JP2012067971A - Heat exchanger and apparatus - Google Patents

Heat exchanger and apparatus Download PDF

Info

Publication number
JP2012067971A
JP2012067971A JP2010213698A JP2010213698A JP2012067971A JP 2012067971 A JP2012067971 A JP 2012067971A JP 2010213698 A JP2010213698 A JP 2010213698A JP 2010213698 A JP2010213698 A JP 2010213698A JP 2012067971 A JP2012067971 A JP 2012067971A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
pipe
header
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010213698A
Other languages
Japanese (ja)
Other versions
JP5404571B2 (en
Inventor
Takuya Matsuda
拓也 松田
Akira Ishibashi
晃 石橋
Soubu Ri
相武 李
Tadashi Ariyama
正 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010213698A priority Critical patent/JP5404571B2/en
Publication of JP2012067971A publication Critical patent/JP2012067971A/en
Application granted granted Critical
Publication of JP5404571B2 publication Critical patent/JP5404571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger improved in a water discharge property for condensed water, and to provide an apparatus using the heat exchanger.SOLUTION: The heat exchanger 10 includes: a plurality of aluminum-made corrugated fins 1 arranged substantially at equal intervals and connected between adjacent heat transfer pipes 2; a first header 3a connected to one end in the longitudinal direction of the plurality of heat transfer pipes 2; and a second header 3b connected to another end in the longitudinal direction of the plurality of heat transfer pipes 2. The heat transfer pipe 2 includes an aluminum-made flat pipe 2a having a plurality of refrigerant flow paths, and an aluminum-made circular pipe 2b arranged on a plane same as the flat pipe 2a and having one refrigerant flow path. The first header 3a is configured by connecting boundaries between the circular pipe 2b and the flat pipe 2a of the plurality of heat transfer pipes 2, and has therein a partition plate 4 for partitioning the circular pipe 2b side and the flat pipe 2a side, and in a space sandwiched between the outer circumference of the circular pipe 2b and an outer circumference of the flat pipe 2a, a water drainage groove 6 to which condensed water is drained is formed.

Description

本発明は、熱交換器及びこの熱交換器を用いた機器に関し、特に空気中の凝縮水の排水性向上に関するものである。   The present invention relates to a heat exchanger and a device using the heat exchanger, and particularly relates to improvement of drainage of condensed water in air.

従来、扁平管の平面部をほぼ水平に配置し、平面部と平面部との間に波形状のコルゲートフィンを配置した熱交換器が広く普及している。この熱交換器の内で、水捌けの向上と、室内への水滴の浸入防止を図ることを目的として、フィンから空気流の下流側へ突出する突出部を有し、その突出部の上下の折曲線部にほぼ水平に切除された切り欠きを形成したものが知られている。この熱交換器で発生した凝縮水は、空気流の下流側に集まり、切り欠きから下方へ落下する(特許文献1参照)。しかし、特許文献1に開示されている熱交換器では、凝縮水が切り欠きから落下するのは、凝縮水が自重で落下できる程度の大きさまで成長したときであって、しばらく凝縮水が熱交換器に滞留することがあり、その結露水が通風抵抗となって熱交換性能を低下させている。排水性を向上させるために、フィンを平面部と平面部との間からはみ出させ、そのはみ出し部分を介して結露水が下方へ流れる熱交換器を開発し、凝縮水に対する熱交換器の排水性を向上させるものが知られている(特許文献2参照)。   2. Description of the Related Art Conventionally, heat exchangers in which a flat portion of a flat tube is disposed almost horizontally and a corrugated corrugated fin is disposed between the flat portion and the flat portion are widely used. Within this heat exchanger, for the purpose of improving water drainage and preventing water droplets from entering the room, the heat exchanger has a protruding portion that protrudes from the fins toward the downstream side of the air flow, and the protruding portion is folded up and down. What formed the notch cut off substantially horizontally in the curve part is known. The condensed water generated in this heat exchanger gathers on the downstream side of the air flow and falls downward from the notch (see Patent Document 1). However, in the heat exchanger disclosed in Patent Document 1, the condensed water falls from the notch when the condensed water grows to such a size that it can fall by its own weight, and the condensed water is heat exchanged for a while. The dew condensation water becomes a draft resistance and reduces the heat exchange performance. In order to improve drainage, we developed a heat exchanger in which the fins protrude from between the flat part and the condensed water flows downward through the protruding part. Is known (see Patent Document 2).

実公昭63−6632号公報(第3頁、第2図〜第3図)Japanese Utility Model Publication No. 63-6632 (page 3, FIGS. 2 to 3) 特開2008−101847号公報(第6頁〜第9頁、図1〜4)JP 2008-101847 A (6th to 9th pages, FIGS. 1 to 4)

しかしながら、熱交換器の小型化がさらに進む状況下において、熱交換器の小型化は、凝縮水に対する熱交換器の排水性を低下させる可能性が高いので、さらなる排水性の向上が求められている。また、外気温が約2度以下となり、冷媒の蒸発温度がゼロ度以下となる熱交換器に着霜が生じる環境下において、室外熱交換器に特許文献1及び特許文献2に記載された従来の熱交換器を使用すると、空気中の絶対湿度量が多い風上側のフィン、扁平管に着霜が生じ易く、通風抵抗が増大し風量が低下して熱交換性能が低下する課題があった。また、霜を溶かす除霜運転においても、コルゲートフィン上に凝縮水が滞留して、滞留した凝縮水が基点となり霜が生じ易くなるという問題があった。   However, in a situation where the heat exchanger is further downsized, the downsizing of the heat exchanger is likely to reduce the drainability of the heat exchanger with respect to the condensed water, so further improvement in drainage is required. Yes. Further, in an environment in which frost formation occurs in a heat exchanger in which the outside air temperature is about 2 degrees or less and the evaporation temperature of the refrigerant is 0 degrees or less, the conventional heat exchangers described in Patent Document 1 and Patent Document 2 are described in the outdoor heat exchanger. When the heat exchanger is used, there is a problem that frost formation is likely to occur on the fins and flat tubes on the windward side where the absolute humidity amount in the air is large, the ventilation resistance increases, the air volume decreases, and the heat exchange performance decreases. . Further, even in the defrosting operation for melting frost, there is a problem that condensed water stays on the corrugated fin, and the retained condensed water becomes a base point and frost is easily generated.

本発明は上記のような問題点を解決するために為されたものであり、その目的は、凝縮水の排水性を向上させた熱交換器及びこの熱交換器を用いた機器を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat exchanger with improved drainage of condensed water and a device using the heat exchanger. It is in.

本発明に係る熱交換器は、中空の円筒で構成され、長手方向の側面にほぼ等間隔に複数の孔が形成された第1のヘッダーと、第1のヘッダーに対向するように配置され、第1のヘッダーとほぼ同形状、ほぼ同サイズの中空の円筒で構成され、側面の第1のヘッダーの孔と対向する位置に孔が形成された第2のヘッダーと、第1のヘッダーの孔と、第2のヘッダーの第1のヘッダーの孔と対向する位置の孔とを接続する複数の伝熱管と、伝熱管の隣接するもの同士の間に接続された複数のフィンと、を備え、伝熱管は、複数の冷媒流路を有する第1の管と、第1の管と同一平面上に配置され、第1の管の冷媒流路の総断面積よりも小さい総断面積の冷媒流路を有する第2の管とを備え、第1のヘッダーは、第1の管側と前記第2の管側を仕切る仕切り板と、第1の管側に配置された冷媒入口管と、第2の管側に配置された冷媒出口管とを備え、第1の管の外周と第2の管の外周とによって挟まれた空間に空気中の水分がフィン上で冷媒との熱交換により凝縮して形成された凝縮水が排水される排水路を形成するものである。   The heat exchanger according to the present invention is configured by a hollow cylinder, and is arranged to face the first header, the first header having a plurality of holes formed at substantially equal intervals on the side surface in the longitudinal direction, A second header formed of a hollow cylinder having substantially the same shape and size as the first header, and a hole formed at a position facing the first header hole on the side surface; and a hole in the first header And a plurality of heat transfer tubes connecting the holes at positions opposite to the holes of the first header of the second header, and a plurality of fins connected between adjacent ones of the heat transfer tubes, The heat transfer tube is arranged on the same plane as the first tube having a plurality of refrigerant flow paths and the refrigerant flow having a total cross-sectional area smaller than the total cross-sectional area of the refrigerant flow path of the first pipe. A second pipe having a path, and the first header partitions the first pipe side and the second pipe side A cutting plate, a refrigerant inlet pipe arranged on the first pipe side, and a refrigerant outlet pipe arranged on the second pipe side are sandwiched between the outer circumference of the first pipe and the outer circumference of the second pipe. In this space, water in the air is condensed on the fins by heat exchange with the refrigerant to form a drainage path through which condensed water formed is drained.

本発明によれば、扁平管と円管の間にできた隙間が排水路となり、凝縮水がフィン上に留まることなく排水され、通風抵抗増大が抑制できる。水が起因となって発生する腐食も抑制でき信頼性が向上する。   According to the present invention, the gap formed between the flat tube and the circular tube becomes a drainage channel, and the condensed water is drained without staying on the fins, and an increase in ventilation resistance can be suppressed. Corrosion caused by water can be suppressed and reliability is improved.

本発明の実施の形態1を示す熱交換器の構成図である。It is a block diagram of the heat exchanger which shows Embodiment 1 of this invention. 本発明の実施の形態1を示す熱交換器の一部の斜視図である。It is a one part perspective view of the heat exchanger which shows Embodiment 1 of this invention. 本発明の実施の形態1を示す熱交換器の断面図である。It is sectional drawing of the heat exchanger which shows Embodiment 1 of this invention. 本発明の実施の形態1を示す凝縮器として使用する場合の冷媒流れの模式図である。It is a schematic diagram of the refrigerant | coolant flow in the case of using as a condenser which shows Embodiment 1 of this invention. 本発明の実施の形態1を示す蒸発器として使用する場合の冷媒流れの模式図である。It is a schematic diagram of the refrigerant | coolant flow in the case of using as an evaporator which shows Embodiment 1 of this invention. 本発明の実施の形態2を示す熱交換器の断面図である。It is sectional drawing of the heat exchanger which shows Embodiment 2 of this invention. 本発明の実施の形態3を示す熱交換器の断面図である。It is sectional drawing of the heat exchanger which shows Embodiment 3 of this invention.

実施の形態1.
図1は本発明の実施の形態1を示す熱交換器の構成図であり、図1(a)は、熱交換器の全体構成図、図1(b)は、図1(a)のA−A矢視断面図、図1(c)は図1(a)のB−B矢視断面図である。次に、本発明の実施の形態1における熱交換器の構成について図1を用いて説明する。図1(a)に示すように、熱交換器10は、コルゲートフィン1と、このコルゲートフィン1に接続された伝熱管2と、伝熱管2の両端部に配置され、この伝熱管2に接続されたヘッダー3とから構成されている。伝熱管2は、アルミ製の扁平管2aとアルミ製の円管2bから構成され、伝熱管2をその長手方向が重力方向になるようにほぼ等間隔に複数本設置し、伝熱管2の間には、アルミ製の波形状に加工されたコルゲートフィン1がロウ付け接合されている。また、伝熱管2とコルゲートフィン1の下端と上端にはそれぞれ第1のヘッダー3a、第2のヘッダー3bが接続されている。下部のヘッダー(第1のヘッダー)3aは、中空の円筒で構成され、長手方向の側面にほぼ等間隔に複数の孔が形成されており、ここに扁平管2aと円管2bの一端が接続される。また、下部のヘッダー3a内の扁平管2aの接続口と円管2bとの接続口との境界には仕切り板4が設置されている。この仕切り板4は、下部のヘッダー3a内において、扁平管2aを流れる冷媒が円管2bに流れ込まないようにすると同時に円管2bを流れる冷媒が扁平管2aに流れ込まないように遮蔽するためのものである。また、下部のヘッダー3aの扁平管2a側には冷媒入口管8aが取り付けられ、下部のヘッダー3aの円管2b側には冷媒出口管8bが取り付けられている。上部のヘッダー(第2のヘッダー)3bは、下部のヘッダー3aに対向するように配置され、下部のヘッダー3aとほぼ同形状、ほぼ同サイズの中空の円筒で構成されており、側面の下部のヘッダー3aの孔と対向する位置にそれぞれ孔が形成されている。なお、この上部のヘッダー3bには仕切り板も冷媒入口管も冷媒出口管もない。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a heat exchanger showing Embodiment 1 of the present invention, FIG. 1 (a) is an overall configuration diagram of the heat exchanger, and FIG. 1 (b) is A in FIG. 1 (a). -A arrow sectional drawing, FIG.1 (c) is BB arrow sectional drawing of Fig.1 (a). Next, the structure of the heat exchanger in Embodiment 1 of this invention is demonstrated using FIG. As shown in FIG. 1 (a), the heat exchanger 10 is disposed at both ends of the corrugated fin 1, the heat transfer tube 2 connected to the corrugated fin 1, and the heat transfer tube 2, and is connected to the heat transfer tube 2. The header 3 is made up of. The heat transfer tube 2 is composed of an aluminum flat tube 2a and an aluminum circular tube 2b, and a plurality of heat transfer tubes 2 are installed at substantially equal intervals so that the longitudinal direction thereof is in the direction of gravity. The corrugated fin 1 processed into an aluminum corrugated shape is brazed and joined. Moreover, the 1st header 3a and the 2nd header 3b are connected to the lower end and upper end of the heat exchanger tube 2 and the corrugated fin 1, respectively. The lower header (first header) 3a is formed of a hollow cylinder, and a plurality of holes are formed at substantially equal intervals on the side surface in the longitudinal direction. One end of the flat tube 2a and the circular tube 2b is connected to the lower header 3a. Is done. Moreover, the partition plate 4 is installed in the boundary of the connection port of the flat tube 2a in the lower header 3a, and the connection port of the circular tube 2b. The partition plate 4 shields the refrigerant flowing through the flat tube 2a from flowing into the circular tube 2b and at the same time preventing the refrigerant flowing through the circular tube 2b from flowing into the flat tube 2a in the lower header 3a. It is. A refrigerant inlet pipe 8a is attached to the flat pipe 2a side of the lower header 3a, and a refrigerant outlet pipe 8b is attached to the circular pipe 2b side of the lower header 3a. The upper header (second header) 3b is disposed so as to face the lower header 3a, and is composed of a hollow cylinder having substantially the same shape and size as the lower header 3a. Holes are respectively formed at positions facing the holes of the header 3a. The upper header 3b has neither a partition plate, a refrigerant inlet pipe nor a refrigerant outlet pipe.

次に、冷媒の流れについて説明する。冷媒5は冷媒入口管8aから下部のヘッダー3a内の扁平管2a側に入る。この冷媒は、仕切り板4により円管2b側と遮断されているため、円管2b側へ入ることはない。扁平管2a側に入った冷媒はさらに複数の扁平管2a内に分散して入り込む。而して、冷媒はこの扁平管2a内を通り、上昇して上部のヘッダー3bに入る。この上部のヘッダー3bには仕切り板も冷媒入口管も冷媒出口管もないため、扁平管2aから流出した冷媒は、一端合流した直後に複数の円管2bに分散して流れ込む。円管2b内に流れ込んだ冷媒は、円管2b内を通り、下降して下部のヘッダー3a内の円管2b側へ入り、ここで合流した後、冷媒出口管8bより流出する。なお、円管2b側に入った冷媒は仕切り板4により扁平管2a側と遮断されているため、扁平管2a側へは入ることはない。
なお、上述したヘッダー構成は一例を示すものであって、これに限る必要はない。例えば、ヘッダーではなくディストリビュータで接続されてあっても構わない。空気はコルゲートフィン1間を流れ、伝熱管2内を流れる冷媒の温度がコルゲートフィン1を介して空気と熱交換する。
Next, the flow of the refrigerant will be described. The refrigerant 5 enters the flat tube 2a side in the lower header 3a from the refrigerant inlet tube 8a. Since this refrigerant is blocked from the circular tube 2b side by the partition plate 4, it does not enter the circular tube 2b side. The refrigerant that has entered the flat tube 2a side is further dispersed into the plurality of flat tubes 2a. Thus, the refrigerant passes through the flat tube 2a and rises into the upper header 3b. Since the upper header 3b has neither a partition plate, a refrigerant inlet pipe, nor a refrigerant outlet pipe, the refrigerant flowing out of the flat tube 2a flows into the plurality of circular pipes 2b immediately after joining one end. The refrigerant that has flowed into the circular pipe 2b passes through the circular pipe 2b, descends, enters the circular pipe 2b side in the lower header 3a, merges here, and then flows out of the refrigerant outlet pipe 8b. In addition, since the refrigerant | coolant which entered into the circular tube 2b side is interrupted | blocked by the partition plate 4 with the flat tube 2a side, it does not enter into the flat tube 2a side.
Note that the header configuration described above is merely an example, and need not be limited to this. For example, it may be connected by a distributor instead of a header. Air flows between the corrugated fins 1, and the temperature of the refrigerant flowing in the heat transfer tubes 2 exchanges heat with the air via the corrugated fins 1.

図2は本発明の実施の形態1を示す熱交換器の一部の斜視図である。本発明の伝熱管の構成方法について詳細に説明する。伝熱管2は冷媒流路が複数(図2の例では5個)設けられたアルミ製の扁平管2aと円管2bが同一面上に設置される。また、扁平管2aの外周と円管2bの外周とで挟まれた空間には凝縮水が排水される排水溝6が形成される。
1つの扁平管2aを流れる冷媒の量はこの扁平管2aに接続された1つの円管2bを流れる冷媒の量にほぼ等しい。従って、熱交換器10内をほぼ均一に冷媒が流れると仮定すると、円管2b内を流れる冷媒の流量は扁平管2aの全ての冷媒流路を流れる冷媒の総量にほぼ等しい。従って、円管2bの流路の内径が扁平管2aの各流路の内径とほぼ同じであれば、円管2b内を流れる冷媒の流量は扁平管2a内を流れる冷媒の流量に比べ、扁平管2aの冷媒流路の総数にほぼ匹敵する倍数になる。従って、円管2b内を流れる冷媒の速度は扁平管2a内を流れる冷媒の速度に比べ、扁平管2aの冷媒流路の総数にほぼ匹敵する倍数になる。従って、熱交換器10を蒸発器として利用する冷房運転時には、扁平管2a付近のコルゲートフィン1よりも円管2b付近のコルゲートフィン1での空気の冷却効果が大きい。そこで、熱交換を行う空気の流れにおいて、円管2b側を上流とし、扁平管2a側を下流とすると熱交換効率が良くなる。また、熱交換器10を凝縮器として利用する暖房運転時には、扁平管2a付近のコルゲートフィン1よりも円管2b付近のコルゲートフィン1での空気の暖房効果が大きい。そこで、暖房運転の場合も熱交換を行う空気の流れにおいて、円管2b側を上流とし、扁平管2a側を下流とすると熱交換効率が良くなる。
なお、コルゲートフィン1の表面には空気との熱交換効率向上を狙って、空気との接触面積を増やすために形成された複数の切り起こし1aが設けられている。
FIG. 2 is a partial perspective view of the heat exchanger showing Embodiment 1 of the present invention. The construction method of the heat transfer tube of the present invention will be described in detail. The heat transfer tube 2 is provided with an aluminum flat tube 2a and a circular tube 2b on the same plane, each having a plurality of refrigerant channels (five in the example of FIG. 2). A drainage groove 6 for draining condensed water is formed in a space sandwiched between the outer periphery of the flat tube 2a and the outer periphery of the circular tube 2b.
The amount of refrigerant flowing through one flat tube 2a is substantially equal to the amount of refrigerant flowing through one circular tube 2b connected to this flat tube 2a. Accordingly, assuming that the refrigerant flows through the heat exchanger 10 almost uniformly, the flow rate of the refrigerant flowing through the circular tube 2b is substantially equal to the total amount of refrigerant flowing through all the refrigerant flow paths of the flat tube 2a. Therefore, if the inner diameter of the flow path of the circular tube 2b is substantially the same as the inner diameter of each flow path of the flat tube 2a, the flow rate of the refrigerant flowing in the circular tube 2b is flatter than the flow rate of the refrigerant flowing in the flat tube 2a. It becomes a multiple almost equal to the total number of refrigerant flow paths of the pipe 2a. Therefore, the speed of the refrigerant flowing in the circular pipe 2b is a multiple substantially equal to the total number of refrigerant flow paths in the flat pipe 2a as compared with the speed of the refrigerant flowing in the flat pipe 2a. Therefore, at the time of cooling operation using the heat exchanger 10 as an evaporator, the air cooling effect in the corrugated fin 1 near the circular tube 2b is greater than that in the corrugated fin 1 near the flat tube 2a. Therefore, in the air flow for heat exchange, heat exchange efficiency is improved if the circular tube 2b side is the upstream side and the flat tube 2a side is the downstream side. Moreover, at the time of the heating operation which uses the heat exchanger 10 as a condenser, the heating effect of the air in the corrugated fin 1 near the circular pipe 2b is larger than the corrugated fin 1 near the flat pipe 2a. Therefore, also in the heating operation, in the air flow for heat exchange, if the circular tube 2b side is the upstream side and the flat tube 2a side is the downstream side, the heat exchange efficiency is improved.
In addition, the surface of the corrugated fin 1 is provided with a plurality of raised portions 1a formed in order to increase the contact area with air in order to improve the efficiency of heat exchange with air.

図3は本発明の実施の形態1を示す熱交換器の断面図であり、同図中、図2と同符号は同一または相当部分を示す。矢印7は空気中の水分がコルゲートフィン1上で冷却されることで凝縮(結露)して得られた凝縮水の流れの方向を示す。次に、図3を用いて本発明が解決しようとする課題である凝縮水の排水性を向上させる効果について説明する。熱交換器10を蒸発器として使用する際には、図3に白抜きの矢印Aで示すように空気の流れは、円管2b側を上流とし、扁平管2a側を下流とする方向である。この場合、空気の露点温度に対して、コルゲートフィン1面の温度が低いので、空気中の水分の凝縮水がコルゲートフィン1面上に発生する。従来のコルゲートフィン1による熱交換では、凝縮水がコルゲートフィン1上に滞留してしまい、この滞留した凝縮水により通風抵抗が増大し風量が低下して、熱交換能力が低下するという課題があったが、本発明の場合には円管2bの外周と扁平管2aの外周で挟まれた空間に排水溝6が形成されているので、それを介して凝縮水が排水される。なお、図3に実線で示した矢印の内、空気の流れと逆行するものがあるが、排水溝6に流れ込む凝縮水によりコルゲートフィン1上の凝縮水が排水溝6側に引き込まれる負圧が空気流れの風圧よりも強い場合にこのようになることを示しており、この方向は空気の流れの強さにより変わり得る。
また、風下側の扁平管2aの端部を介しても凝縮水が排水される。このように凝縮水が排水溝及び扁平管の端部を介して滞留することなく、スムーズに排水されることにより、通風抵抗は増大することなく風量も低下せず、熱交換能力が高いことを継続することができる。また、水が滞留することで、アルミ製のコルゲートフィン、扁平管、円管が耐食することなく、経年劣化することなく、使用することも可能となる。
FIG. 3 is a cross-sectional view of the heat exchanger showing Embodiment 1 of the present invention, in which the same reference numerals as those in FIG. 2 indicate the same or corresponding parts. An arrow 7 indicates the direction of the flow of condensed water obtained by condensation (condensation) when water in the air is cooled on the corrugated fins 1. Next, the effect of improving the drainage of condensed water, which is a problem to be solved by the present invention, will be described with reference to FIG. When the heat exchanger 10 is used as an evaporator, the air flow is in the direction in which the circular tube 2b side is the upstream side and the flat tube 2a side is the downstream side, as indicated by the white arrow A in FIG. . In this case, since the temperature of the corrugated fin 1 surface is lower than the dew point temperature of air, condensed water of moisture in the air is generated on the corrugated fin 1 surface. In the conventional heat exchange by the corrugated fins 1, the condensed water stays on the corrugated fins 1, and the retained condensed water increases the airflow resistance and reduces the air volume, thereby reducing the heat exchange capacity. However, in the case of the present invention, the drainage groove 6 is formed in the space sandwiched between the outer periphery of the circular tube 2b and the outer periphery of the flat tube 2a, so that condensed water is drained through it. In addition, among the arrows shown by the solid line in FIG. 3, there are those that reverse the flow of air, but there is a negative pressure at which the condensed water on the corrugated fins 1 is drawn into the drainage groove 6 side by the condensed water flowing into the drainage groove 6. This is shown when it is stronger than the wind pressure of the air flow, and this direction can vary depending on the strength of the air flow.
The condensed water is also drained through the end of the leeward flat tube 2a. In this way, the condensed water is smoothly drained without staying through the drainage grooves and the end of the flat tube, so that the ventilation resistance does not increase, the air volume does not decrease, and the heat exchange capacity is high. Can continue. Further, since water stays, the aluminum corrugated fin, the flat tube, and the circular tube can be used without corrosion resistance and without deterioration over time.

図4は本発明の実施の形態1を示す凝縮器として使用する場合の冷媒流れ方向の模式図である。上述したように、熱交換器10を凝縮器とする場合、空気の流れ方向Aについては、円管2b側を上流とし、扁平管2a側を下流とする方向にすると熱交換効率が良い。従って、本発明の熱交換器10を凝縮器として使用する場合は、図4に示すように空気の流れAに対して対向流となるように、扁平管2a→円管2bの順番に冷媒を流すようにする。凝縮器内の冷媒は加熱ガス→二相→過冷却液(SC度)の順番で相変化を伴い、過冷却領域(SC度)を大きくとることでp−h線図よりエンタルピー差を大きくとれ、熱交換能力を大きくすることができる。しかしながら、冷媒の過冷却液状態の管内熱伝達率は、二相状態の管内熱伝達率に対して大きく低下するので、冷媒の流速を増加させる必要がある。本発明の場合は、冷媒を扁平管2a→円管2bの順番に流すことにより、円管2b内の流速が上がり、過冷却液状態の管内熱伝達率が向上するので、過冷却液(SC度)を大きくとることができる。この結果、エンタルピー差を大きく取ることができるので、熱交換能力が向上する。   FIG. 4 is a schematic diagram of the refrigerant flow direction when used as a condenser according to Embodiment 1 of the present invention. As described above, when the heat exchanger 10 is a condenser, with respect to the air flow direction A, heat exchange efficiency is good when the circular tube 2b side is the upstream side and the flat tube 2a side is the downstream side. Therefore, when using the heat exchanger 10 of the present invention as a condenser, as shown in FIG. 4, the refrigerant is supplied in the order of the flat tube 2a → the circular tube 2b so as to be opposed to the air flow A. Make it flow. The refrigerant in the condenser undergoes a phase change in the order of heated gas → two phases → supercooled liquid (SC degree), and the enthalpy difference can be increased from the ph diagram by increasing the supercooling region (SC degree). The heat exchange capacity can be increased. However, since the heat transfer coefficient in the supercooled liquid state of the refrigerant is greatly reduced with respect to the heat transfer coefficient in the two-phase state, it is necessary to increase the flow rate of the refrigerant. In the case of the present invention, by flowing the refrigerant in the order of the flat tube 2a → the circular tube 2b, the flow rate in the circular tube 2b is increased and the heat transfer coefficient in the tube in the supercooled liquid state is improved. Degree) can be increased. As a result, since a large enthalpy difference can be obtained, the heat exchange capability is improved.

図5は本発明の実施の形態1を示す蒸発器として使用する場合の冷媒流れ方向の模式図である。上述したように、熱交換器10を蒸発器とする場合も、空気の流れ方向Aについては、円管2b側を上流とし、扁平管2a側を下流とする方向にすると熱交換効率が良い。従って、本発明の熱交換器10を蒸発器として使用する場合は、図5に示すように空気流れに対して平行流となるように、円管2b→扁平管2aの順番に冷媒を流すようにする。一般的な空調機の中では四方弁が用いられており、暖房、冷房運転の切り替えには四方弁により冷媒が逆方向に流されるので、凝縮器の場合は扁平管2a→円管2bとなり空気流れに対して対向流となり、蒸発器の場合は円管2b→扁平管2aとなり、空気流れに対して平行流となる。熱交換器10を蒸発器として使用する場合、特に外気温が約2度以下で、冷媒の蒸発温度がゼロ度以下となる場合は、熱交換器10のコルゲートフィン1、伝熱管2の表面に着霜が生じてしまう。着霜が成長すると、熱交換器10の通風抵抗が増大して、風量が低下して熱交換能力が低下してしまう。さらに、着霜は空気の絶対湿度が大きい風上側に着霜が生じ易い。本発明の場合は冷媒の流れ方向を風上側に設置した円管2bから扁平管2aとしているので、冷媒の蒸発温度が高い冷媒が円管2bを流れるので、風上側のフィン温度が風下側よりも大きくなるので、着霜が生じ易い風上側の着霜量が低減でき、コルゲートフィン1全体に均一に霜が付着する。よって、通風抵抗の増大を抑制し、風量低下も抑制し、熱交換能力の低下を抑制できる。   FIG. 5 is a schematic view of the refrigerant flow direction when used as an evaporator according to Embodiment 1 of the present invention. As described above, even when the heat exchanger 10 is an evaporator, the air flow direction A has good heat exchange efficiency when the circular tube 2b side is the upstream side and the flat tube 2a side is the downstream side. Therefore, when the heat exchanger 10 of the present invention is used as an evaporator, the refrigerant is caused to flow in the order of the circular tube 2b → the flat tube 2a so as to be parallel to the air flow as shown in FIG. To. In general air conditioners, a four-way valve is used, and when switching between heating and cooling operation, the refrigerant flows in the reverse direction by the four-way valve. In the case of an evaporator, the circular tube 2b is changed to a flat tube 2a, and the flow is parallel to the air flow. When the heat exchanger 10 is used as an evaporator, particularly when the outside air temperature is about 2 ° C. or less and the refrigerant evaporation temperature is 0 ° C. or less, the corrugated fins 1 and the heat transfer tubes 2 of the heat exchanger 10 Frosting occurs. When frost formation grows, the ventilation resistance of the heat exchanger 10 increases, the air volume decreases, and the heat exchange capacity decreases. Furthermore, frost formation tends to occur on the windward side where the absolute humidity of air is large. In the case of the present invention, the flow direction of the refrigerant is changed from the circular tube 2b installed on the windward side to the flat tube 2a. Therefore, the refrigerant having a high evaporation temperature of the refrigerant flows through the circular tube 2b. Therefore, the amount of frost formation on the windward side where frost formation is likely to occur can be reduced, and frost adheres uniformly to the entire corrugated fin 1. Therefore, an increase in ventilation resistance can be suppressed, a decrease in air volume can be suppressed, and a decrease in heat exchange capability can be suppressed.

実施の形態2.
図6は本発明の実施の形態2を示す熱交換器の断面図である。図6において、図3と同符号は同一または相当部分である。図6の扁平管2cの形状が図3の扁平管2aと異なる以外は、図3の構成と同じである。次に、この図6を用いて実施の形態1と異なる点についてのみ説明する。本実施の形態2では流路毎の中間部の外周に窪みをもつ扁平管2cを用いている。これにより、外周部の窪み部が円管2bと扁平管2cの間の窪みに加えて排水路となるので、実施の形態1に比べてさらに排水性が向上する。さらに、窪み6a〜6eに相当する分、扁平管2cの重さを実施の形態1よりも低減できる。
Embodiment 2. FIG.
FIG. 6 is a sectional view of a heat exchanger showing Embodiment 2 of the present invention. 6, the same reference numerals as those in FIG. 3 denote the same or corresponding parts. 6 is the same as the configuration of FIG. 3 except that the shape of the flat tube 2c in FIG. 6 is different from that of the flat tube 2a in FIG. Next, only differences from the first embodiment will be described with reference to FIG. In the second embodiment, a flat tube 2c having a depression on the outer periphery of the intermediate portion for each flow path is used. Thereby, since the hollow part of an outer peripheral part becomes a drainage channel in addition to the hollow between the circular pipe 2b and the flat tube 2c, drainage property improves further compared with Embodiment 1. FIG. Furthermore, the weight of the flat tube 2c can be reduced as compared with the first embodiment by the amount corresponding to the recesses 6a to 6e.

実施の形態3.
図7は本発明の実施の形態3を示す熱交換器の断面図である。図7において、図3と同符号は同一または相当部分である。図7の扁平管2dの形状が、図3の扁平管2aと異なる以外は、図3の構成と同じである。次に、この図7を用いて実施の形態1と異なる点についてのみ説明する。本実施の形態3では流路毎の中間部の外周に窪みをもつが、一方の面に窪みを持つとき、他方の面には窪みを持たない扁平管2dを用いている。
Embodiment 3 FIG.
FIG. 7 is a cross-sectional view of a heat exchanger showing Embodiment 3 of the present invention. 7, the same reference numerals as those in FIG. 3 denote the same or corresponding parts. 7 is the same as the configuration of FIG. 3 except that the shape of the flat tube 2d in FIG. 7 is different from that of the flat tube 2a in FIG. Next, only differences from the first embodiment will be described with reference to FIG. In the third embodiment, a hollow is provided on the outer periphery of the intermediate portion for each flow path, but when there is a depression on one surface, a flat tube 2d having no depression on the other surface is used.

なお、上記の例では、1つの扁平管に1つの円管を対応させて設けたが、これに限る必要はない。例えば、1つの扁平管の長手方向の両端に1つずつ円管を設けてもよい。また、扁平管の総流路面積が円管の総流路面積よりも大きい範囲で、1つの扁平管当たりの円管の数をさらに増やしても良い。さらに、扁平管の代わりに複数の円管を用いてもよい。また円管の代わりに扁平管を用いても良い。従って、管の組合せとして、扁平管と円管の組み合わせ、扁平管のみの組み合わせ、円管のみの組み合わせが考えられる。
また、上記の例では、コルゲートフィンについて説明したが、これに限る必要はなく、例えばプレートフィンを使用しても良い。
In the above example, one flat tube is provided corresponding to one flat tube, but the present invention is not limited to this. For example, one circular tube may be provided at each of both ends in the longitudinal direction of one flat tube. Further, the number of circular tubes per flat tube may be further increased in a range in which the total flow channel area of the flat tube is larger than the total flow channel area of the circular tube. Further, a plurality of circular tubes may be used instead of the flat tube. A flat tube may be used instead of the circular tube. Therefore, as a combination of tubes, a combination of a flat tube and a circular tube, a combination of only a flat tube, and a combination of only a circular tube are conceivable.
In the above example, the corrugated fin has been described. However, the present invention is not limited to this, and for example, a plate fin may be used.

上記実施の形態1〜3に記載された熱交換器10は、空気調和機の室外機、室内機、冷凍機器などの機器に用いられる。   The heat exchanger 10 described in the first to third embodiments is used for an air conditioner outdoor unit, an indoor unit, a refrigeration unit, and the like.

1 コルゲートフィン、1a 切り起こし、2 伝熱管、2a 扁平管、2b 円管、2c 扁平管、2d 扁平管、3a 下部のヘッダー(第1のヘッダー)、3b 上部のヘッダー(第2のヘッダー)、4 仕切り板、5 冷媒、6 排水溝、6a〜6e 窪み、7 凝縮水の流れ、8a 冷媒入口管、8b 冷媒出口管、10 熱交換器。   1 corrugated fin, 1a cut and raised, 2 heat transfer tube, 2a flat tube, 2b circular tube, 2c flat tube, 2d flat tube, 3a lower header (first header), 3b upper header (second header), 4 partition plate, 5 refrigerant, 6 drainage groove, 6a-6e depression, 7 flow of condensed water, 8a refrigerant inlet pipe, 8b refrigerant outlet pipe, 10 heat exchanger.

Claims (12)

中空の円筒で構成され、長手方向の側面にほぼ等間隔に複数の孔が形成された第1のヘッダーと、
この第1のヘッダーに対向するように配置され、前記第1のヘッダーとほぼ同形状、ほぼ同サイズの中空の円筒で構成され、側面の前記第1のヘッダーの孔と対向する位置に孔が形成された第2のヘッダーと、
前記第1のヘッダーの孔と、前記第2のヘッダーの前記第1のヘッダーの孔と対向する位置の孔とを接続する複数の伝熱管と、
この伝熱管の隣接するもの同士の間に接続された複数のフィンと、を備え、
前記伝熱管は、複数の冷媒流路を有する第1の管と、この第1の管と同一平面上に配置され、前記第1の管の冷媒流路の総断面積よりも小さい総断面積の冷媒流路を有する第2の管とを備え、
前記第1のヘッダーは、前記第1の管側と前記第2の管側を仕切る仕切り板と、前記第1の管側に配置された冷媒入口管と、前記第2の管側に配置された冷媒出口管とを備え、
前記第1の管の外周と前記第2の管の外周とによって挟まれた空間に空気中の水分が前記フィン上で冷媒との熱交換によって凝縮して形成された凝縮水が排水される排水路を形成することを特徴とする熱交換器。
A first header composed of a hollow cylinder and having a plurality of holes formed at substantially equal intervals on a side surface in the longitudinal direction;
The first header is disposed so as to face the first header, is configured by a hollow cylinder having substantially the same shape and size as the first header, and a hole is formed at a position facing the first header hole on the side surface. A formed second header;
A plurality of heat transfer tubes connecting the holes of the first header and the holes of the second header at positions facing the holes of the first header;
A plurality of fins connected between adjacent ones of the heat transfer tubes,
The heat transfer tube is disposed on the same plane as the first tube having a plurality of refrigerant flow paths, and has a total cross-sectional area smaller than the total cross-sectional area of the refrigerant flow paths of the first pipes. A second pipe having a refrigerant flow path of
The first header is disposed on a partition plate that partitions the first tube side and the second tube side, a refrigerant inlet tube disposed on the first tube side, and the second tube side. And a refrigerant outlet pipe
Wastewater in which water in the air is condensed by heat exchange with the refrigerant on the fins in a space sandwiched between the outer periphery of the first tube and the outer periphery of the second tube. A heat exchanger characterized by forming a path.
凝縮器として使用される場合には、冷媒が前記第1の管から前記第2の管へ流れ、空気の流れる方向とは対向流となることを特徴とする請求項1記載の熱交換器。   2. The heat exchanger according to claim 1, wherein when used as a condenser, the refrigerant flows from the first pipe to the second pipe, and is opposed to the direction in which air flows. 蒸発器として使用される場合には、冷媒が前記第2の管から前記第1の管へ流れ、空気の流れる方向とは平行流となることを特徴とする請求項1記載の熱交換器。   2. The heat exchanger according to claim 1, wherein when used as an evaporator, the refrigerant flows from the second pipe to the first pipe, and is parallel to a direction in which air flows. 前記第1の管はさらに、隣接する流路間の外周に形成された窪みを有し、全体として蛇腹状を呈することを特徴とする請求項1〜3のいずれか一項に記載の熱交換器。   The heat exchange according to any one of claims 1 to 3, wherein the first tube further has a depression formed on an outer periphery between adjacent flow paths, and has a bellows shape as a whole. vessel. 前記第1の管は一方の面に窪みを持つとき、他方の面には窪みを持たないことを特徴とする請求項4記載の熱交換器。   5. The heat exchanger according to claim 4, wherein when the first pipe has a depression on one side, the first pipe has no depression on the other side. 前記第1の管は複数の孔を有する金属製の扁平管であり、前記第2の管は金属製の円管であることを特徴とする請求項1〜5のいずれか一項に記載の熱交換器。   The said 1st pipe | tube is a metal flat tube which has a some hole, The said 2nd pipe | tube is a metal circular pipe, The Claim 1 characterized by the above-mentioned. Heat exchanger. 前記第1の管は複数の孔を有する金属製の扁平管であり、前記第2の管は複数の孔を有する金属製の扁平管であることを特徴とする請求項1〜5のいずれか一項に記載の熱交換器。   The first tube is a metal flat tube having a plurality of holes, and the second tube is a metal flat tube having a plurality of holes. The heat exchanger according to one item. 前記第1の管は金属製の円管であり、前記第2の管は複数の孔を有する金属製の扁平管であることを特徴とする請求項1〜5のいずれか一項に記載の熱交換器。   6. The first tube according to claim 1, wherein the first tube is a metal circular tube, and the second tube is a metal flat tube having a plurality of holes. Heat exchanger. 前記第1の管は金属製の円管であり、前記第2の管は金属製の円管であることを特徴とする請求項1〜5のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 5, wherein the first tube is a metal circular tube, and the second tube is a metal circular tube. 前記フィンは金属製の波形状のコルゲートフィンであることを特徴とする請求項1〜9のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 9, wherein the fin is a corrugated fin made of metal corrugation. 前記フィンは金属製のプレートフィンであることを特徴とする請求項1〜9のいずれか一項に記載の熱交換器。   The heat exchanger according to claim 1, wherein the fin is a metal plate fin. 請求項1〜11のいずれか一項に記載の熱交換器を備えたことを特徴とする機器。   The apparatus provided with the heat exchanger as described in any one of Claims 1-11.
JP2010213698A 2010-09-24 2010-09-24 Heat exchanger and equipment Active JP5404571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010213698A JP5404571B2 (en) 2010-09-24 2010-09-24 Heat exchanger and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010213698A JP5404571B2 (en) 2010-09-24 2010-09-24 Heat exchanger and equipment

Publications (2)

Publication Number Publication Date
JP2012067971A true JP2012067971A (en) 2012-04-05
JP5404571B2 JP5404571B2 (en) 2014-02-05

Family

ID=46165443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010213698A Active JP5404571B2 (en) 2010-09-24 2010-09-24 Heat exchanger and equipment

Country Status (1)

Country Link
JP (1) JP5404571B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158795A1 (en) * 2016-03-17 2017-09-21 三菱電機株式会社 Heat exchanger and air conditioner
US10760824B2 (en) 2015-12-17 2020-09-01 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
WO2021234964A1 (en) * 2020-05-22 2021-11-25 三菱電機株式会社 Heat exchanger and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341736A (en) * 1993-06-01 1994-12-13 Nippondenso Co Ltd Refrigerant condenser
JPH07190661A (en) * 1993-12-27 1995-07-28 Hitachi Ltd Heat exchanger
JP2000346568A (en) * 1999-05-31 2000-12-15 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2001336896A (en) * 2000-05-30 2001-12-07 Matsushita Electric Ind Co Ltd Heat exchanger and refrigerating cycle system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341736A (en) * 1993-06-01 1994-12-13 Nippondenso Co Ltd Refrigerant condenser
JPH07190661A (en) * 1993-12-27 1995-07-28 Hitachi Ltd Heat exchanger
JP2000346568A (en) * 1999-05-31 2000-12-15 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2001336896A (en) * 2000-05-30 2001-12-07 Matsushita Electric Ind Co Ltd Heat exchanger and refrigerating cycle system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10760824B2 (en) 2015-12-17 2020-09-01 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
WO2017158795A1 (en) * 2016-03-17 2017-09-21 三菱電機株式会社 Heat exchanger and air conditioner
GB2563169A (en) * 2016-03-17 2018-12-05 Mitsubishi Electric Corp Heat exchanger and air conditioner
JPWO2017158795A1 (en) * 2016-03-17 2018-12-13 三菱電機株式会社 Heat exchanger and air conditioner
US10775081B2 (en) 2016-03-17 2020-09-15 Mitsubishi Electric Corporation Heat exchanger and air conditioner
GB2563169B (en) * 2016-03-17 2021-04-14 Mitsubishi Electric Corp Heat exchanger and air conditioner
WO2021234964A1 (en) * 2020-05-22 2021-11-25 三菱電機株式会社 Heat exchanger and air conditioner
JPWO2021234964A1 (en) * 2020-05-22 2021-11-25

Also Published As

Publication number Publication date
JP5404571B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
JP6641721B2 (en) Heat exchangers and air conditioners
JP4889011B2 (en) Air conditioning system
JP2012163328A5 (en)
JP6214670B2 (en) Heat exchanger and refrigeration cycle apparatus using the heat exchanger
WO2016174802A1 (en) Heat exchanger and air conditioner
JP2006284133A (en) Heat exchanger
JP6157593B2 (en) Heat exchanger and refrigeration cycle air conditioner using the same
JP4845987B2 (en) Air conditioning system
JP5608478B2 (en) Heat exchanger and air conditioner using the same
JP2014137177A (en) Heat exchanger and refrigerator
JP5404571B2 (en) Heat exchanger and equipment
JP2017138085A (en) Heat exchanger
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
JP2009145010A (en) Fin-less heat exchanger for air conditioner
JP3177302U (en) Air conditioning unit
JP2019215161A (en) Outdoor machine of air conditioner, and air conditioner
JP5940895B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP2014137172A (en) Heat exchanger and refrigerator
JP2015014397A (en) Heat exchanger
WO2018040036A1 (en) Micro-channel heat exchanger and air-cooled refrigerator
JP2017133815A (en) Heat exchanger
JP6881550B2 (en) Heat exchanger
JP2012042128A (en) Heat exchanger and air conditioner equipped with the same
KR100925097B1 (en) Water-cooled heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5404571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250