JPH0365594A - Synthesis of diamond thin film from organic solution - Google Patents

Synthesis of diamond thin film from organic solution

Info

Publication number
JPH0365594A
JPH0365594A JP1199298A JP19929889A JPH0365594A JP H0365594 A JPH0365594 A JP H0365594A JP 1199298 A JP1199298 A JP 1199298A JP 19929889 A JP19929889 A JP 19929889A JP H0365594 A JPH0365594 A JP H0365594A
Authority
JP
Japan
Prior art keywords
solution
organic solution
thin film
diamond thin
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1199298A
Other languages
Japanese (ja)
Other versions
JPH0633234B2 (en
Inventor
Yoshitoshi Nanba
義捷 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1199298A priority Critical patent/JPH0633234B2/en
Publication of JPH0365594A publication Critical patent/JPH0365594A/en
Publication of JPH0633234B2 publication Critical patent/JPH0633234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To synthesize diamond thin film in a solution at a low temperature by heating an organic solution, impressing negative high voltage to a base and defining electric current density of the base. CONSTITUTION:An organic solution 1 is heated by a heater 3 (controlled using a thermocouple 6) and negative high voltage (e.g. several 100V) is impressed to a base 2 (e.g. silicon base) (by electric power source 5 and a positive electrode 4) and simultaneously electric current of the order of mA/cm<2> is turned on to synthesize diamond thin film from a solution. For instance, ethanol, acetone, benzene, trichloroethylene or methyl acetate, etc., is exemplified as the organic solution and especially electroconductive property of a diamond film made from ethanol is excellent.

Description

【発明の詳細な説明】 本発明は溶液中でダイヤモンド薄膜を合成する方法に関
するちりである。ダイヤモンドは硬度および熱伝導度が
最高の値を有し、耐食性、光学特性、電気的特性等極め
て優れた特性を有している。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthesizing diamond thin films in solution. Diamond has the highest values of hardness and thermal conductivity, and has extremely excellent properties such as corrosion resistance, optical properties, and electrical properties.

そのために、N膜状ダイヤモンドは半導体のヒートシン
ク、・半導体素子、切削工具の保N膜、その他電気電子
、機械、化学等各種の分野にその応用が期待されている
For this reason, N film-like diamond is expected to be applied to semiconductor heat sinks, semiconductor elements, N retaining films for cutting tools, and various other fields such as electrical and electronic, mechanical, and chemical fields.

現在合成されているダイヤモンド薄膜は大気圧以下の気
相中で行われており、その合成法を大別すると、物理蒸
着(PVD)法と化学蒸着(CVD)法に分けられる。
Diamond thin films currently synthesized are performed in a gas phase at a pressure below atmospheric pressure, and the synthesis methods can be roughly divided into physical vapor deposition (PVD) and chemical vapor deposition (CVD).

PVD法では炭化水素ガスを300℃〜400℃に加熱
した基板に接触させて行われており、従って基板は30
0℃〜400℃の温度に耐えるものでなければならない
、また。
In the PVD method, hydrocarbon gas is brought into contact with a substrate heated to 300°C to 400°C.
It must also be able to withstand temperatures between 0°C and 400°C.

CVD法は炭化水素ガスの熱分解反応を利用しているた
め、基板の温度は更に高く、700℃〜900℃の高温
にさらされる。したがって、応用面から見ると、合成温
度に対して大きな問題が残されている。即ち、この程度
の高温に耐える基板は種類も限られ、工業的応用範囲も
極く限られたものになる。
Since the CVD method utilizes a thermal decomposition reaction of hydrocarbon gas, the temperature of the substrate is even higher, and the substrate is exposed to a high temperature of 700°C to 900°C. Therefore, from an application point of view, a big problem remains regarding the synthesis temperature. That is, there are only a limited number of types of substrates that can withstand such high temperatures, and the range of industrial applications is also extremely limited.

そこで、もしこの問題が溶液等を用いた液相で。So, if this problem is in a liquid phase using a solution etc.

しかも基板温度が100℃以下でダイヤモンドの薄膜合
成が可能となると、その応用範囲は急速に広がり、その
実用価(+flは計り知れないものとなる事は明白であ
る1本発明は溶液を用いた低温に於けるダイヤモンド薄
膜合成に関するちりである。
Moreover, if it becomes possible to synthesize a diamond thin film at a substrate temperature of 100°C or less, its range of applications will rapidly expand, and it is clear that its practical value (+fl) will be immeasurable.1 The present invention uses a solution. This is dust related to diamond thin film synthesis at low temperatures.

そこで、まずその発想につき説明する。現在薄膜の合或
は、一般に液相中で行われているものは気相中でも行わ
れており、また逆に、気相中で合成されている膜はほと
んど溶液中でも行われている。一方、ダイヤモンド薄膜
の合成は気相中で可能になってきた。したがって、液相
中でもダイヤモンド薄膜合成の可能性は充分存在する。
Therefore, I will first explain the idea. Thin film synthesis, which is currently generally carried out in a liquid phase, is also carried out in a gas phase, and conversely, most films synthesized in a gas phase are also carried out in a solution. On the other hand, it has become possible to synthesize diamond thin films in the gas phase. Therefore, there is ample possibility of synthesizing diamond thin films even in the liquid phase.

問題はその手段にある。例えば有機溶液を使用した場合
、常温では電流密度が数μA/Cm2程度しか流れない
。一方、気相合成の方から眺めると、ダイヤモンド合成
に必要な電流密度は数mA/Cm2であることがわかっ
ている。したがって、有機溶液よりダイヤモンド合成を
行う場合、電流密度に着目すると1000倍程度の電流
が流れなければならない。ここに問題の本質が含まれて
いる。以下その具体的解決方法につき説明する。
The problem lies in the means. For example, when an organic solution is used, the current density is only about several μA/Cm2 at room temperature. On the other hand, from the perspective of vapor phase synthesis, it is known that the current density required for diamond synthesis is several mA/Cm2. Therefore, when diamond synthesis is performed using an organic solution, a current of about 1000 times as much must flow when looking at the current density. This contains the essence of the problem. A specific solution to this problem will be explained below.

第1図は溶液合成法の略図を示す。まず、1は有機溶液
でこれはエタノール(C2H50H) 、アセトン(C
H3COCH30H)、ベンゼン(CaHe)、)リク
ロロエチレン(CI CH: CCl 2)#酸メチー
ル(CH3COOCH3)等の溶液であるが、これらの
溶液中でエタノールの導電特性が良好であったため、以
下溶液はエタノールとして説明する。同図で、2は比抵
抗l000m以上のシリコン基板で、を源5より負電圧
を印加している。
FIG. 1 shows a schematic diagram of the solution synthesis method. First, 1 is an organic solution containing ethanol (C2H50H), acetone (C
H3COCH30H), benzene (CaHe), )lichloroethylene (CICH: CCl2) #methyl acid (CH3COOCH3), etc., but since the conductive properties of ethanol were good in these solutions, the following solutions were used. Explained as ethanol. In the figure, reference numeral 2 denotes a silicon substrate having a specific resistance of 1000 m or more, to which a negative voltage is applied from a source 5.

本方式は、まずエタノールの導電性を増す手段として、
溶液をヒーター3で加熱し、その沸点近く迄温度上昇を
行い熱的な解離を行っている。6は溶液の温度を計るた
めの熱電対温度計である。
This method is first used as a means to increase the conductivity of ethanol.
The solution is heated with a heater 3 to raise the temperature to near its boiling point to perform thermal dissociation. 6 is a thermocouple thermometer for measuring the temperature of the solution.

さらに、電流密度を増加させるための手段として本装置
は電極1jに高電圧を印加している。4は正電極で、電
極材料には直径4Φのカーボン棒を使用し、負電極側の
シリコン基板2との距離は5〜10mmに保っている。
Furthermore, as a means for increasing the current density, this device applies a high voltage to the electrode 1j. 4 is a positive electrode, a carbon rod with a diameter of 4Φ is used as the electrode material, and the distance from the silicon substrate 2 on the negative electrode side is maintained at 5 to 10 mm.

第2図は溶液の温度をパラメータとし、基板の電流密度
と印加電圧の関係を示す。基板電流は、印加電圧が数■
の時にはμA/Cm2であるが、電圧の増加と共にほぼ
直線的に増加し、数toovでmA/cm2の領域に入
る。さらに、この頒は溶液の温度によっても増加し、最
後は電極の放電と溶液の沸点によってその限界値がきま
る。
FIG. 2 shows the relationship between the current density of the substrate and the applied voltage, using the temperature of the solution as a parameter. The substrate current depends on the applied voltage
At , it is μA/cm2, but it increases almost linearly as the voltage increases, and reaches the mA/cm2 region after several toov. Furthermore, this distribution also increases with the temperature of the solution, and its limit value is finally determined by the electrode discharge and the boiling point of the solution.

一方、電流は時間によっても変化する。この変化によっ
てダイヤモンドの絶縁膜がシリコン基板りに形成されて
いくことが分かる。第2図は通電後3時間経過したとき
の図である。
On the other hand, current also changes with time. It can be seen that this change causes a diamond insulating film to be formed on the silicon substrate. FIG. 2 is a diagram 3 hours after energization.

基板電流の時間的変化の1例を第3図に示す。FIG. 3 shows an example of a temporal change in substrate current.

第4図は基板上に形成されたダイヤモンド膜の膜厚と通
電時間の1例を示す。図のように、膜厚は時間と共に増
加するが、膜厚の増加と共に電流は流れなくなり、10
時間以上経過すると飽和状態を示すようになる。飽和す
る膜厚は現在3000〜4000λであるが、この限界
は合成条件によって変化する。
FIG. 4 shows an example of the thickness of a diamond film formed on a substrate and the current application time. As shown in the figure, the film thickness increases with time, but as the film thickness increases, the current stops flowing, and 10
If more than a certain amount of time has passed, the state will become saturated. The saturated film thickness is currently 3000 to 4000λ, but this limit changes depending on the synthesis conditions.

合成された膜の結晶構造は電子線の透過像および回折像
より調べた。第5図はダイヤモンドと膜の面間隔を比較
したものである。また、膜の結晶粒は数100Å以下の
微結晶で構成されているこ隔および面指数の関係を表し
たものである。
The crystal structure of the synthesized film was investigated using electron beam transmission images and diffraction images. FIG. 5 compares the interplanar spacing between diamond and film. Further, the crystal grains of the film are composed of microcrystals of several hundred angstroms or less, and the relationship between the spacing and the plane index is shown.

特許帛願人 難波義捷 第1図は有機溶液中からダイヤモンド薄膜を合成する装
置の概略図であり、第2図は装置の電極間に電圧を印加
した場合に流れる基板電流密度を溶液の温度をパラメー
タとして表したグラフである。第3図は基板電流密度と
通電時間の関係を表したグラフ、第4図は基板上に形成
された膜の膜厚と時間の関係を示したグラフである。第
5図はダイヤモンドの格子と形成された膜の格子の而開
第工図 第3図 通電時間 (時) 第2図 00 00 00 00 印加型止 (V) 第4図 通電時間 (時)
Patent applicant Namba Gisho Figure 1 is a schematic diagram of an apparatus for synthesizing a diamond thin film from an organic solution, and Figure 2 shows the substrate current density flowing when a voltage is applied between the electrodes of the apparatus as a function of the temperature of the solution. This is a graph showing parameters. FIG. 3 is a graph showing the relationship between the substrate current density and current application time, and FIG. 4 is a graph showing the relationship between the film thickness of the film formed on the substrate and time. Figure 5 is a diagram of the development of the diamond lattice and the formed film lattice Figure 3 Current application time (hours) Figure 2 00 00 00 00 Application mold stop (V) Figure 4 Current application time (hours)

Claims (1)

【特許請求の範囲】[Claims] 有機溶液を加熱し、基板に負の高電圧を加えると共に単
位面積当りmA/cm^2程度の電流を流し、溶液から
ダイヤモンドの薄膜合成を行うことを特長とする溶液ダ
イヤモンド合成法
A solution diamond synthesis method characterized by heating an organic solution, applying a negative high voltage to the substrate, and passing a current of approximately mA/cm^2 per unit area to synthesize a thin diamond film from the solution.
JP1199298A 1989-08-02 1989-08-02 Diamond thin film manufacturing method Expired - Fee Related JPH0633234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1199298A JPH0633234B2 (en) 1989-08-02 1989-08-02 Diamond thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1199298A JPH0633234B2 (en) 1989-08-02 1989-08-02 Diamond thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPH0365594A true JPH0365594A (en) 1991-03-20
JPH0633234B2 JPH0633234B2 (en) 1994-05-02

Family

ID=16405477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1199298A Expired - Fee Related JPH0633234B2 (en) 1989-08-02 1989-08-02 Diamond thin film manufacturing method

Country Status (1)

Country Link
JP (1) JPH0633234B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120569A1 (en) * 2021-12-21 2023-06-29 捷 唐 Production method for diamond particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100791790B1 (en) * 2006-05-30 2008-01-03 고려대학교 산학협력단 Method of Manufacturing Hexagonal Nanoplate Diamond

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213612A (en) * 1982-06-01 1983-12-12 Shigeo Nishida Preparation of artificial diamond
JPS593016A (en) * 1982-06-30 1984-01-09 Shigeo Nishida Manufacture of diamond

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213612A (en) * 1982-06-01 1983-12-12 Shigeo Nishida Preparation of artificial diamond
JPS593016A (en) * 1982-06-30 1984-01-09 Shigeo Nishida Manufacture of diamond

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120569A1 (en) * 2021-12-21 2023-06-29 捷 唐 Production method for diamond particles

Also Published As

Publication number Publication date
JPH0633234B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
Walley et al. Electrical conduction in amorphous germanium
McCluskey et al. Combinatorial nanocalorimetry
Mockert et al. Lead phthalocyanine (PbPc) as a prototype organic material for gas sensors: comparative electrical and spectroscopic studies to optimize O2 and NO2 sensing
Hill Electrical conduction in ultra thin metal films II. Experimental
Liu et al. Anomalously suppressed thermal conduction by electron‐phonon coupling in charge‐density‐wave tantalum disulfide
Ma et al. Realization of epitaxial thin films of the topological crystalline insulator Sr3SnO
Vasin et al. Characteristics of current transfer in PVA films with dispersed multiwall carbon nanotubes on silicon substrates
JPH0365594A (en) Synthesis of diamond thin film from organic solution
RU2303834C2 (en) Thermoelectric generator (alternatives) and method for its manufacture
WO1986004989A1 (en) Gas sensor element of tin oxide film
US3504325A (en) Beta-tungsten resistor films and method of forming
Yang et al. Surface oxygen adsorption and electric property of hydrogen-terminated single crystal diamonds by UV/ozone treatment
JPH07218348A (en) Thin-film thermocouple
JP3303606B2 (en) Method of forming multilayer thin film
Jadhavar et al. Influence of RF power on structural optical and electrical properties of hydrogenated nano-crystalline silicon (nc-Si: H) thin films deposited by PE-CVD
Rodriguez et al. The effect of tin on PECVD-deposited germanium sulfide thin films for resistive RAM devices
JPS6159180B2 (en)
Tamizhmani et al. Some physical properties of undoped amorphous silicon prepared by a new CVD process using iodosilanes
KR900000976A (en) Heat treatment device
JPS5919314A (en) Device for heating in vacuum
JPH05262510A (en) Jig
Zhu et al. Investigations of Ta film resistors on chemically vapor deposited diamond plates
HEARN SOME ELECTRICAL PROPERTIES OF RADIOACTIVE CADMIUM SULFIDE FILMS IN VACUUMAND WITH ADSORBED HYDROGEN
Ciupina et al. Nitrogen doped silicon-carbon multilayer protective coatings on carbon obtained by TVA method
Thornburg et al. Current controlled negative differential resistance in a-CdAs2 thin film sandwich structures