (en) Heat exchanger and air conditioner
JP5716496B2 (en) Heat exchanger and air conditioner
WO2017150219A1 (en) Heat exchanger and air conditioner
JPWO2019003428A1 (en) Heat exchanger and refrigeration cycle device
WO2017150221A1 (en) Heat exchanger and air conditioner
JP7292513B2 (en) Heat exchanger and air conditioner using the same
WO2022264348A1 (en) Heat exchanger and refrigeration cycle device
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger
JPWO2016170877A1 (en) Refrigerant evaporator
JP6853867B2 (en) Heat exchanger and air conditioner
JP2013185757A (en) Refrigerant distributor, and heat pump device
JP7146139B1 (en) heat exchangers and air conditioners
JP2001227843A (en) Heat exchanger with receiver tank
JP2019066132A (en) Multi-path type heat exchanger and refrigeration system using the same
JP2020085268A (en) Heat exchanger
CN115698608A (en) Refrigerant distributor, heat exchanger and air conditioner

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017759461

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759461

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759461

Country of ref document: EP

Kind code of ref document: A1