JPH0633234B2 - Diamond thin film manufacturing method - Google Patents

Diamond thin film manufacturing method

Info

Publication number
JPH0633234B2
JPH0633234B2 JP1199298A JP19929889A JPH0633234B2 JP H0633234 B2 JPH0633234 B2 JP H0633234B2 JP 1199298 A JP1199298 A JP 1199298A JP 19929889 A JP19929889 A JP 19929889A JP H0633234 B2 JPH0633234 B2 JP H0633234B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
diamond thin
diamond
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1199298A
Other languages
Japanese (ja)
Other versions
JPH0365594A (en
Inventor
義捷 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1199298A priority Critical patent/JPH0633234B2/en
Publication of JPH0365594A publication Critical patent/JPH0365594A/en
Publication of JPH0633234B2 publication Critical patent/JPH0633234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ダイヤモンド薄膜の製造方法に関するもの
である。さらに詳しくは、この発明は、より低温におい
て、大面積の基板に対しても製造容易な、液相法による
新しいダイヤモンド薄膜の製造方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for producing a diamond thin film. More specifically, the present invention relates to a method for producing a new diamond thin film by a liquid phase method, which is easy to produce even a large-area substrate at a lower temperature.

(従来の技術とその課題) 新素材、新材料が次の時代の技術革新を主導することは
言うまでもないことであるが、近年、特に注目されてい
るものとしてダイヤモンド薄膜がある。このダイヤモン
ドは硬度および熱伝導度が最高の値を有し、耐食生、光
学特性、電気的特性等極めて優れた特性を有している。
そのために、薄膜状ダイヤモンドは半導体のヒートシン
ク、半導体素子、切削工具の保護膜、その他電気電子、
機械、化学等各種の分野にその応用が期待されているも
のである。
(Conventional technology and its problems) Needless to say, new materials and new materials will lead the technological innovation in the next era, but in recent years, diamond thin films have attracted particular attention. This diamond has the highest hardness and the highest thermal conductivity, and has extremely excellent properties such as corrosion resistance, optical properties, and electrical properties.
For that purpose, thin film diamond is used for semiconductor heat sinks, semiconductor elements, protective films for cutting tools, other electric and electronic,
Its application is expected in various fields such as machinery and chemistry.

ダイヤモンド薄膜の製造についてはこれまでにもいくつ
かの提案がなされており、すでに実際の製造法として使
用されているものもある。これらの現在までに採用され
てきているダイヤモンド薄膜の製造法としては、いずれ
も大気圧以下の気相中で行われており、その合成法を大
別すると、物理蒸着(PVD)法と化学蒸着(CVD)
法とに分けられる。このうちのPVD法では炭化水素ガ
スを300℃〜400℃に加熱した基板に接触させて薄
膜を形成している。従ってこの方法においては、基板は
300℃〜400℃の温度に耐えるものでなければなら
ない。また、CVD法は炭化水素ガスの熱分解反応を利
用して薄膜形成している。このため、このCVD法にお
いては基板の温度は更に高く、700℃〜900℃の高
温にさらされる。
Several proposals have been made so far for the production of diamond thin films, and some have already been used as actual production methods. These diamond thin film manufacturing methods that have been adopted so far are all performed in a gas phase at atmospheric pressure or lower. The synthesis methods are roughly classified into physical vapor deposition (PVD) method and chemical vapor deposition. (CVD)
It is divided into law. In the PVD method among them, a hydrocarbon gas is brought into contact with a substrate heated to 300 ° C. to 400 ° C. to form a thin film. Therefore, in this method, the substrate must withstand temperatures of 300 ° C to 400 ° C. Further, the CVD method forms a thin film by utilizing a thermal decomposition reaction of hydrocarbon gas. Therefore, in this CVD method, the temperature of the substrate is even higher, and the substrate is exposed to a high temperature of 700 ° C to 900 ° C.

このように、従来のPVD,CVDのいずれの方法の場
合にも、ダイヤモンド薄膜製造時の基板温度は高く、ま
た、原料ガスの供給や分解等の気相操作がともなうた
め、製造条件のコントロールや、その装置、さらには真
空設備の設置やメンテナンスも面倒なものであった。し
かもまた、対象とする基板の大きさにも制約があった。
As described above, in any of the conventional PVD and CVD methods, the substrate temperature at the time of diamond thin film production is high, and gas phase operations such as supply of raw material gas and decomposition are involved, so that manufacturing conditions can be controlled and However, the installation and maintenance of the device and also the vacuum equipment were troublesome. Moreover, the size of the target substrate is also limited.

たとえば、温度についてみると、実用面において大きな
問題が残されており、前記の通りの高温に耐える基板は
その種類も限られ、工業的応用範囲もおのずと限定され
ざるを得なかった。
For example, regarding the temperature, there remains a big problem in practical use, and the types of substrates that can withstand high temperatures as described above are limited, and the industrial application range is naturally limited.

この発明は、以上の通りの事情に鑑みてなされたもので
あり、従来法の欠点を改善し、より低温度において、か
つ、より大きな基板に対しても、低コストで容易にダイ
ヤモンド薄膜を形成することのできる新しいダイヤモン
ド薄膜の製造法を提供することを目的としている。
The present invention has been made in view of the circumstances as described above, improves the drawbacks of the conventional method, and easily forms a diamond thin film at a lower temperature and on a larger substrate at a low cost. It is an object of the present invention to provide a new method for producing a diamond thin film that can be manufactured.

(課題を解決するための手段) この発明は、上記の通りの課題を解決するものとして、
液状の有機炭素化合物に基板を浸漬し、基板に負の高電
圧を印加するとともに、液状の有機炭素化合物を加熱
し、これに通電して、基板表面にダイヤモンド薄膜を形
成することを特徴とするダイヤモンド薄膜の製造方法を
提供する。
(Means for Solving the Problems) The present invention is intended to solve the above problems.
It is characterized in that a substrate is immersed in a liquid organic carbon compound, a high negative voltage is applied to the substrate, the liquid organic carbon compound is heated, and this is energized to form a diamond thin film on the substrate surface. A method for manufacturing a diamond thin film is provided.

すなわち、この発明は、液相において、しかも基板温度
が100℃以下の従来の気相法に比べてはるかに低温度
においてダイヤモンドの薄膜合成を可能とする。このた
め、ダイヤモンド薄膜の応用範囲は急速に広がり、その
実用価値は計り知れないものとなる。より低温条件で、
しかも大面積基板も対象とすることが容易で、気相に比
べてはるかに操作制御が容易な製造方法が提供される。
That is, the present invention enables the thin film synthesis of diamond in the liquid phase at a much lower temperature than the conventional vapor phase method in which the substrate temperature is 100 ° C. or lower. For this reason, the range of applications of diamond thin films rapidly expands, and their practical value becomes immeasurable. At lower temperatures,
Moreover, it is possible to provide a manufacturing method in which a large-area substrate can be easily applied and whose operation control is far easier than that in the gas phase.

この発明の製造方法においては、ダイヤモンド薄膜形成
のための炭素源として液状の有機炭素化合物を用いる。
この有機物としては、アルコール、エーテル、エステ
ル、ケトン等の含酸素化合物、ハロゲン化炭化水素、炭
化水素、それらの混合物、溶液等の適宜なものが使用で
きるが、導電特性が良好なものが好適に使用される。
In the production method of the present invention, a liquid organic carbon compound is used as a carbon source for forming a diamond thin film.
As the organic substance, oxygen, oxygen, compounds such as alcohols, ethers, esters, ketones, halogenated hydrocarbons, hydrocarbons, mixtures thereof, and appropriate materials such as solutions can be used, but those having good conductive properties are preferable. used.

たとえば、より具体的には、メタノール、エタノール、
アセトン、酢酸メチルエステル、トリクロロエチレン、
ベンゼン等が例示されるが、なかでも導電特性の点から
エタノールを好適なものとして示すことができる。
For example, more specifically, methanol, ethanol,
Acetone, acetic acid methyl ester, trichlorethylene,
Among them, benzene and the like are exemplified, but among them, ethanol can be shown as a preferable one from the viewpoint of the conductive property.

液相反応によるダイヤモンド薄膜形成としてはこの有機
物の導電性をできるだけ増大させ、これに通電する。そ
して、電流密度を増加させることが必要となる。通電
は、ダイヤモンド以外の炭素物質の発生を防止し、ダイ
ヤモンド相のみを成長させるためのイオン電流を確保す
るためのものである。このイオン電流は、基板に印加す
る電圧、そして液相の温度との相関性を有してもいる。
また、導電性のためには、有機物を加熱してその分子解
離を促す。それとともに光照射による解離促進等の手段
を適宜に採用することもできる。また、電流密度の増加
のためにも各種の手法を採用することが望ましい。
In order to form a diamond thin film by liquid phase reaction, the conductivity of this organic substance is increased as much as possible, and electricity is applied to it. Then, it becomes necessary to increase the current density. The energization is to prevent the generation of carbon substances other than diamond and to secure an ion current for growing only the diamond phase. This ionic current also has a correlation with the voltage applied to the substrate and the temperature of the liquid phase.
Further, for conductivity, the organic substance is heated to promote its molecular dissociation. At the same time, a means for promoting dissociation by light irradiation can be appropriately adopted. Further, it is desirable to adopt various methods to increase the current density.

反応には、有機物そのものの液状体でもよいし、あるい
は水、有機溶媒等による溶液を使用してもよい。ダイヤ
モンド薄膜の製造時には、この有機溶液等の液状物を、
好ましくは、100℃以下の温度において加熱する。
For the reaction, a liquid of the organic substance itself may be used, or a solution of water, an organic solvent or the like may be used. At the time of manufacturing a diamond thin film, liquid materials such as this organic solution
Preferably, heating is performed at a temperature of 100 ° C. or lower.

以下、添付した図面に沿ってさらに詳しくこの発明の製
造方法について説明する。
Hereinafter, the manufacturing method of the present invention will be described in more detail with reference to the accompanying drawings.

実施例 第1図は、この発明の方法の装置構成を例示したもので
ある。この装置において、たとえば有機液状物としてエ
タノール(1)を使用し、たとえば比抵抗10Ωcm以上
のシリコン基板(2)の表面にダイヤモンド薄膜を形成
する。もちろん、基板は、このシリコン基板(2)に限
られることはない。また、このシリコン基板(2)の大
きさも、反応槽の大きさによって適宜とすることができ
る。このため、大面積基板の使用も可能となる。
Embodiment FIG. 1 illustrates an apparatus configuration of the method of the present invention. In this apparatus, for example, ethanol (1) is used as an organic liquid substance, and a diamond thin film is formed on the surface of a silicon substrate (2) having a specific resistance of 10 Ωcm or more. Of course, the substrate is not limited to this silicon substrate (2). Further, the size of the silicon substrate (2) can be appropriately set depending on the size of the reaction tank. Therefore, it is possible to use a large area substrate.

また、シリコン基板(2)には、電源(5)によって負
電圧を印加する。
A negative voltage is applied to the silicon substrate (2) by the power source (5).

そして、この例においては、まずエタノール(1)の導
電性を増す手段としてこれをヒーター(3)で加熱し、
その沸点近く迄温度上昇を行い熱的な解離を行ってい
る。温度を計るための熱電対温度計(6)を用いてもい
る。さらに、電流密度を増加させるための手段として、
この装置は電極間に高電圧を印加している。正電極
(4)の電極材料には直径4mm径のカーボン棒を使用
し、負電極のシリコン基板(2)との距離は5〜10mm
に保っている。
And in this example, first, as a means for increasing the conductivity of ethanol (1), it is heated by a heater (3),
The temperature is raised to near the boiling point and thermal dissociation is performed. A thermocouple thermometer (6) for measuring temperature is also used. Furthermore, as a means for increasing the current density,
This device applies a high voltage between the electrodes. A carbon rod with a diameter of 4 mm is used as the electrode material for the positive electrode (4), and the distance from the negative electrode silicon substrate (2) is 5-10 mm.
Keep it at.

第2図は液状物としてのエタノール(2)の温度をパラ
メータとし、基板(2)の電流密度と印加電圧の関係を
示したものである。基板電流は、印加電圧が数Vの時に
は、μA/cm2オーダーであるが、電圧の増加と共にほ
ぼ直線的に増加し、数100VでmA/cm2オーダーの
領域に入る。さらに、この値は溶液の温度によっても増
加し、最後は電極の放電と溶液の沸点によってその限界
値がきまる。
FIG. 2 shows the relationship between the current density of the substrate (2) and the applied voltage using the temperature of ethanol (2) as a liquid substance as a parameter. Substrate current, when the applied voltage is several V is the .mu.A / cm 2 order, substantially increases linearly with increasing voltage, enters mA / cm 2 order of region numbers 100 V. Furthermore, this value also increases with the temperature of the solution, and finally the limit value is determined by the discharge of the electrode and the boiling point of the solution.

一方、電流は時間によっても変化する。この変化によっ
てダイヤモンドの絶縁膜がシリコン基板上に成形されて
いくことが分かる。第2図は通電後3時間経過したとき
の図である。
On the other hand, the current changes with time. It can be seen that the diamond insulating film is formed on the silicon substrate by this change. FIG. 2 is a diagram when 3 hours have passed after energization.

また、基板電流の時間的変化の1例を示したものが第3
図である。
In addition, the third example shows one example of the change over time of the substrate current.
It is a figure.

第4図は基板上に形成されたダイヤモンド膜の膜厚と通
電時間の1例を示したものである。この図のように、膜
厚は時間と共に増加するが、膜厚の増加と共に電流は流
れなくなり、10時間以上経過すると飽和状態を示すよ
うになる。飽和する膜厚は実験においては3000〜4
000Åであったが、この限界は合成条件でによって変
化する。
FIG. 4 shows an example of the film thickness of the diamond film formed on the substrate and the energization time. As shown in this figure, the film thickness increases with time, but as the film thickness increases, no current flows, and after 10 hours or more, the film becomes saturated. In the experiment, the saturated film thickness is 3000-4
Although it was 000Å, this limit varies depending on the synthesis conditions.

合成された膜の結晶構造は電子線の透過像および回折像
より評価した。次の第1表は、ダイヤモンドと膜の面間
隔を示したものである。また、膜の結晶粒は数100Å
以下の微結晶で構成されていることが透過像により確認
された。
The crystal structure of the synthesized film was evaluated from an electron beam transmission image and a diffraction image. Table 1 below shows the interplanar spacing between the diamond and the film. Also, the crystal grains of the film are several hundred Å
It was confirmed from the transmission image that the crystals were composed of the following microcrystals.

【図面の簡単な説明】 第1図は、この発明の方法のための装置例を示した構成
図である。 第2図は装置の電極間に電圧を印加した場合に流れる基
板電流密度を温度をパラメータとして表した相関図であ
る。第3図は基板電流密度と通電時間の関係を表した相
関図。第4図は基板上に形成された膜の膜厚と時間の関
係を示した相関図である。 1……エタノール 2……シリコン 3……ヒーター 4……正電極 5……電源 6……熱電対温度計
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an example of an apparatus for the method of the present invention. FIG. 2 is a correlation diagram showing the substrate current density flowing when a voltage is applied between the electrodes of the device with temperature as a parameter. FIG. 3 is a correlation diagram showing the relationship between the substrate current density and the energization time. FIG. 4 is a correlation diagram showing the relationship between the film thickness of the film formed on the substrate and time. 1 …… Ethanol 2 …… Silicon 3 …… Heater 4 …… Positive electrode 5 …… Power supply 6 …… Thermocouple thermometer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】液状の有機炭素化合物に基板を浸漬し、基
板に負の高電圧を印加するとともに、液状の有機炭素化
合物を加熱し、これに通電して、基板表面にダイヤモン
ド薄膜を形成することを特徴とするダイヤモンド薄膜の
製造方法。
1. A substrate is dipped in a liquid organic carbon compound, a negative high voltage is applied to the substrate, and the liquid organic carbon compound is heated and energized to form a diamond thin film on the surface of the substrate. A method for producing a diamond thin film, comprising:
JP1199298A 1989-08-02 1989-08-02 Diamond thin film manufacturing method Expired - Fee Related JPH0633234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1199298A JPH0633234B2 (en) 1989-08-02 1989-08-02 Diamond thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1199298A JPH0633234B2 (en) 1989-08-02 1989-08-02 Diamond thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPH0365594A JPH0365594A (en) 1991-03-20
JPH0633234B2 true JPH0633234B2 (en) 1994-05-02

Family

ID=16405477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1199298A Expired - Fee Related JPH0633234B2 (en) 1989-08-02 1989-08-02 Diamond thin film manufacturing method

Country Status (1)

Country Link
JP (1) JPH0633234B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320845A (en) * 2006-05-30 2007-12-13 Korea Univ Foundation Method for forming diamond having hexagonal nanoplate structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023091834A (en) * 2021-12-21 2023-07-03 国立研究開発法人物質・材料研究機構 Diamond particle, and method of producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213612A (en) * 1982-06-01 1983-12-12 Shigeo Nishida Preparation of artificial diamond
JPS593016A (en) * 1982-06-30 1984-01-09 Shigeo Nishida Manufacture of diamond

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320845A (en) * 2006-05-30 2007-12-13 Korea Univ Foundation Method for forming diamond having hexagonal nanoplate structure
JP4663668B2 (en) * 2006-05-30 2011-04-06 コリア ユニバーシティ ファウンデーション Method for forming hexagonal nano-plate structure diamond

Also Published As

Publication number Publication date
JPH0365594A (en) 1991-03-20

Similar Documents

Publication Publication Date Title
Lim et al. Roll‐to‐Roll Production of Layer‐Controlled Molybdenum Disulfide: A Platform for 2D Semiconductor‐Based Industrial Applications
Giri et al. Ultralow thermal conductivity of two-dimensional metal halide perovskites
Schumacher et al. Optimization of Electrodeposited p‐Doped Sb2Te3 Thermoelectric Films by Millisecond Potentiostatic Pulses
WO2002016679A1 (en) Polycrystalline semiconductor material and method of manufacture thereof
GB1602038A (en) Method for manufacturing a layer of amorphous silicon usable in an electronic device
JP2010024476A (en) Diamond-like carbon and manufacturing method thereof
Guan et al. Femtosecond laser‐driven phase engineering of WS2 for nano‐periodic phase patterning and sub‐ppm ammonia gas sensing
JPH0633234B2 (en) Diamond thin film manufacturing method
JP2521815B2 (en) Method for etching transparent conductive film
Oh et al. Antisolvent treatment of reproducible MAPbI3 perovskite solar cells in ambient atmosphere
Şunel et al. Electrical characteristics of some derivatives of p-aminobenzoic acid in thin films
JPH0725636B2 (en) Method for manufacturing semiconductor diamond
JPH0421638B2 (en)
Quan et al. Resistive switching behavior in amorphous aluminum oxide film grown by chemical vapor deposition
US5316858A (en) Materials for thermoelectric and light-heat conversion
JPH04219301A (en) Production of oxide superconductor thin film
JP3918074B2 (en) Method for synthesizing diamond-like carbon film
JPS58123772A (en) Semiconductor element
CN105070658A (en) Graphene pattern, forming method therefor, display substrate preparation method, and display device
JPH08339964A (en) Film formation of multilayer thin film
Kruzina et al. Electrical properties of Na 0.5 Bi 0.5 TiO 3 thin films deposited on sitall substrates
Rud’ et al. Growth of tetragonal CdP 2 single crystals and the properties of barriers on their basis
EP0137512B1 (en) Solar cell
EP0460707A1 (en) Methods and materials for light-heat conversion
Nayak et al. Fabrication of Co doped or un-doped ZnO/Al on glass substrate for sensor Applications

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Effective date: 20050419

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050607

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090617

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090617

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8