JP2010024476A - Diamond-like carbon and manufacturing method thereof - Google Patents

Diamond-like carbon and manufacturing method thereof Download PDF

Info

Publication number
JP2010024476A
JP2010024476A JP2008184765A JP2008184765A JP2010024476A JP 2010024476 A JP2010024476 A JP 2010024476A JP 2008184765 A JP2008184765 A JP 2008184765A JP 2008184765 A JP2008184765 A JP 2008184765A JP 2010024476 A JP2010024476 A JP 2010024476A
Authority
JP
Japan
Prior art keywords
diamond
carbon
substrate
gas
dlc film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008184765A
Other languages
Japanese (ja)
Other versions
JP2010024476A5 (en
JP4704453B2 (en
Inventor
Yasuo Suzuki
泰雄 鈴木
Masanori Watanabe
正則 渡邉
Kenjiro Nakajima
堅志郎 中嶋
Tadao Toda
忠夫 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasma Ion Assist Co Ltd
Original Assignee
Plasma Ion Assist Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasma Ion Assist Co Ltd filed Critical Plasma Ion Assist Co Ltd
Priority to JP2008184765A priority Critical patent/JP4704453B2/en
Publication of JP2010024476A publication Critical patent/JP2010024476A/en
Publication of JP2010024476A5 publication Critical patent/JP2010024476A5/en
Application granted granted Critical
Publication of JP4704453B2 publication Critical patent/JP4704453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DLC thin film material which is p-type conduction in electric conduction, and has low resistivity and high hardness, to provide a manufacturing method of the DLC film, and to provide an industrial product using the DLC film. <P>SOLUTION: In the diamond-like carbon in which p-type dopant such as boron and magnesium of III group elements or II group elements of the Periodic Table, its electric conduction of p-type conduction. High concentration plasma of hydrocarbon gas of low molecular quantity is generated, and a base material to be worked is installed so as to be brought into contact with discharge plasma. The temperature of the base material is kept at ≥200°C, the positive and negative or negative pulse voltage of ≥1 kV is applied to the base material to manufacture a p-type conduction DLC film on the surface of the base material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気伝導がp形伝導であって、高硬度、低抵抗率のダイヤモンドライクカーボン及びその製造方法に関する。 The present invention relates to diamond-like carbon having electrical conductivity of p-type conductivity and high hardness and low resistivity, and a method for producing the same.

ダイヤモンドライクカーボン(以下、DLCと略記する)は硬度が非常に高く、耐摩耗性、摺動性等に優れていることから、超硬工具、金型や摺動部品等の皮膜材料として開発され、実用化されている。また、ゴム材料やプラスチックなど有機材料表面に比較的低温でDLC皮膜をコーティングすることができるため、これら有機材料表面へのコーティング技術が研究開発され応用展開されようとしている。 Diamond-like carbon (hereinafter abbreviated as DLC) is extremely hard and has excellent wear resistance, sliding properties, etc., so it has been developed as a coating material for carbide tools, molds and sliding parts. Has been put to practical use. In addition, since a DLC film can be coated on a surface of an organic material such as a rubber material or plastic at a relatively low temperature, a coating technique for the surface of the organic material is being researched and applied.

また、DLC膜は耐薬品性に優れ、腐食性環境における金属電極表面の耐蝕性コーティング膜、特に燃料電池等の電極板の耐食性被膜として低抵抗率のDLC膜が研究開発されている。更に、環境に優しい太陽電池材料として低抵抗率のn形及びp形の半導体DLC膜が要望されている。 In addition, the DLC film has excellent chemical resistance, and a low-resistance DLC film has been researched and developed as a corrosion-resistant coating film on the surface of a metal electrode in a corrosive environment, particularly as a corrosion-resistant film on an electrode plate of a fuel cell or the like. Furthermore, low resistivity n-type and p-type semiconductor DLC films are desired as environmentally friendly solar cell materials.

DLCの製膜方法としては、炭化水素ガスを用いたパルスDCプラズマCVD法や直流プラズマCVD法、また固体炭素を原料としたスパッタリング法やアークイオンプレーティング法など多くの製膜方法が開発されている。しかし、得られるDLC膜特性は製膜方法によって著しく異なる。また、同じ製法でも製膜装置、製膜条件が異なれば、得られるDLC膜の物性が異なるなど、用途に応じたDLC膜の研究開発が行われている。 As a film forming method for DLC, many film forming methods such as a pulsed DC plasma CVD method and a direct current plasma CVD method using hydrocarbon gas, a sputtering method using a solid carbon as a raw material, and an arc ion plating method have been developed. Yes. However, the obtained DLC film characteristics vary significantly depending on the film forming method. In addition, even if the film forming apparatus and the film forming conditions are different even in the same manufacturing method, research and development of a DLC film according to the application has been performed, such as different physical properties of the obtained DLC film.

特許文献1には、スパッタ蒸着法及び真空アーク蒸着法によって、sp結合性結晶の少なくとも一部が膜厚方向に連続的に連なった構造を持つ高い導電性を有する硬質炭素皮膜に関する技術が開示されている。しかし、これらの製膜方法では、固体黒鉛を原料とするため、ドロップレット(マイクロパーティクル)やピンホールのような欠陥が発生し易く、例えば、電極板の耐蝕被膜としての使用が困難とされている。 Patent Document 1 discloses a technique relating to a highly conductive hard carbon film having a structure in which at least a part of sp 2 bonding crystals are continuously connected in the film thickness direction by a sputter deposition method and a vacuum arc deposition method. Has been. However, in these film forming methods, since solid graphite is used as a raw material, defects such as droplets (microparticles) and pinholes are likely to occur. For example, it is difficult to use as a corrosion-resistant coating on electrode plates. Yes.

一方、炭化水素ガスを用いたプラズマCVD法については、非特許文献1にパルスDCプラズマCVD技術が開示されている。本従来例では、パルス化した数百Vの負のDC電圧を被加工基材に印加して炭化水素系ガスの放電プラズマを発生させ、被加工基材表面に高硬度のDLC膜を生成する方法である。炭化水素系ガスを用いたプラズマCVD法によって成膜されたDLC膜は、一般に、水素原子を15〜30アトミックパーセント含有しており、絶縁物に近い電気抵抗を有し、ドーパント元素を添加しないで抵抗率1キロオームセンチメートル以下のDLC膜を得ることは困難とされている。 On the other hand, as for the plasma CVD method using hydrocarbon gas, Non-Patent Document 1 discloses a pulsed DC plasma CVD technique. In this conventional example, a pulsed negative DC voltage of several hundred volts is applied to a substrate to be processed to generate a hydrocarbon-based gas discharge plasma, thereby generating a DLC film having a high hardness on the surface of the substrate to be processed. Is the method. A DLC film formed by a plasma CVD method using a hydrocarbon-based gas generally contains 15 to 30 atomic percent of hydrogen atoms, has an electrical resistance close to an insulator, and does not add a dopant element. It is difficult to obtain a DLC film having a resistivity of 1 kilohm centimeter or less.

また、低抵抗DLC膜を製膜する方法が非特許文献2に開示されている。本従来技術では、プラズマイオン注入・成膜法(PBII/D法)の一つで、プラズマ発生容器内に被加工基材を載置して基材支持電極板に正負のパルス高電圧を印加する方法である。正パルス電圧を印加して前記被加工基材表面にトルエンガスの放電プラズマを発生させ、引き続いて負の高電圧パルスを印加してDLC膜を生成する。また、正パルス電圧を印加することによって被加工基材を電子ビーム加熱し、製膜中に熱処理を行っている。 Further, Non-Patent Document 2 discloses a method for forming a low-resistance DLC film. This conventional technology is one of the plasma ion implantation and film formation methods (PBII / D method). A substrate to be processed is placed in a plasma generation vessel and positive and negative pulsed high voltages are applied to the substrate support electrode plate. It is a method to do. A positive pulse voltage is applied to generate a discharge plasma of toluene gas on the surface of the substrate to be processed, and then a negative high voltage pulse is applied to generate a DLC film. Further, the substrate to be processed is heated with an electron beam by applying a positive pulse voltage, and heat treatment is performed during film formation.

この製膜方法で基板温度を400度C(以下℃と記す)に保持し、−20kVの負のパルス電圧を印加することによって、抵抗率1ミリオームセンチ程度の非常に低抵抗なDLC膜が得られている。しかし、導電性のグラファイト微結晶を多く含むと考えられ、抵抗率の低下とともに硬度も低下して抵抗率1ミリオームセンチのとき硬度はHv540まで低下するなどの課題があった。 By this film forming method, the substrate temperature is maintained at 400 ° C. (hereinafter referred to as “° C.”), and a negative pulse voltage of −20 kV is applied to obtain a very low resistance DLC film having a resistivity of about 1 milliohm centimeter. It has been. However, it is thought that it contains a lot of conductive graphite microcrystals, and there is a problem that the hardness decreases to Hv540 when the resistivity is 1 milliohm centimeter as the resistivity decreases.

更に、特許文献2には、基板上にN層、I層、P層の半導体層を積層した太陽電池の全ての層、或いは何れかの層をDLC薄膜で形成する技術が開示されている。本実施例では、P層を形成するためにボロン化合物を、N層を形成するために燐化合物をドーピングする技術が開示されている。しかし、不純物ドーピングでは十分低いp形DLC膜が得られないという課題があった。 Further, Patent Document 2 discloses a technique of forming all or any layer of a solar cell in which N, I, and P semiconductor layers are stacked on a substrate with a DLC thin film. In this embodiment, a technique of doping a boron compound to form a P layer and a phosphorus compound to form an N layer is disclosed. However, there is a problem that a sufficiently low p-type DLC film cannot be obtained by impurity doping.

特開2002−327271号公報JP 2002-327271 A 特開2002−33497号公報JP 2002-33497 A (株)シーエムシー出版 2008年発行「DLCの応用技術」41−49頁CMC Publishing Co., Ltd. Published in 2008, "Application technology of DLC", pages 41-49 New Diamod and Frontier Carbon Technology.Vol.16,No.1,p33−38(2006)New Diamond and Frontier Carbon Technology. Vol. 16, no. 1, p33-38 (2006)

電気伝導がp形伝導で抵抗率が1オームセンチ以下、ビッカース硬度2000以上のDLC膜は得られていない。本発明が解決しようとする課題は、電気伝導がp形の低抵抗率、且つ高硬度のDLC膜を提供することにある。また、前記DLC膜の製造方法及び大面積基板表面に高速度で製膜できるDLC膜製造装置を提供することを目的としている。 A DLC film having p-type conductivity, a resistivity of 1 Ωcm or less, and a Vickers hardness of 2000 or more has not been obtained. The problem to be solved by the present invention is to provide a DLC film having a p-type low resistivity and high hardness. It is another object of the present invention to provide a method for producing the DLC film and a DLC film production apparatus capable of producing a film on the surface of a large area substrate at a high speed.

本発明は、周期律表の3族元素又は2族元素であるボロンやマグネシウム等のp形ドーパントをドーピングしないDLC膜であって、その電気伝導がp形伝導であることを特徴とする。ここで云うp形伝導DLC膜は、熱プローブ測定でp形伝導を示すもの、又はホール測定等でn形伝導を示さないもので、その電気伝導機構が非晶質炭素膜中に存在するsp結合のダイヤモンド微結晶の格子欠陥に基づく正孔の伝導と考えられるものを云う。 The present invention is a DLC film not doped with a p-type dopant such as boron or magnesium, which is a group 3 element or group 2 element of the periodic table, and is characterized in that its electrical conduction is p-type conduction. The p-type conductive DLC film referred to here is one that shows p-type conduction by thermal probe measurement, or one that does not show n-type conduction by hole measurement or the like, and its electric conduction mechanism is sp present in the amorphous carbon film. This refers to what is considered to be hole conduction based on lattice defects of three- bond diamond crystallites.

本発明では、前記DLC膜の抵抗率が1キロオームセンチ以下であり、硬度がビッカース硬度2000以上であることを特徴とする。また、DLC膜に含まれる水素量が10アトミックパーセント以下であることを特徴とする。 In the present invention, the DLC film has a resistivity of 1 kilohm centimeter or less and a hardness of 2000 or more in Vickers hardness. Further, the amount of hydrogen contained in the DLC film is 10 atomic percent or less.

前記DLC膜を得るために、真空容器内に炭化水素系原料ガスを導入し、放電プラズマ発生手段によって前記真空容器内に放電プラズマを発生させ、該放電プラズマに接するように被加工基材を設置し、該被加工基材の温度を200℃以上に保持し、該被加工基材に1kV以上の正負又は負のパルス電圧を印加して前記被加工基材表面にDLC膜を製膜する。 In order to obtain the DLC film, a hydrocarbon-based source gas is introduced into the vacuum vessel, discharge plasma is generated in the vacuum vessel by the discharge plasma generating means, and the substrate to be processed is placed in contact with the discharge plasma. Then, the temperature of the substrate to be processed is maintained at 200 ° C. or higher, and a positive / negative or negative pulse voltage of 1 kV or higher is applied to the substrate to be processed to form a DLC film on the surface of the substrate to be processed.

前記放電プラズマ発生手段としては高密度プラズマが発生できる誘導結合型高周波放電を用いることを特徴とする。単位立方センチメートル当たり5×1010個以上のプラズマ密度が得られる放電プラズマ発生手段であれば、前記誘導結合型高周波放電に限られるもではない。 As the discharge plasma generating means, inductively coupled high frequency discharge capable of generating high density plasma is used. The discharge plasma generating means is not limited to the inductively coupled high-frequency discharge as long as the plasma density is 5 × 10 10 or more per unit cubic centimeter.

本発明によれば、前記被加工基材に負の高電圧パルスを印加して加速された高エネルギーイオンを照射しながら製膜するが、被加工基材の温度、照射イオンのエネルギー及び照射量によってDLC膜の特性が変化する。前記負のパルス電圧は1kV以上、好ましくは5kV乃至25kVである。また、前記被加工基材の温度は200℃以上、好ましくは300℃乃至500℃であることを特徴とする。 According to the present invention, a film is formed while irradiating high energy ions accelerated by applying a negative high voltage pulse to the substrate to be processed, but the temperature of the substrate to be processed, the energy of irradiation ions, and the irradiation amount As a result, the characteristics of the DLC film change. The negative pulse voltage is 1 kV or more, preferably 5 kV to 25 kV. Further, the temperature of the substrate to be processed is 200 ° C. or higher, preferably 300 ° C. to 500 ° C.

前記被加工基材は製膜中のイオン照射によって加熱することができるが、所定の温度範囲に保持するために電気ヒータ等を用いた外部加熱による温度制御も可能である。被加工基材の温度を300℃乃至500℃に保持し、イオン照射することによって、DLC膜中の水素濃度を制御することが可能で、高硬度、低抵抗率のDLC膜を製造することができる。本発明では、被加工基材に負のパルス電圧を印加しながら製膜する。 The substrate to be processed can be heated by ion irradiation during film formation, but temperature control by external heating using an electric heater or the like is also possible in order to keep it within a predetermined temperature range. By maintaining the temperature of the substrate to be processed at 300 ° C. to 500 ° C. and irradiating with ions, the hydrogen concentration in the DLC film can be controlled, and a DLC film having high hardness and low resistivity can be manufactured. it can. In this invention, it forms into a film, applying a negative pulse voltage to a to-be-processed base material.

DLC膜を製造するための原料ガスとして、低分子量炭化水素ガス、例えばメタン、エタン、プロパン、アセチレン、エチレンガスの少なくとも一つを含む炭化水素ガスを使用する。また、前記原料ガスとアルゴンガス又は/及び水素ガスの混合ガスとすることが出来る。 As a raw material gas for producing the DLC film, a low molecular weight hydrocarbon gas, for example, a hydrocarbon gas containing at least one of methane, ethane, propane, acetylene, and ethylene gas is used. Moreover, it can be set as the mixed gas of the said source gas and argon gas or / and hydrogen gas.

本発明によれば、請求項5から12に記載の何れかの製造方法によって製造したダイヤモンドライクカーボンを製膜温度以上の温度でアニールすることによって、前記DLC膜の抵抗率を所望の値に調整することができる。アニール温度は好ましくは400℃乃至700℃である。 According to the present invention, the resistivity of the DLC film is adjusted to a desired value by annealing the diamond-like carbon produced by any one of the production methods according to claims 5 to 12 at a temperature equal to or higher than the film-forming temperature. can do. The annealing temperature is preferably 400 ° C. to 700 ° C.

本発明によるp形ダイヤモンドライクカーボンは、太陽電池材料など半導体材料、燃料電池などの電極表面への耐蝕性コーティング材料、超硬工具などの耐磨耗性コーティング材料、摺動部品の低摩擦係数コーティング材料などとして広く工業製品に適用できる。 The p-type diamond-like carbon according to the present invention is a semiconductor material such as a solar cell material, a corrosion-resistant coating material on the electrode surface of a fuel cell, an abrasion-resistant coating material such as a carbide tool, and a low friction coefficient coating of a sliding part. Widely applicable to industrial products as materials.

本発明によれば、電気伝導がp形伝導で抵抗率が1キロオームセンチ以下、ビッカース硬度2000以上のDLC膜が得られる。また、大面積基材表面に前記DLC膜を高速度で製造することができ、生産性の高いDLC膜製造装置を提供することができる。 According to the present invention, a DLC film having a p-type conductivity, a resistivity of 1 kilo-ohm centimeter or less, and a Vickers hardness of 2000 or more can be obtained. Moreover, the said DLC film can be manufactured on a large area base-material surface at high speed, and a DLC film manufacturing apparatus with high productivity can be provided.

前記真空容器内に誘導結合型高周波アンテナとこれに対向して被加工基材を配置し、炭化水素系原料ガスを導入して、前記誘導結合型高周波アンテナに高周波電力を給電して真空容器内に放電プラズマを発生させる。該放電プラズマに接するように被加工基材を設置し、該被加工基材の温度を200℃以上に保持し、該被加工基材に1kV以上の正負又は負のパルス電圧を印加して前記被加工基材表面にDLC膜を堆積させる。 An inductively coupled high-frequency antenna and a substrate to be processed are disposed in the vacuum container so as to face the same, a hydrocarbon-based raw material gas is introduced, and high-frequency power is supplied to the inductively coupled high-frequency antenna so A discharge plasma is generated. The substrate to be processed is placed in contact with the discharge plasma, the temperature of the substrate to be processed is maintained at 200 ° C. or higher, and a positive or negative pulse voltage of 1 kV or higher is applied to the substrate to be processed. A DLC film is deposited on the surface of the substrate to be processed.

(実施例1)
以下、本発明の実施の形態に係るp形DLC膜の製造方法について図を参照しながら説明する。図1に本発明によるDLC膜製造装置の一実施例の断面模式図を示す。なお、図1には便宜上、本発明の一実施例としてDLC膜製造装置の要部構成を示しているが、本発明はこれに限定されるものではない。
Example 1
Hereinafter, a method for manufacturing a p-type DLC film according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of an embodiment of a DLC film manufacturing apparatus according to the present invention. For the sake of convenience, FIG. 1 shows the main configuration of a DLC film manufacturing apparatus as an embodiment of the present invention, but the present invention is not limited to this.

図1に示すように、真空容器1内に誘導結合型高周波アンテナ2と、これに対向して被加工基材支持電極5を配置し、該基材支持電極の表面に前記被加工基材6が固定されている。該基材支持電極5の裏面には被加工基材を加熱するための加熱板9が取りつけてある。10はフィードスルー、11は原料ガス導入口、12は真空排気口である。 As shown in FIG. 1, an inductively coupled high-frequency antenna 2 and a substrate supporting electrode 5 to be processed are disposed in a vacuum container 1 so as to face the antenna, and the substrate 6 to be processed is disposed on the surface of the substrate supporting electrode. Is fixed. A heating plate 9 for heating the substrate to be processed is attached to the back surface of the substrate supporting electrode 5. 10 is a feedthrough, 11 is a source gas inlet, and 12 is a vacuum exhaust port.

放電プラズマ発生用高周波アンテナ2はフィードスルー10を介して真空容器1内に導入されている。該高周波アンテナ2の一端は整合器4を介して高周波電源3に接続され、他端は接地されている。高周波電源3は周波数13.56MHz、0.3kW〜3kWの出力を有する。また、高周波電源3は連続した高周波電力及び周波数0.5kHz〜3kHzの高周波バーストを供給することができる。 A high frequency antenna 2 for generating discharge plasma is introduced into the vacuum vessel 1 through a feedthrough 10. One end of the high-frequency antenna 2 is connected to a high-frequency power source 3 through a matching unit 4 and the other end is grounded. The high frequency power source 3 has a frequency of 13.56 MHz and an output of 0.3 kW to 3 kW. The high-frequency power source 3 can supply continuous high-frequency power and a high-frequency burst having a frequency of 0.5 kHz to 3 kHz.

基材支持電極5はパルス電源7に接続されていて、基材支持電極5を介して被加工基材6にパルス電圧が印加される。パルス電源7はパルス電圧1kV〜25kV、パルス幅1マイクロ秒〜100マイクロ秒(以下、μsと記す)、繰り返し周波数1kHz〜3kHzのパルス電圧を供給することができる。被加工基材の温度は基材支持電極5の裏面に取りつけられた加熱板9によって加熱され、その温度は基材温度制御器8によって所定温度に維持される。 The substrate support electrode 5 is connected to a pulse power source 7, and a pulse voltage is applied to the workpiece substrate 6 through the substrate support electrode 5. The pulse power source 7 can supply a pulse voltage having a pulse voltage of 1 kV to 25 kV, a pulse width of 1 microsecond to 100 microsecond (hereinafter referred to as μs), and a repetition frequency of 1 kHz to 3 kHz. The temperature of the substrate to be processed is heated by a heating plate 9 attached to the back surface of the substrate support electrode 5, and the temperature is maintained at a predetermined temperature by the substrate temperature controller 8.

本実施例では、誘導結合型高周波アンテナ2から10cm離れた位置に高周波アンテナに対向して基材支持電極5を設置して、その表面にシリコン基板及び石英基板を取り付けた。真空容器内を予め高真空に排気して十分ガス出しした後、原料ガス導入口11から水素ガス20%とアルゴンガス80%の混合ガスを導入して圧力0.6パスカルに調整し、周波数13.56MHz、出力1kWの高周波電力を誘導結合型高周波アンテナ2に供給して放電プラズマを発生させ、基材支持電極5を300℃に制御して−10kVのパルス電圧を印加して前記基板表面のクリーニングを行った。 In this example, the base material supporting electrode 5 was installed facing the high frequency antenna at a position 10 cm away from the inductively coupled high frequency antenna 2, and a silicon substrate and a quartz substrate were attached to the surface. After evacuating the inside of the vacuum vessel to a high vacuum and discharging the gas sufficiently, a mixed gas of hydrogen gas 20% and argon gas 80% is introduced from the raw material gas inlet 11 to adjust the pressure to 0.6 Pascal, and the frequency 13 A high frequency power of .56 MHz and an output of 1 kW is supplied to the inductively coupled high frequency antenna 2 to generate discharge plasma, the substrate support electrode 5 is controlled to 300 ° C., and a pulse voltage of −10 kV is applied to the substrate surface. Cleaning was performed.

次ぎに、原料ガスとしてメタンガス30%とアセチレンガス70%の混合ガスを導入し、予め基板温度を400℃に加熱し、ガス圧を0.5パスカルに調整し、前記高周波アンテナ2に700Wの電力を給電して放電プラズマを発生させた。基材支持電極5には−20kV、パルス幅5マイクロ秒、繰り返し周波数1kHzのパルス電圧を印加した。基板はイオンの衝突によって加熱されるため、加熱板に加える電力を制御してほぼ450℃に保持した。 Next, a mixed gas of methane gas 30% and acetylene gas 70% is introduced as a raw material gas, the substrate temperature is preliminarily heated to 400 ° C., the gas pressure is adjusted to 0.5 Pascal, and the high-frequency antenna 2 has a power of 700 W. To generate discharge plasma. A pulse voltage of −20 kV, a pulse width of 5 microseconds, and a repetition frequency of 1 kHz was applied to the substrate support electrode 5. Since the substrate was heated by the collision of ions, the electric power applied to the heating plate was controlled and maintained at about 450 ° C.

3時間の製膜で、厚さ2.3マイクロメートル(以下、μmと記す)のDLC膜を得た。膜色はダークシルバーであった。本実施例で得られたDLC膜のAFMによって測定した表面モホロジーを図2に示す。図2から明らかなように約80nmの微結晶の集合体であることが分かる。また、XRDによるX線解析結果を図3に示す。24度と45度近辺のブロードなピークはsp結合のグラファイト微結晶によるものであり、50度付近の鋭いピークはsp結合のダイヤモンド微結晶(200面)によるものである。本発明によるDLC膜は非晶質炭素の中にsp結合のグラファイト微結晶とsp結合のダイヤモンド微結晶が混在しているものであることが明らかになった。 A DLC film having a thickness of 2.3 micrometers (hereinafter referred to as μm) was obtained by film formation for 3 hours. The film color was dark silver. FIG. 2 shows the surface morphology measured by AFM of the DLC film obtained in this example. As can be seen from FIG. 2, it is an aggregate of about 80 nm microcrystals. Moreover, the X-ray-analysis result by XRD is shown in FIG. Broad peak near 24 degrees and 45 degrees is due to graphite crystallites of sp 2 bond, sharp peak near 50 degrees is due to sp 3 bonds the diamond crystallites (200 surface). DLC film according to the present invention has revealed that those diamond crystallites of the graphite crystallites and the sp 3 bonds sp 2 bonds in the amorphous carbon are mixed.

熱プローブによる測定結果では強いp形伝導特性を示した。また、東洋テクニカ製Resitest、8300シリーズ、ホール測定システムによるホール電圧測定でもp形伝導特性を示し、抵抗率は9.7ミリオームセンチ(以下、mΩcmと記す)、ホール移動度は19cm/V・sec、キャリア濃度は3.4×1019/cmであった。更に、4探針測定器Napson、RT−7による測定結果では、抵抗率は9.4mΩcmであった。ビッカース硬度計による硬度測定結果では、Hv3000であった。 The measurement result with the thermal probe showed strong p-type conduction characteristics. In addition, Toyo Technica Research, 8300 series, Hall voltage measurement by Hall measurement system also shows p-type conduction characteristics, resistivity is 9.7 milliohm centimeter (hereinafter referred to as mΩcm), and hole mobility is 19 cm 2 / V · sec, and the carrier concentration was 3.4 × 10 19 / cm 3 . Furthermore, the resistivity was 9.4 mΩcm as a result of measurement using a four-probe measuring device Napson, RT-7. The hardness measurement result by the Vickers hardness tester was Hv3000.

(実施例2)
基板温度を200℃、パル電圧を−4kVとし、他の製膜条件は実施例1と同一条件で製膜した結果、3時間で厚さ3.1μmのDLC膜を得た。ビッカース硬度計による測定結果では、Hv1700であった。本実施例で得られたDLC膜は絶縁性膜であって、4探針測定では評価できなかった。
(Example 2)
The substrate temperature was 200 ° C., the pal voltage was −4 kV, and other film formation conditions were the same as in Example 1. As a result, a 3.1 μm thick DLC film was obtained in 3 hours. The measurement result with a Vickers hardness tester was Hv1700. The DLC film obtained in this example was an insulating film and could not be evaluated by 4-probe measurement.

真空中で、440℃で1時間アニールすると、4探針法による測定結果、抵抗率は150Ωcmに低下した。更に、630℃で1時間アニールすると、抵抗率は140mΩcmまで低下し、ホール測定装置では87mΩcmの抵抗率を得た。正孔移動度は1.6cm/V・sec、キャリア濃度は4.5×1019/cmであった。また、熱プローブによる測定結果では強いp形伝導特性を示した。 When annealed in vacuum at 440 ° C. for 1 hour, the resistivity decreased to 150 Ωcm as a result of measurement by the 4-probe method. Further, after annealing at 630 ° C. for 1 hour, the resistivity decreased to 140 mΩcm, and the Hall measuring device obtained a resistivity of 87 mΩcm. The hole mobility was 1.6 cm 2 / V · sec, and the carrier concentration was 4.5 × 10 19 / cm 3 . The measurement result with the thermal probe showed strong p-type conduction characteristics.

(実施例3)
実施例1と同様、原料ガスとしてメタンガス30%とアセチレンガス70%の混合ガスを導入し、誘導結合型アンテナ2から10cm離れた位置に基材支持電極5を設置して、その表面に高周波アンテナに対向してシリコン基板を係止した。予め基板温度を400℃に加熱し、ガス圧を0.5パスカルに調整し、高周波アンテナ2に2kWの高周波電力を給電して放電プラズマを発生させた。基板ホルダには−14.2kV、パルス幅5マイクロ秒、繰り返し周波数1kHzのパルス電圧を印加した。基板はイオンの衝突によって加熱されるため、加熱板に加える電力を制御してほぼ400℃に保持した。
(Example 3)
As in Example 1, a mixed gas of methane gas 30% and acetylene gas 70% was introduced as a raw material gas, and a substrate support electrode 5 was installed at a position 10 cm away from the inductively coupled antenna 2, and a high frequency antenna was formed on the surface thereof. The silicon substrate was locked to face. The substrate temperature was previously heated to 400 ° C., the gas pressure was adjusted to 0.5 Pascal, and 2 kW of high-frequency power was supplied to the high-frequency antenna 2 to generate discharge plasma. A pulse voltage of -14.2 kV, a pulse width of 5 microseconds, and a repetition frequency of 1 kHz was applied to the substrate holder. Since the substrate was heated by the collision of ions, the power applied to the heating plate was controlled and kept at approximately 400 ° C.

1時間の成膜で、厚さ1.8μmのDLC膜を得た。膜色はダークシルバーであった。熱プローブによる測定結果では強いp形伝導特性を示した。4探針測定器Napson、RT−7による測定結果では、抵抗率は16.7mΩcmであった。また、ホール測定システムによるホール電圧測定でもp形伝導特性を示し、抵抗率は15.7mΩcm、正孔移動度は11cm/V・sec、キャリア濃度は4.2×1019/cmであった。更に、ビッカース硬度計による硬度測定結果では、Hv2400であった。 A DLC film having a thickness of 1.8 μm was obtained by film formation for 1 hour. The film color was dark silver. The measurement result with the thermal probe showed strong p-type conduction characteristics. As a result of measurement using a four-probe measuring instrument Napson, RT-7, the resistivity was 16.7 mΩcm. Also, the Hall voltage measurement by the Hall measurement system showed p-type conduction characteristics, the resistivity was 15.7 mΩcm, the hole mobility was 11 cm 2 / V · sec, and the carrier concentration was 4.2 × 10 19 / cm 3. It was. Furthermore, the hardness measurement result by the Vickers hardness tester was Hv2400.

本発明によるDLC膜のキャリアの伝導機構は、sp結合のグラファイト微結晶による電子伝導とsp結合のダイヤモンド微結晶による正孔伝導との両方の伝導機構によるものと考えられる。本発明によるDLC膜はグラファイト微結晶よりもダイヤモンド微結晶が多く生成されていて、ダイヤモンド微結晶による正孔伝導が主流となってp形半導体特性を示すものである。 Conduction mechanism of the carrier of the DLC film according to the present invention is believed to be due to both the conduction mechanism of a hole conduction by electronic conduction and sp 3 bonds the diamond crystallites by graphite crystallites of sp 2 bonds. The DLC film according to the present invention produces more diamond crystallites than graphite crystallites, and exhibits p-type semiconductor characteristics mainly due to hole conduction by diamond crystallites.

本発明によれば、DLC膜の硬度は、硬度の低いグラファイト微結晶と硬度の高いダイヤモンド微結晶の存在比で決まるものであると想定される。ダイヤモンド微結晶が多く含まれる本発明によるDLC膜は高硬度で、且つ低抵抗率のp形半導体DLC膜が得られたものである。 According to the present invention, the hardness of the DLC film is assumed to be determined by the abundance ratio of low-hardness graphite microcrystals and high-hardness diamond microcrystals. The DLC film according to the present invention containing a large amount of diamond crystallites is a p-type semiconductor DLC film having high hardness and low resistivity.

本発明の完成に到る過程において得られた結果によると、放電プラズマCVDによるDLC膜の物性は原料ガス、基板温度、プラズマ密度、基板に印加するパルス電圧など多くの要因に依存する。原料ガスとしてトルエンなど六員環等を有する炭化水素ガスを用いるとsp結合のグラファイト微結晶ができ易く、メタン、アセチレンなど低分子量の炭化水素ガスを採用するとsp結合のダイヤモンド微結晶が成長し易い。 According to the results obtained in the process of completing the present invention, the physical properties of the DLC film by discharge plasma CVD depend on many factors such as source gas, substrate temperature, plasma density, and pulse voltage applied to the substrate. When a hydrocarbon gas having a six-membered ring such as toluene is used as a raw material gas, sp 2 -bonded graphite microcrystals are easily formed, and when a low molecular weight hydrocarbon gas such as methane or acetylene is used, sp 3 -bonded diamond crystallites are grown. Easy to do.

基板温度は生成されるDLC膜に含まれる水素量を左右するもので、基板温度が高いほど水素量は減少し、450℃で成膜すると水素の含有量は5アトミックパーセントまで低下する。水素の含有量の低下はsp結合及びsp結合の微結晶の増加に寄与し、抵抗率低減の大きな要因と考えられる。 The substrate temperature affects the amount of hydrogen contained in the generated DLC film. The higher the substrate temperature, the lower the amount of hydrogen. When the film is formed at 450 ° C., the hydrogen content decreases to 5 atomic percent. A decrease in the hydrogen content contributes to an increase in sp 2 bond and sp 3 bond microcrystals, which is considered to be a major factor in reducing the resistivity.

基板表面のプラズマ密度及び基板に印加するパルス電圧はDLC膜の成長速度のみならず、DLC膜の伝導形、抵抗率及び硬度に大きな影響を与える要因である。DLC膜の成長メカニズムは放電により生成されるCHラジカル及びCHイオン等が基板表面に堆積し、基板に印加する負のパルス電圧によって加速された高エネルギーイオンの衝突によってCHが分解され、結晶化が進行するものと考えられている。 The plasma density on the substrate surface and the pulse voltage applied to the substrate are factors that greatly affect not only the growth rate of the DLC film but also the conductivity type, resistivity, and hardness of the DLC film. The growth mechanism of the DLC film is such that CH X radicals and CH X ions generated by discharge are deposited on the substrate surface, and CH X is decomposed by collision of high energy ions accelerated by a negative pulse voltage applied to the substrate. It is believed that crystallization proceeds.

プラズマ密度をn(cm−3)、電子温度をTe(eV)、イオンの質量数をMとするとき、イオン飽和電流密度Jpiは次式で表される。
pi=9.6×10−11(1/M)1/2(Te)1/2 (mA/cm
即ち、基板表面に入射するイオン電流密度は、プラズマ密度に比例する。また、イオンに対する空間電荷制限電流密度Jは、価数をZ、電極間隔をd、印加電圧をVとするとき、次式で表される。
=5.5×10−5(Z/M)1/2 3/2/d (mA/cm
基板表面に負のパルス電圧を印加すると、基板に入射するイオン電流はパルス電圧の1.5乗に比例する。本願実施例では、基板表面のプラズマ密度は単位立方センチメートル当たり5×1010個乃至3×1011個程度、基板に印加するパルス電圧は−4kV乃至−20kVであった。p形DLC膜を得るには5×1010個以上のプラズマ密度が必要であった。
When the plasma density is n p (cm −3 ), the electron temperature is Te (eV), and the ion mass number is M, the ion saturation current density J pi is expressed by the following equation.
J pi = 9.6 × 10 −11 (1 / M) 1/2 (Te) 1/2 n p (mA / cm 2 )
That is, the ion current density incident on the substrate surface is proportional to the plasma density. Further, the space charge limited current density J 0 for ions is expressed by the following equation when the valence is Z, the electrode interval is d, and the applied voltage is V 0 .
J 0 = 5.5 × 10 −5 (Z / M) 1/2 V 0 3/2 / d 2 (mA / cm 2 )
When a negative pulse voltage is applied to the substrate surface, the ion current incident on the substrate is proportional to the 1.5th power of the pulse voltage. In this embodiment, the plasma density on the substrate surface was about 5 × 10 10 to 3 × 10 11 per cubic centimeter, and the pulse voltage applied to the substrate was −4 kV to −20 kV. In order to obtain a p-type DLC film, a plasma density of 5 × 10 10 or more was required.

図4に基板温度及びパルス電圧と得られたDLC膜の特性を示す。横軸は基板温度とパルス電圧の積、縦軸は硬度と抵抗率である。硬度と抵抗率は製膜中の基板温度とパルス電圧の積に大きく依存することが分かる。高硬度、低抵抗率、且つ正孔伝導特性を示すDLCの製膜には一定量以上のイオン照射エネルギーが必要である。 FIG. 4 shows the substrate temperature and pulse voltage and the characteristics of the obtained DLC film. The horizontal axis is the product of the substrate temperature and the pulse voltage, and the vertical axis is the hardness and resistivity. It can be seen that the hardness and resistivity greatly depend on the product of the substrate temperature and the pulse voltage during film formation. DLC film formation with high hardness, low resistivity, and hole conduction characteristics requires a certain amount of ion irradiation energy.

本発明によれば、比較的低い基板温度、例えば、300℃以下の温度で製造されたDLC膜は製造時の基板温度以上の温度、例えば、500℃でアニールすることによって、DLC膜の抵抗率を低減することができ、所望の抵抗率に調整することができる。アニール温度は、好ましくは400℃乃至700℃である。 According to the present invention, a DLC film manufactured at a relatively low substrate temperature, eg, 300 ° C. or lower, is annealed at a temperature higher than the substrate temperature at the time of manufacture, eg, 500 ° C. And can be adjusted to a desired resistivity. The annealing temperature is preferably 400 ° C. to 700 ° C.

前記実施例においては、放電プラズマ発生手段として誘導結合型高周波アンテナを採用したが、該誘導結合型高周波アンテナに限られるものではなく、十分な放電プラズマ密度が得られる放電プラズマ発生手段、例えば、マイクロ波放電プラズマ、ECR放電プラズマ等を用いることができる。また、本実施例では負の高電圧パルスを印加したが、正のパルス電圧と負のパルス電圧を組み合わせた正負パルス電圧を印加することによって、更に高密度の放電プラズマを発生させることができ、本発明の課題解決に有効である。 In the above embodiment, the inductively coupled high frequency antenna is used as the discharge plasma generating means. However, the inductively coupled high frequency antenna is not limited to the inductively coupled high frequency antenna, and a discharge plasma generating means capable of obtaining a sufficient discharge plasma density, for example, a micro Wave discharge plasma, ECR discharge plasma, or the like can be used. Further, in this example, a negative high voltage pulse was applied, but by applying a positive and negative pulse voltage that combines a positive pulse voltage and a negative pulse voltage, it is possible to generate a higher density discharge plasma, This is effective for solving the problems of the present invention.

本発明によるDLC膜の製造方法を説明するための装置の断面模式図である。It is a cross-sectional schematic diagram of the apparatus for demonstrating the manufacturing method of the DLC film by this invention. 本発明で得られたDLC膜表面のAFM測定写真である。It is an AFM measurement photograph of the DLC film surface obtained by the present invention. 本発明で得られたDLCのX線回折スペクトルを示す図面である。It is drawing which shows the X-ray-diffraction spectrum of DLC obtained by this invention. 基板温度及びパルス電圧と本発明で得られたDLC膜の硬度及び抵抗率の関係を示す図面である。It is drawing which shows the relationship between the substrate temperature and pulse voltage, and the hardness and resistivity of the DLC film obtained by the present invention.

符号の説明Explanation of symbols

1・・真空容器、2・・誘導結合型高周波アンテナ、3・・高周波電源、4・・整合器、5・・基板支持電極、6・・被加工基材、7・・パルス電源、8・・温度制御器、9・・ヒータ、10・・フィードスルー、11・・ガス導入口、12・・真空排気口 1 .... Vacuum container, 2 .... Inductive coupling type high frequency antenna, 3 .... High frequency power supply, 4 .... Matching unit, 5 .... Substrate support electrode, 6 .... Substrate, 7 .... Pulse power supply, ...・ Temperature controller, 9 ・ ・ Heater, 10 ・ ・ Feed-through, 11 ・ ・ Gas inlet, 12 ・ ・ Vacuum exhaust port

Claims (16)

周期律表の3族元素又は2族元素であるボロンやマグネシウム等のp形ドーパントをドーピングしないダイヤモンドライクカーボンであって、その電気伝導がp形伝導であることを特徴とするダイヤモンドライクカーボン。 A diamond-like carbon which is not doped with a p-type dopant such as boron or magnesium which is a group 3 element or group 2 element of the periodic table, and whose electrical conduction is p-type conduction. 前記ダイヤモンドライクカーボンの抵抗率が1キロオームセンチ以下であることを特徴とする請求項1に記載のダイヤモンドライクカーボン。 The diamond-like carbon according to claim 1, wherein the resistivity of the diamond-like carbon is 1 kilo ohm centimeter or less. 前記ダイヤモンドライクカーボンの硬度がビッカース硬度2000以上であることを特徴とする請求項1及び2に記載のダイヤモンドライクカーボン。 The diamond-like carbon according to claim 1 or 2, wherein the diamond-like carbon has a Vickers hardness of 2000 or more. 前記ダイヤモンドライクカーボンに含まれる水素量が10アトミックパーセント以下であることを特徴とする請求項1から3のいずれかに記載のダイヤモンドライクカーボン。 The diamond-like carbon according to any one of claims 1 to 3, wherein the amount of hydrogen contained in the diamond-like carbon is 10 atomic percent or less. 真空容器内に炭化水素系原料ガスを導入し、放電プラズマ発生手段によって前記真空容器内に放電プラズマを発生させ、該放電プラズマに接するように被加工基材を設置し、該被加工基材の温度を200度C以上に保持し、該被加工基材に1kV以上の正負又は負のパルス電圧を印加して前記被加工基材表面に請求項1から4の何れかに記載のダイヤモンドライクカーボンを製膜することを特徴とするダイヤモンドライクカーボンの製造方法。 A hydrocarbon-based source gas is introduced into the vacuum vessel, discharge plasma is generated in the vacuum vessel by the discharge plasma generating means, a workpiece substrate is placed in contact with the discharge plasma, and the workpiece substrate The diamond-like carbon according to any one of claims 1 to 4, wherein the diamond-like carbon according to any one of claims 1 to 4 is applied to a surface of the substrate to be processed by maintaining a temperature of 200 ° C or more and applying a positive or negative pulse voltage of 1 kV or more to the substrate to be processed. A method for producing diamond-like carbon, comprising: forming a film. 前記放電プラズマ発生手段が誘導結合型高周波放電であることを特徴とする請求項5に記載のダイヤモンドライクカーボンの製造方法。 6. The method of producing diamond-like carbon according to claim 5, wherein the discharge plasma generating means is inductively coupled high frequency discharge. 前記負のパルス電圧が5kV乃至25kVであることを特徴とする請求項5及び6のいずれかに記載のダイヤモンドライクカーボンの製造方法。 The method of producing diamond-like carbon according to claim 5, wherein the negative pulse voltage is 5 kV to 25 kV. 前記基板温度が300度C乃至500度Cであることを特徴とする請求項5から7の何れかに記載のダイヤモンドライクカーボンの製造方法。 The method for producing diamond-like carbon according to any one of claims 5 to 7, wherein the substrate temperature is 300 ° C to 500 ° C. 前記被加工基材をイオン照射によって加熱することを特徴とする請求項5から8の何れかに記載のダイヤモンドライクカーボンの製造方法。 The method for producing diamond-like carbon according to claim 5, wherein the substrate to be processed is heated by ion irradiation. 前記被加工基材を電気ヒータ及びイオン照射によって加熱することを特徴とする請求項5から9のいずれかに記載のダイヤモンドライクカーボンの製造方法。 The method for producing diamond-like carbon according to any one of claims 5 to 9, wherein the substrate to be processed is heated by an electric heater and ion irradiation. 前記炭化水素系原料ガスが六員環等を含まない低分子量炭化水素ガス、メタン、エタン、プロパン、アセチレン、エチレンガスの少なくとも一つを含むことを特徴とする請求項5から10のいずれかに記載のダイヤモンドライクカーボンの製造方法。 The hydrocarbon source gas contains at least one of a low molecular weight hydrocarbon gas not containing a six-membered ring, methane, ethane, propane, acetylene, and ethylene gas. The manufacturing method of the diamond-like carbon of description. 前記炭化水素系原料ガスが請求項11に記載の原料ガスとアルゴンガス又は/及び水素ガスの混合ガスであることを特徴とする請求項5から10のいずれかに記載のダイヤモンドライクカーボンの製造方法。 The method for producing diamond-like carbon according to any one of claims 5 to 10, wherein the hydrocarbon-based source gas is a mixed gas of the source gas according to claim 11 and argon gas or / and hydrogen gas. . 請求項1から4のいずれかに記載のp形ダイヤモンドライクカーボンを300度C以上の温度でアニールすることによって所望の抵抗率に調整することを特徴とするダイヤモンドライクカーボンの製造方法。 A method for producing diamond-like carbon, wherein the p-type diamond-like carbon according to any one of claims 1 to 4 is adjusted to a desired resistivity by annealing at a temperature of 300 ° C or higher. 、請求項5から12のいずれかに記載の製造方法によって製造したダイヤモンドライクカーボンを、300度C以上の温度でアニールすることによって所望の抵抗率に調整することを特徴とするダイヤモンドライクカーボンの製造方法。 A diamond-like carbon produced by the production method according to claim 5 is adjusted to a desired resistivity by annealing at a temperature of 300 ° C. or higher. Method. 請求項1から4いずれかに記載のp形ダイヤモンドライクカーボンを用いたことを特徴とする工業製品。 An industrial product using the p-type diamond-like carbon according to any one of claims 1 to 4. 請求項5から13いずれかに記載の製造方法によって製造したダイヤモンドライクカーボンを用いたことを特徴とする工業製品。 An industrial product using diamond-like carbon produced by the production method according to claim 5.
JP2008184765A 2008-07-16 2008-07-16 Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product Expired - Fee Related JP4704453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008184765A JP4704453B2 (en) 2008-07-16 2008-07-16 Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184765A JP4704453B2 (en) 2008-07-16 2008-07-16 Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product

Publications (3)

Publication Number Publication Date
JP2010024476A true JP2010024476A (en) 2010-02-04
JP2010024476A5 JP2010024476A5 (en) 2010-12-09
JP4704453B2 JP4704453B2 (en) 2011-06-15

Family

ID=41730571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184765A Expired - Fee Related JP4704453B2 (en) 2008-07-16 2008-07-16 Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product

Country Status (1)

Country Link
JP (1) JP4704453B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156026A (en) * 2008-12-29 2010-07-15 Sumitomo Electric Ind Ltd Hard carbon film, and method for forming the same
WO2012090420A1 (en) * 2010-12-28 2012-07-05 キヤノンアネルバ株式会社 Carbon film production method and plasma cvd method
JP2014105350A (en) * 2012-11-27 2014-06-09 Yamaguchi Prefectural Industrial Technology Institute Plasma cvd apparatus and film production method
US9183965B2 (en) 2010-11-30 2015-11-10 Nomura Plating Co., Ltd. Conductive hard carbon film and method for forming the same
US20160053895A1 (en) * 2013-04-04 2016-02-25 Eagleburgmann Germany Gmbh & Co. Kg Mechanical seal arrangement having sliding surfaces of different hardness
JP2017059844A (en) * 2016-11-18 2017-03-23 株式会社大木工藝 Electric double layer capacitor
JP2017179612A (en) * 2012-03-09 2017-10-05 株式会社ユーテック Film deposition method
WO2018004973A1 (en) * 2016-06-28 2018-01-04 Applied Materials, Inc. Diamond like carbon layer formed by an electron beam plasma process
US11043375B2 (en) 2017-08-16 2021-06-22 Applied Materials, Inc. Plasma deposition of carbon hardmask
JP2021523558A (en) * 2018-05-03 2021-09-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated High quality C film pulsed plasma (DC / RF) deposition for patterning
US11270905B2 (en) 2019-07-01 2022-03-08 Applied Materials, Inc. Modulating film properties by optimizing plasma coupling materials
US11469097B2 (en) 2018-04-09 2022-10-11 Applied Materials, Inc. Carbon hard masks for patterning applications and methods related thereto
US11664214B2 (en) 2020-06-29 2023-05-30 Applied Materials, Inc. Methods for producing high-density, nitrogen-doped carbon films for hardmasks and other patterning applications
US11664226B2 (en) 2020-06-29 2023-05-30 Applied Materials, Inc. Methods for producing high-density carbon films for hardmasks and other patterning applications

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6234860B2 (en) 2014-03-25 2017-11-22 株式会社Screenホールディングス Film forming apparatus and film forming method
CN110965022B (en) * 2018-09-28 2021-12-24 长鑫存储技术有限公司 Method for forming semiconductor structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361369A (en) * 1989-07-29 1991-03-18 Idemitsu Petrochem Co Ltd Manufacture of diamond like carbon film
JPH1192935A (en) * 1997-09-19 1999-04-06 Daido Steel Co Ltd Wear resistant hard carbon coating
JP2002327271A (en) * 2001-04-27 2002-11-15 Sumitomo Electric Ind Ltd Electroconductive hard carbon film
JP2004217975A (en) * 2003-01-14 2004-08-05 National Institute Of Advanced Industrial & Technology Carbon thin film and manufacturing method therefor
JP2004277800A (en) * 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd Method and apparatus for depositing carbon thin film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361369A (en) * 1989-07-29 1991-03-18 Idemitsu Petrochem Co Ltd Manufacture of diamond like carbon film
JPH1192935A (en) * 1997-09-19 1999-04-06 Daido Steel Co Ltd Wear resistant hard carbon coating
JP2002327271A (en) * 2001-04-27 2002-11-15 Sumitomo Electric Ind Ltd Electroconductive hard carbon film
JP2004217975A (en) * 2003-01-14 2004-08-05 National Institute Of Advanced Industrial & Technology Carbon thin film and manufacturing method therefor
JP2004277800A (en) * 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd Method and apparatus for depositing carbon thin film

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156026A (en) * 2008-12-29 2010-07-15 Sumitomo Electric Ind Ltd Hard carbon film, and method for forming the same
US9183965B2 (en) 2010-11-30 2015-11-10 Nomura Plating Co., Ltd. Conductive hard carbon film and method for forming the same
WO2012090420A1 (en) * 2010-12-28 2012-07-05 キヤノンアネルバ株式会社 Carbon film production method and plasma cvd method
WO2012090421A1 (en) * 2010-12-28 2012-07-05 キヤノンアネルバ株式会社 Plasma cvd device
JP5603433B2 (en) * 2010-12-28 2014-10-08 キヤノンアネルバ株式会社 Carbon film manufacturing method and plasma CVD method
JP5612707B2 (en) * 2010-12-28 2014-10-22 キヤノンアネルバ株式会社 Plasma CVD equipment
JP2017179612A (en) * 2012-03-09 2017-10-05 株式会社ユーテック Film deposition method
JP2014105350A (en) * 2012-11-27 2014-06-09 Yamaguchi Prefectural Industrial Technology Institute Plasma cvd apparatus and film production method
US9841107B2 (en) * 2013-04-04 2017-12-12 Eagleburgmann Germany Gmbh & Co. Kg Mechanical seal arrangement having sliding surfaces of different hardness
US20160053895A1 (en) * 2013-04-04 2016-02-25 Eagleburgmann Germany Gmbh & Co. Kg Mechanical seal arrangement having sliding surfaces of different hardness
WO2018004973A1 (en) * 2016-06-28 2018-01-04 Applied Materials, Inc. Diamond like carbon layer formed by an electron beam plasma process
CN109075067A (en) * 2016-06-28 2018-12-21 应用材料公司 The diamond like carbon layer that electron beam plasma technique is formed
US10249495B2 (en) 2016-06-28 2019-04-02 Applied Materials, Inc. Diamond like carbon layer formed by an electron beam plasma process
JP2017059844A (en) * 2016-11-18 2017-03-23 株式会社大木工藝 Electric double layer capacitor
US11043375B2 (en) 2017-08-16 2021-06-22 Applied Materials, Inc. Plasma deposition of carbon hardmask
US11469097B2 (en) 2018-04-09 2022-10-11 Applied Materials, Inc. Carbon hard masks for patterning applications and methods related thereto
US11784042B2 (en) 2018-04-09 2023-10-10 Applied Materials, Inc. Carbon hard masks for patterning applications and methods related thereto
JP2021523558A (en) * 2018-05-03 2021-09-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated High quality C film pulsed plasma (DC / RF) deposition for patterning
US11603591B2 (en) 2018-05-03 2023-03-14 Applied Materials Inc. Pulsed plasma (DC/RF) deposition of high quality C films for patterning
US11270905B2 (en) 2019-07-01 2022-03-08 Applied Materials, Inc. Modulating film properties by optimizing plasma coupling materials
US11664214B2 (en) 2020-06-29 2023-05-30 Applied Materials, Inc. Methods for producing high-density, nitrogen-doped carbon films for hardmasks and other patterning applications
US11664226B2 (en) 2020-06-29 2023-05-30 Applied Materials, Inc. Methods for producing high-density carbon films for hardmasks and other patterning applications

Also Published As

Publication number Publication date
JP4704453B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4704453B2 (en) Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product
JP2010024476A5 (en) Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product
Lin et al. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering
Sein et al. Enhancing nucleation density and adhesion of polycrystalline diamond films deposited by HFCVD using surface treaments on Co cemented tungsten carbide
Pessoa et al. Plasma-assisted techniques for growing hard nanostructured coatings: An overview
CN103266306A (en) Method for preparing graphene or ultrathin carbon film by PVD (physical vapor deposition) technique
JP2004176132A (en) Nanodiamond film, and production method therefor
JP4134315B2 (en) Carbon thin film and manufacturing method thereof
Jamali et al. Effect of deposition parameters on the microstructure and deposition rate of germanium-carbon coatings prepared by plasma enhanced chemical vapor deposition
TWI404129B (en) Method for manufacturing carbon film with semiconductor properties
JPS60195092A (en) Method and apparatus for production of carbon thin film
JP2008222488A (en) Method for manufacturing cubic boron nitride
KR101695590B1 (en) ELECTRODE FOR WATER TREATMENT WITH DIAMOND COATING LAYER ON Ti SUBSTRATE AND MANUFACTURING METHOD THREREOF
JP5959990B2 (en) Graphene film manufacturing apparatus and graphene film manufacturing method
Bae et al. High-speed deposition of graphite-like carbon film by Ar/C6H6 surface-wave plasma with high-voltage pulse biasing
JP3970236B2 (en) Plasma enhanced chemical vapor deposition method and plasma enhanced chemical vapor deposition apparatus using pulse discharge
JP3911555B2 (en) Silicon-based thin film manufacturing method
Kim Formation of Crystalline Copper Thin Films by a Sputtering-assisted Magnetic Field System at Room Temperature
Jing et al. Nanomechanical and electrochemical properties of diamond-like carbon (DLC) films deposited by plasma enhanced chemical vapor deposition (PECVD) technique
Zhai et al. Fast growth of conductive amorphous carbon films by HFCVD with filament temperature control
CN111910171A (en) Device and method for synthesizing two-dimensional material by regulating and controlling electric field and/or magnetic field
Chun Pulsed dc Sputtered Nanocrystalline VN Coatings for Electrode Materials for Supercapacitors
US11162172B2 (en) Method for coating temperature-sensitive substrates with polycrystalline diamond
KR102659491B1 (en) Manufacturing method of a film for interconnection material having low-resitivity
Schneider et al. Carbon Films for Corrosion Resistant Photoelectrochemical Cells

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101013

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101013

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101019

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

R150 Certificate of patent or registration of utility model

Ref document number: 4704453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees