JPH06290811A - Manufacture of non-aqueous electrolyte secondary battery - Google Patents

Manufacture of non-aqueous electrolyte secondary battery

Info

Publication number
JPH06290811A
JPH06290811A JP5093851A JP9385193A JPH06290811A JP H06290811 A JPH06290811 A JP H06290811A JP 5093851 A JP5093851 A JP 5093851A JP 9385193 A JP9385193 A JP 9385193A JP H06290811 A JPH06290811 A JP H06290811A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
aqueous electrolyte
charging
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5093851A
Other languages
Japanese (ja)
Other versions
JP3336672B2 (en
Inventor
Takayuki Yamahira
隆幸 山平
Tomoaki Sato
智明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP09385193A priority Critical patent/JP3336672B2/en
Publication of JPH06290811A publication Critical patent/JPH06290811A/en
Application granted granted Critical
Publication of JP3336672B2 publication Critical patent/JP3336672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent the elusion of iron from a battery can and to provide a good cycle characteristic having no dispersion in a cycle life by manufacturing a battery by carrying out initial charging just after assembling of a battery, and then, carrying out aging and main charging in order. CONSTITUTION:A negative electrode 2, which uses a carbon material as a negative electrode active material, a positive electrode 1, separators 3a, 3b, and a non-aqueous electrolyte are sealed in a battery can 4, and a battery is assembled, and immediately after this, initial charging is carried out, and then, aging, main charging are carried out in order, and consequently, a non-aqueous electrolyte secondary battery is obtained. Although the electric potential of the negative electrode in an uncharged battery just after assembly is high when a carbon material is used for the negative electrode active material, the electric potential of the negative electrode is lowered when initial charging is carried out by a minute charging amount. Then aging is carried out, and the electrolyte sufficiently penetrates the separator without any elusion of iron constituting the battery can, as the electric potential of the negative electrode is lowered. In addition, main charging is carried out after this, and battery action proceeds uniformly, so that a non-aqueous electrolyte secondary battery having a long cycle life is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負極活物質として炭素
質材料を用いた非水電解質二次電池の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode active material.

【0002】[0002]

【従来の技術】近年、ビデオカメラやラジカセ等のポー
タブル機器の普及に伴い、使い捨てである一次電池に代
わって、繰り返し使用できる二次電池に対する需要が高
まっている。現在使用されている二次電池のほとんど
は、アルカリ電解液を用いたニッケルカドミウム電池で
ある。しかし、この電池の電圧は約1.2Vであるの
で、電池エネルギー密度を向上させることが困難であ
る。また、常温での自己放電率が1カ月で20%以上と
高いという欠点もある。
2. Description of the Related Art In recent years, with the spread of portable devices such as video cameras and radio-cassettes, there is an increasing demand for rechargeable secondary batteries in place of disposable primary batteries. Most of the secondary batteries currently used are nickel-cadmium batteries using an alkaline electrolyte. However, since the voltage of this battery is about 1.2V, it is difficult to improve the battery energy density. There is also a drawback that the self-discharge rate at room temperature is as high as 20% or more per month.

【0003】そこで、電解液に非水溶媒を使用し、ま
た、負極にリチウム等の軽金属を使用する非水電解質二
次電池の検討がなされている。この非水電解質二次電池
は、電圧が3V以上と高エネルギー密度を有し、しか
も、自己放電率が低いものである。しかし、このような
非水電解質二次電池は、負極に対する金属リチウム等が
充放電の繰り返しにより、デンドライト状に成長して正
極と接触し、この結果、電池内部において短絡が生じや
すいという欠点のために、やはり実用化が困難である。
Therefore, a non-aqueous electrolyte secondary battery using a non-aqueous solvent as the electrolytic solution and a light metal such as lithium for the negative electrode has been studied. This non-aqueous electrolyte secondary battery has a high energy density of 3 V or more and a low self-discharge rate. However, such a non-aqueous electrolyte secondary battery has a drawback that metallic lithium or the like for the negative electrode grows in a dendrite form and contacts the positive electrode due to repeated charging and discharging, and as a result, a short circuit easily occurs inside the battery. In addition, it is difficult to put it into practical use.

【0004】このため、リチウム等を他の金属と合金化
し、この合金を負極に使用するようにした非水電解質二
次電池が検討された。しかし、この場合は、この合金が
充放電を繰り返すことにより粒子化しやすいという欠点
のために、やはり実用化が困難である。
Therefore, a non-aqueous electrolyte secondary battery in which lithium or the like is alloyed with another metal and this alloy is used for the negative electrode has been studied. However, in this case, it is still difficult to put into practical use due to the drawback that this alloy is likely to be formed into particles by repeating charging and discharging.

【0005】そこで、例えば、特開昭62─90863
号公報に開示されているように、コークス等の炭素質材
料を負極活物質として使用する非水電解質二次電池が提
案された。この非水電解質二次電池は負極における上述
のような欠点を有していないので、サイクル寿命特性に
優れている。そして、正極活物質として、本願の発明者
が先に特開昭63─135099号公報において提案し
たようなLiX MO2(Mは1種類または1種類より多
い遷移金属を表し、0.05<x<1.10である。)
を用いると、電池容量が向上して、高エネルギー密度の
非水電解質二次電池を得ることができる。
Therefore, for example, Japanese Patent Laid-Open No. 62-90863.
As disclosed in the publication, a non-aqueous electrolyte secondary battery using a carbonaceous material such as coke as a negative electrode active material has been proposed. Since this non-aqueous electrolyte secondary battery does not have the above-mentioned drawbacks in the negative electrode, it has excellent cycle life characteristics. Then, as the positive electrode active material, Li X MO 2 (M represents one kind or more than one kind of transition metal, as suggested by the inventor of the present application in JP-A-63-135099, and 0.05 < x <1.10.)
By using, the battery capacity is improved and a non-aqueous electrolyte secondary battery with high energy density can be obtained.

【0006】[0006]

【発明が解決しようとする課題】ところで、炭素質材料
を負極活物質として使用する非水電解液二次電池は上述
の如くサイクル寿命が長く、高エネルギー密度が得られ
るとの長所を有するものの量産した場合に製品毎にサイ
クル劣化度が異なるといった不都合がある。このサイク
ル劣化度のばらつきは例えば該電池を組電池にして使用
しようとする場合には特に問題となる。
Meanwhile, the non-aqueous electrolyte secondary battery using the carbonaceous material as the negative electrode active material has the advantages of long cycle life and high energy density as described above, but it is mass-produced. In that case, there is an inconvenience that the cycle deterioration degree is different for each product. This variation in the degree of cycle deterioration becomes a particular problem when the battery is used as an assembled battery.

【0007】そこで、このサイクル劣化度のばらつきの
原因について、本発明者らが調査を行ったところ以下の
ことが判明した。
Then, the inventors of the present invention investigated the cause of the variation in the cycle deterioration degree and found the following.

【0008】まず、製造された非水電解液二次電池のう
ち特にサイクル劣化の激しいものは、電池缶が腐食して
電池缶を構成する鉄が電解液中に溶出している。電池缶
から電解液中に溶出した鉄の一部は、電極中に不可逆的
に侵入して電極における電池反応を妨げ、サイクル劣化
を促進させるものと考えられる。
[0008] First, among the manufactured non-aqueous electrolyte secondary batteries, particularly those with severe cycle deterioration, the battery can is corroded and the iron constituting the battery can is eluted in the electrolyte. It is considered that a part of iron eluted from the battery can into the electrolytic solution irreversibly penetrates into the electrode to hinder the battery reaction at the electrode and accelerate cycle deterioration.

【0009】このような電池缶からの鉄の溶出は、特に
電池を組み立てた後に行うエージング工程において発生
する。
Such iron elution from the battery can occurs especially in the aging step performed after the battery is assembled.

【0010】すなわち、上記非水電解液二次電池は、炭
素材料を負極活物質とする負極、LiX MO2 を正極活
物質とする正極、セパレータ及び電解液をニッケルメッ
キが施された鉄製の電池缶内に封入して組み立てられ
る。組み立てられた電池は、この後、充電を行うことで
非水電解液二次電池として使用できる状態になる。
That is, in the above non-aqueous electrolyte secondary battery, a negative electrode using a carbon material as a negative electrode active material, a positive electrode using Li X MO 2 as a positive electrode active material, a separator and an electrolytic solution made of iron plated with nickel. It is assembled by enclosing it in a battery can. The assembled battery is then charged so that it can be used as a non-aqueous electrolyte secondary battery.

【0011】ところが組み立てられて直後の電池は、電
池缶内に封入した電解液がセパレータに十分にしみ込ん
でおらず、この状態ですぐに充電を行った場合には電池
反応が不均一に進行し、リチウムが析出して電池反応に
悪影響を及ぼす。そこで、従来、組み立てられた電池に
すぐには充電を行わず、一箇月程度エージングを行って
電解液をセパレータに十分にしみ込ませた後に充電を行
うようにしている。
However, in the battery immediately after being assembled, the electrolytic solution enclosed in the battery can does not soak into the separator sufficiently, and if the battery is immediately charged in this state, the battery reaction will proceed unevenly. , Lithium deposits and adversely affects the battery reaction. Therefore, conventionally, the assembled battery is not immediately charged, but is aged for about one month to allow the electrolytic solution to sufficiently soak into the separator before charging.

【0012】しかし、炭素材料を負極として用いる電池
の場合、充電が行われていない未充電状態では、負極が
3V程度の高い電位となっている。この負極の電位が高
くなっている未充電電池にエージングを行うと、エージ
ング工程の間に電池缶を構成する鉄が電気化学反応を起
こし、電解液中に溶出して電極中に侵入し、電池反応を
妨害することとなる。
However, in the case of a battery using a carbon material as a negative electrode, the negative electrode has a high potential of about 3 V in an uncharged state in which the carbon material is not charged. When aging a non-charged battery in which the potential of this negative electrode is high, the iron that composes the battery can undergoes an electrochemical reaction during the aging process, eluting into the electrolytic solution and penetrating into the electrode. It will interfere with the reaction.

【0013】そこで、本発明は、このような従来の実情
に鑑みて提案されたものであり、電池缶からの鉄の溶出
が防止でき、サイクル寿命が製品毎にばらつかず、良好
なサイクル特性を発揮する非水電解液二次電池の製造方
法を提供することを目的とする。
Therefore, the present invention has been proposed in view of such a conventional situation, and it is possible to prevent the elution of iron from the battery can, the cycle life does not vary from product to product, and good cycle characteristics are obtained. It is an object of the present invention to provide a method for producing a non-aqueous electrolyte secondary battery that exhibits the above-mentioned effect.

【0014】[0014]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明の非水電解液二次電池の製造方法は、炭素
材料を負極活物質とする負極、正極、セパレータ及び非
水電解液を電池缶の中に封入して電池を組立て、その直
後に初期充電を行い、さらにエージング、本充電を順次
行うことを特徴とするものである。
In order to achieve the above-mentioned object, a method for producing a non-aqueous electrolyte secondary battery of the present invention comprises a negative electrode using a carbon material as a negative electrode active material, a positive electrode, a separator and a non-aqueous electrolysis. It is characterized in that the liquid is enclosed in a battery can to assemble a battery, and immediately after that, initial charging is performed, and then aging and main charging are sequentially performed.

【0015】また、電池を組み立てた直後に行う初期充
電の際の充電電気量は、本充電の際の総充電電気量の
0.5〜11%であることを特徴とするものである。さ
らに、電池を組み立てた後、3日以内に初期充電を行う
ことを特徴とするものである。
Further, the amount of electricity charged in the initial charging performed immediately after assembling the battery is 0.5 to 11% of the total amount of electricity charged in the main charging. Furthermore, after assembling the battery, the initial charging is performed within 3 days.

【0016】本発明において、非水電解液二次電池は、
例えばニッケルメッキが施された鉄製の電池缶内に負
極,正極,セパレータ及び電解液を封入して組み立て
る。
In the present invention, the non-aqueous electrolyte secondary battery comprises
For example, the negative electrode, the positive electrode, the separator and the electrolytic solution are enclosed in a nickel-plated iron battery can for assembly.

【0017】負極に用いられる負極活物質としては、リ
チウムをドープ,脱ドープできるものであって、熱分解
炭素類、コークス類(ピッチコークス、ニードルコーク
ス、石油コークス等)、グラファイト類、ガラス状炭素
類、有機高分子化合物の焼成体(フェノール樹脂、フラ
ン樹脂等を適当な温度で焼成したもの)、炭素繊維、活
性炭素等を用いることができる。
The negative electrode active material used for the negative electrode is one that can be doped with lithium and dedoped, and includes pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbon. It is possible to use fired materials of organic polymers (phenolic resins, furan resins, etc.), carbon fibers, activated carbon, and the like.

【0018】正極に用いられる正極活物質としては、L
X MO2 (Mは1種類または1種類より多い遷移金属
を表し、0.05<x<1.10である。)で表される
リチウム複合酸化物等が使用される。
The positive electrode active material used for the positive electrode is L
A lithium composite oxide represented by i X MO 2 (M represents one kind or more than one kind of transition metal, and 0.05 <x <1.10) is used.

【0019】電解液は有機溶剤に電解質を溶解したもの
であれば、従来から知られたものがいずれも使用でき
る。したがって、有機溶剤としては、プロピレンカーボ
ネート、エチレンカーボネート、γ−ブチロラクトン等
のエステル類や、ジエチルエーテル、テトラヒドロフラ
ン、置換テトラヒドロフラン、ジオキソラン、ピランお
よびその誘導体、ジメトキシエタン、ジエトキシエタン
等のエーテル類や、3−メチル−2−オキサゾリジノン
等の3置換−2−オキサゾリジノン類や、スルホラン、
メチルスルホラン、アセトニトリル、プロピオニトリル
等が挙げられ、これらを単独もしくは2種類以上混合し
て使用される。また、電解質としては、過塩素酸リチウ
ム、ホウフッ化リチウム、リンフッ化リチウム、塩化ア
ルミン酸リチウム、ハロゲン化リチウム、トリフルオロ
メタンスルホン酸リチウム等が使用できる。
As the electrolytic solution, any conventionally known electrolytic solution can be used as long as the electrolytic solution is dissolved in an organic solvent. Therefore, as the organic solvent, esters such as propylene carbonate, ethylene carbonate and γ-butyrolactone, ethers such as diethyl ether, tetrahydrofuran, substituted tetrahydrofuran, dioxolane, pyran and its derivatives, dimethoxyethane and diethoxyethane, and 3 3-substituted-2-oxazolidinones such as methyl-2-oxazolidinone, sulfolane,
Methyl sulfolane, acetonitrile, propionitrile, etc. are mentioned, and these are used individually or in mixture of 2 or more types. Further, as the electrolyte, lithium perchlorate, lithium borofluoride, lithium phosphorus fluoride, lithium chloroaluminate, lithium halide, lithium trifluoromethanesulfonate, or the like can be used.

【0020】このようにして組み立てられた電池は充電
が行われていない未充電電池であり、図1に示すように
正極,負極とも同電位となっており、電極間に電圧が生
じていない。この未充電電池は、この後、エージングを
行うことでセパレータに電解液を十分にしみ込ませ、さ
らにその後充電を行って正極,負極の間に電圧が生じさ
せることで非水電解液二次電池として使用できるように
なる。
The battery assembled in this manner is an uncharged battery that has not been charged, has the same potential on both the positive and negative electrodes as shown in FIG. 1, and no voltage is generated between the electrodes. This uncharged battery is then used as a non-aqueous electrolyte secondary battery by aging it so that the separator is sufficiently impregnated with the electrolyte solution and then charging is performed to generate a voltage between the positive electrode and the negative electrode. You can use it.

【0021】このとき、充電が行われていない組み立て
られて直ぐの未充電電池は、負極の電位が高くなってい
る。このため、この負極の電位が高くなっている未充電
電池にエージングを行うと、エージングの間に電池缶を
構成する鉄が電気化学反応を起こして電解液中に溶出す
る。そして、この溶出した鉄の一部は、電極中に不可逆
的に侵入して電極における電池反応を妨げる。
At this time, the potential of the negative electrode is high in the uncharged battery that has not been charged yet and has been assembled. Therefore, when aging is performed on an uncharged battery in which the potential of the negative electrode is high, iron constituting the battery can causes an electrochemical reaction during the aging and is eluted into the electrolytic solution. Then, a part of the eluted iron irreversibly penetrates into the electrode to hinder the battery reaction at the electrode.

【0022】そこで、本発明においては、組み立てた直
後の未充電電池に微小充電電気量だけ初期充電を行い、
この初期充電の後にエージングを行うこととする。
Therefore, in the present invention, an uncharged battery immediately after assembly is initially charged by a small amount of charge electricity,
Aging is performed after this initial charging.

【0023】組み立てられた未充電電池に、例えば微小
時間iだけ初期充電を行うと図1に示すように負極の電
位が低下する。このように負極の電位を低下させた後に
エージングを行えば、負極の電位が低くなっているので
エージングの間に電池缶から鉄を溶出させることなく、
電解液を十分にセパレータにしみ込ませることができ
る。
When the assembled uncharged battery is initially charged for a short time i, for example, the potential of the negative electrode decreases as shown in FIG. If aging is performed after lowering the potential of the negative electrode in this manner, the potential of the negative electrode is low, so iron is not eluted from the battery can during aging,
The electrolyte can be sufficiently impregnated in the separator.

【0024】そして、エージング後に本充電を行うと、
電極で電池反応が均一に進行し、サイクル寿命の長い非
水電解液二次電池が得られることとなる。
When main charging is performed after aging,
The battery reaction proceeds uniformly at the electrodes, and a non-aqueous electrolyte secondary battery having a long cycle life can be obtained.

【0025】なお、初期充電の際の充電電気量は、エー
ジング後に行う本充電の際の総充電電気量の0.5〜1
1%であることが好ましい。初期充電の際の充電電気量
が本充電の際の総充電電気量の0.5%未満である場合
には、初期充電による効果が十分に得られず、本充電の
際の総充電電気量の11%を越える場合には、初期充電
時にはセパレータに十分に電解液がしみこんでいないこ
とから負極上にリチウムが析出し、電池のサイクル劣化
を誘発する。
The amount of electricity charged during the initial charging is 0.5 to 1 of the total amount of electricity charged during the main charging performed after aging.
It is preferably 1%. If the amount of electricity charged during the initial charge is less than 0.5% of the total amount of electricity charged during the main charge, the effect of the initial charge cannot be sufficiently obtained, and the amount of electricity charged during the main charge is insufficient. In the case of more than 11%, lithium is deposited on the negative electrode because the electrolyte is not sufficiently impregnated in the separator at the time of initial charging, which causes cycle deterioration of the battery.

【0026】また、初期充電は、未充電電池を組み立て
た後、3日以内に行うことが望ましい。電池組立から初
期充電までの放置期間が3日を越える場合には、組み立
てられて直ぐの未充電電池は負極の電位が高いという理
由から、この放置期間の間に電池缶から鉄が溶出し、電
池のサイクル劣化を引き起こす虞れがある。
Further, it is desirable that the initial charging be performed within 3 days after the uncharged battery is assembled. If the period from the battery assembly to the initial charge exceeds 3 days, the uncharged battery immediately after being assembled has a high negative electrode potential, and iron elutes from the battery can during this period. This may cause cycle deterioration of the battery.

【0027】なお、本発明の製造方法によって製造され
る非水電解液二次電池としては、円筒形の他,コイン
形,ボタン形いずれの形状のものであっても差し支えな
い。いずれの形状の電池を製造する場合であっても本発
明は同様の作用効果を発揮する。
The non-aqueous electrolyte secondary battery manufactured by the manufacturing method of the present invention may have a cylindrical shape, a coin shape or a button shape. The present invention exerts the same effects regardless of which shape the battery is manufactured.

【0028】[0028]

【作用】本発明では、炭素材料を負極活物質とする負
極、正極、セパレータ及び非水電解液を電池缶の中に封
入して未充電電池を組立て、その直後に初期充電を行
い、さらにエージング、本充電を順次行うことで非水電
解液二次電池を製造する。
In the present invention, the negative electrode using the carbon material as the negative electrode active material, the positive electrode, the separator, and the non-aqueous electrolyte are enclosed in a battery can to assemble an uncharged battery, and immediately after that, initial charging is performed and then aging is performed. A non-aqueous electrolyte secondary battery is manufactured by sequentially performing main charging.

【0029】炭素材料を負極活物質とする場合、組み立
てられて直ぐの未充電電池は負極の電位が高くなってい
るが、微小充電量だけ初期充電を行うと負極の電位が低
下する。この後にエージングを行うと、負極の電位が低
くなっているので、電池缶を構成する鉄を溶出させるこ
となく、電解液が十分にセパレータにしみ込む。そし
て、さらにこの後本充電を行うと、電池反応が均一に進
行し、サイクル寿命の長い非水電解液二次電池が得られ
ることとなる。
When a carbon material is used as the negative electrode active material, the potential of the negative electrode of the uncharged battery immediately after assembly is high, but the potential of the negative electrode decreases when the initial charge is performed by a small amount of charge. When aging is performed after this, the potential of the negative electrode is lowered, so that the electrolytic solution sufficiently penetrates into the separator without elution of the iron forming the battery can. Then, when main charging is further performed thereafter, the battery reaction proceeds uniformly, and a non-aqueous electrolyte secondary battery having a long cycle life can be obtained.

【0030】[0030]

【実施例】以下、本発明を具体的な実験結果に基づいて
説明する。
EXAMPLES The present invention will be described below based on specific experimental results.

【0031】実施例1 図2に本実施例の非水電解質二次電池を示す。この非水
電解質二次電池は以下のようにして作成した。
Example 1 FIG. 2 shows a non-aqueous electrolyte secondary battery of this example. This non-aqueous electrolyte secondary battery was prepared as follows.

【0032】まず、正極板1は次のようにして作製し
た。炭酸リチウム1モルと炭酸コバルト1モルとを混合
し、空気中、温度900℃で5時間焼成することにより
LiCoO2 を得た。このLiCoO2 をボウルミルで
粉砕することによって正極化合物粉末とした。この正極
化合物粉末91重量部、導電剤としてグラファイト6重
量部、結着剤としてポリフッ化ビニリデン3重量部とを
混合し、これにN−メチルピロリドンを分散剤として加
えて、正極合剤ペーストをつくった。そして、この正極
合剤ペーストを厚さ30μmのアルミニウム箔製の集電
体の両面に均一に塗布して乾燥させた後、ローラープレ
スを行うことによって、正極板1を得た。なお、この正
極板1は、幅35mm、長さ300mm、厚さ0.18
mmの板状体であった。また、この正極板1の端部に
は、アルミニウムのリード線7を溶接によって取り付け
た。
First, the positive electrode plate 1 was manufactured as follows. LiCoO 2 was obtained by mixing 1 mol of lithium carbonate and 1 mol of cobalt carbonate and firing in air at a temperature of 900 ° C. for 5 hours. This LiCoO 2 was pulverized with a bowl mill to obtain a positive electrode compound powder. 91 parts by weight of this positive electrode compound powder, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed, and N-methylpyrrolidone was added as a dispersant to the mixture to prepare a positive electrode mixture paste. It was Then, the positive electrode mixture paste was uniformly applied to both surfaces of a current collector made of an aluminum foil having a thickness of 30 μm, dried, and then roller pressed to obtain a positive electrode plate 1. The positive electrode plate 1 has a width of 35 mm, a length of 300 mm and a thickness of 0.18.
It was a plate-shaped body of mm. An aluminum lead wire 7 was attached to the end of the positive electrode plate 1 by welding.

【0033】負極板2は次のようにして作製した。負極
活物質は、ピッチコークスを振動ミル中で直径12.7
mmのステンレス鋼製の球と共に、2分間粉砕すること
によって得た。このピッチコークスの真密度は2.03
g/cm3 、X線回折測定により日本学術振興会法に準
じて求めた(002)面の面間隔は3.64Å、C軸方
向の結晶厚みLcは40Åであった。次に、この粒状の
ピッチコークス90重量部と、結着剤としてポリフッ化
ビニリデン10重量部とを混合し、これにN−メチルピ
ロリドンを分散剤として加えて、負極合剤ペーストをつ
くった。そして、図3に示すように、この負極合剤ペー
ストを厚さ10μmの銅製箔の集電体5の両面に均一に
塗布して活物質層6a、6bを形成し、乾燥させた後、
ローラープレスを行うことによって、負極板2を得た。
なお、この負極板2は、幅35mm、長さ300mm、
厚さ0.2mmの板状体であった。また、この負極板2
の端部には、ニッケルのリード線(図示せず)を溶接で
取り付けた。
The negative electrode plate 2 was manufactured as follows. The negative electrode active material was a pitch coke having a diameter of 12.7 in a vibration mill.
Obtained by grinding for 2 minutes with a mm stainless steel ball. The true density of this pitch coke is 2.03
The interplanar spacing of the (002) plane determined by g / cm 3 according to the Japan Society for the Promotion of Science by X-ray diffraction measurement was 3.64Å, and the crystal thickness Lc in the C-axis direction was 40Å. Next, 90 parts by weight of this granular pitch coke and 10 parts by weight of polyvinylidene fluoride as a binder were mixed, and N-methylpyrrolidone was added as a dispersant to the mixture to prepare a negative electrode mixture paste. Then, as shown in FIG. 3, the negative electrode mixture paste is uniformly applied to both surfaces of the copper foil current collector 5 having a thickness of 10 μm to form active material layers 6a and 6b, and after drying,
The negative electrode plate 2 was obtained by performing roller pressing.
The negative electrode plate 2 has a width of 35 mm, a length of 300 mm,
It was a plate-shaped body having a thickness of 0.2 mm. Also, this negative electrode plate 2
A nickel lead wire (not shown) was attached to the end of each by welding.

【0034】上記正極板1と上記負極板2とポリプロピ
レン製の一対の薄板状セパレーター3a、3bとを用い
て、負極板2、セパレーター3a、正極板1、セパレー
ター3bの順で積層してから、これらを渦巻型に巻回し
た。そして、この巻回体をニッケルメッキを施した鉄製
の電池缶4内に収納した。この場合、上述のリード線を
電池缶4及び電池蓋9に溶接した。電解液としては、六
フッ化リン酸リチウムを1mol/l溶解した炭酸プロ
ピレンと、ジエチルカーボネートの混合液を用いた。そ
して、この混合液を上記電池缶4内に注入してから、ポ
リプロピレン製のガスケット8と電池蓋9とを電池缶4
内の上部に挿入し、この電池缶4の上部をかしめること
によって電池を密封して、図2に示すような外径13.
8mm、高さ45mmの円筒状の未充電電池を1000
セル組み立てた。
Using the positive electrode plate 1, the negative electrode plate 2, and a pair of polypropylene thin plate-shaped separators 3a and 3b, the negative electrode plate 2, the separator 3a, the positive electrode plate 1 and the separator 3b are laminated in this order, These were spirally wound. Then, the wound body was housed in a nickel-plated iron battery can 4. In this case, the above-mentioned lead wire was welded to the battery can 4 and the battery lid 9. As the electrolytic solution, a mixed solution of propylene carbonate in which 1 mol / l of lithium hexafluorophosphate was dissolved and diethyl carbonate was used. Then, after injecting this mixed solution into the battery can 4, the polypropylene gasket 8 and the battery lid 9 are attached to the battery can 4.
The battery can 4 is inserted into the upper part and the upper part of the battery can 4 is caulked to seal the battery.
1000 mm cylindrical uncharged battery with a height of 8 mm and a height of 45 mm
The cell was assembled.

【0035】このようにして組み立てられた未充電電池
について、充電電流1000mAで5秒間の定電流充電
(初期充電)を行った後、温度60℃環境下,15時間
放置することでエージングを行った。この未充電電池の
温度60℃環境下,15時間放置は、加速エージングで
あって、未充電電池を室温下,1ヵ月放置したのに相当
する。続いて、充電電流100mA,終止電圧4.25
Vで本充電を行い、非水電解液二次電池を作製した。な
お未充電電池に行った初期充電の充電電気量及び本充電
の総充電電気量を表2に示す。
The thus-assembled uncharged battery was subjected to constant current charging (initial charging) at a charging current of 1000 mA for 5 seconds, and then left to stand in an environment of a temperature of 60 ° C. for 15 hours for aging. . The uncharged battery left at 60 ° C. for 15 hours was accelerated aging, which is equivalent to leaving the uncharged battery at room temperature for one month. Subsequently, charging current 100 mA, final voltage 4.25.
Main charging was performed with V to manufacture a non-aqueous electrolyte secondary battery. Table 2 shows the amount of electricity charged for the initial charging and the total amount of electricity charged for the main charging of the uncharged battery.

【0036】実施例2〜実施例7 未充電電池に行う初期充電の充電時間を表1に示すよう
に変えたこと以外は実施例1と同様にしてして非水電解
液二次電池を作製した。
Examples 2 to 7 Non-aqueous electrolyte secondary batteries were prepared in the same manner as in Example 1 except that the charging time of the initial charge applied to uncharged batteries was changed as shown in Table 1. did.

【0037】[0037]

【表1】 [Table 1]

【0038】なお未充電電池に行った初期充電の充電電
気量及び本充電の総充電電気量を表2に示す。
Table 2 shows the amount of electricity charged in the initial charging and the total amount of electricity charged in the main charging performed on the uncharged battery.

【0039】比較例1 実施例1と同様にして組み立てられた未充電電池につい
て、初期充電を行わずに、温度60℃環境下,15時間
放置することでエージングを行った。続いて、充電電流
100mA,終止電圧4.25Vで本充電を行い、非水
電解液二次電池を作製した。
Comparative Example 1 An uncharged battery assembled in the same manner as in Example 1 was aged by leaving it for 15 hours in an environment of a temperature of 60 ° C. without performing initial charging. Then, main charging was performed at a charging current of 100 mA and a final voltage of 4.25 V to produce a non-aqueous electrolyte secondary battery.

【0040】このようにして作製された各種非水電解液
二次電池について、充電電流100mA,終止電圧4.
2Vで充電を行った後、放電電流100mA、終止電圧
2.5Vで定電流放電を行うといった充放電サイクルを
100回繰り返し行い、10サイクル目の容量と100
サイクル目の容量を測定し、容量保持率(100サイク
ル目容量/10サイクル目容量×100)を求めた。そ
の結果を初期充電の充電電気量,本充電の総充電電気量
と併せて表2に示す。なお、充放電サイクルに際する充
電電圧4.2Vは、この非水電解液二次電池の推奨電圧
に準じて設定したものである。
With respect to the various non-aqueous electrolyte secondary batteries thus produced, the charging current was 100 mA and the final voltage was 4.
After charging at 2V, a charging / discharging cycle of discharging a constant current of 100mA and a constant voltage of 2.5V was repeated 100 times.
The capacity at the cycle was measured to determine the capacity retention rate (capacity at 100 cycle / 10 capacity at 10th cycle × 100). The results are shown in Table 2 together with the amount of electricity charged in the initial charge and the total amount of electricity charged in the main charge. The charging voltage of 4.2 V in the charge / discharge cycle is set according to the recommended voltage of this non-aqueous electrolyte secondary battery.

【0041】[0041]

【表2】 [Table 2]

【0042】表2からわかるように、実施例1〜実施例
7の電池はいずれも比較例1の電池に比べて容量保持率
が大きくなっており、サイクル特性に優れているこのこ
とから、未充電電池にエージングを行う前に予め初期充
電を行っておくことは、エージング時の電池缶からの鉄
の溶出を防止し、サイクル特性に優れた非水電解液二次
電池を製造する上で有効であることがわかる。
As can be seen from Table 2, the batteries of Examples 1 to 7 all have a higher capacity retention rate than the battery of Comparative Example 1 and are excellent in cycle characteristics. It is effective to prevent the elution of iron from the battery can during aging and to manufacture a non-aqueous electrolyte secondary battery with excellent cycle characteristics by performing initial charging in advance before aging the rechargeable battery. It can be seen that it is.

【0043】しかし、実施例2〜実施例6と実施例1,
実施例7を比較してわかるように、初期充電の際の充電
電気量が小さ過ぎたり(実施例1)、大き過ぎたり(実
施例7)した場合には、容量保持率の十分な向上は望め
ない。すなわち、このことから初期充電によってサイク
ル特性を効率良く向上させるためには、その充電電気量
は本充電の際の総充電電気量の0.5〜11%が適当で
あることがわかる。
However, Examples 2 to 6 and Example 1,
As can be seen by comparing Example 7, when the charged electricity amount at the time of initial charging is too small (Example 1) or too large (Example 7), the capacity retention rate is not sufficiently improved. I can't hope. That is, from this, it is understood that, in order to efficiently improve the cycle characteristics by the initial charging, the amount of charged electricity is 0.5 to 11% of the total amount of charged electricity in the main charging.

【0044】実験例1 本実験例では、組み立てられた未充電電池に対して初期
充電を行う際のタイミングについて検討を行った。
Experimental Example 1 In this experimental example, the timing of initial charging of the assembled uncharged battery was examined.

【0045】実施例1と同様にして組み立てられた未充
電電池を、室温下、表3に示す期間放置した。続いて充
電電流100mA,終止電圧4.25Vで本充電を行
い、非水電解液二次電池を作製した。
The uncharged battery assembled in the same manner as in Example 1 was left at room temperature for the period shown in Table 3. Subsequently, main charging was performed at a charging current of 100 mA and a final voltage of 4.25 V to produce a non-aqueous electrolyte secondary battery.

【0046】このようにして作製された各種非水電解液
二次電池について、充電電流100mA,終止電圧4.
2Vで充電を行った後、放電電流100mA、終止電圧
2.5Vで定電流放電を行うといった充放電サイクルを
100回繰り返し行い、各サイクル時における容量を測
定した。サイクル数と容量の関係を図4に、容量及び容
量保持率(100サイクル目容量/10サイクル目容量
×100)を表3に示す。
With respect to the various non-aqueous electrolyte secondary batteries thus produced, the charging current was 100 mA and the final voltage was 4.
After charging at 2 V, a charge / discharge cycle of discharging at a current of 100 mA and discharging at a constant voltage of 2.5 V was repeated 100 times, and the capacity at each cycle was measured. The relationship between the number of cycles and the capacity is shown in FIG. 4, and the capacity and capacity retention rate (100th cycle capacity / 10th cycle capacity × 100) are shown in Table 3.

【0047】[0047]

【表3】 [Table 3]

【0048】図4及び表3からわかるように、非水電解
液二次電池では、未充電電池時の放置期間が長い場合
程、容量保持率が低く、放置時間が3日を越えた場合に
は容量保持率が86.9%とにまて低下してしまう。こ
のことから、未充電電池の初期充電は未充電電池を3日
を越えて放置することなく行うことが好ましいことがわ
る。
As can be seen from FIG. 4 and Table 3, in the non-aqueous electrolyte secondary battery, the longer the period of time when the battery is left uncharged, the lower the capacity retention rate, and the time when the battery is left for more than 3 days. Has a capacity retention rate of 86.9%. From this, it is preferable that the initial charge of the uncharged battery is preferably performed without leaving the uncharged battery for more than 3 days.

【0049】[0049]

【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液二次電池の製造方法においては、炭素材
料を負極活物質とする負極、正極、セパレータ及び非水
電解液を電池缶の中に封入して電池を組立て、その直後
に初期充電を行い、さらにエージング、本充電を順次行
うので、サイクル寿命が製品毎にばらつかずサイクル特
性に優れた非水電解液二次電池を得ることが可能であ
る。
As is apparent from the above description, in the method for producing a non-aqueous electrolyte secondary battery of the present invention, a negative electrode containing a carbon material as a negative electrode active material, a positive electrode, a separator and a non-aqueous electrolyte solution are used. Assemble the battery by enclosing it in a battery can, perform initial charging immediately after that, and then perform aging and main charging in sequence, so the cycle life does not vary from product to product. It is possible to obtain a battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】非水電解液二次電池の充電による電極間の電位
変化を示す特性図である。
FIG. 1 is a characteristic diagram showing a potential change between electrodes due to charging of a non-aqueous electrolyte secondary battery.

【図2】本発明を適用して製造された非水電解液二次電
池の一構成例を一部破断して示す側面図である。
FIG. 2 is a partially cutaway side view showing a structural example of a non-aqueous electrolyte secondary battery manufactured by applying the present invention.

【図3】負極板を部分的に切り欠いた状態を示す要部概
略斜視図である。
FIG. 3 is a main part schematic perspective view showing a state in which a negative electrode plate is partially cut away.

【図4】非水電解液二次電池において、未充電電池時の
放置時間と容量の関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between a leaving time and a capacity of an uncharged battery in a non-aqueous electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1・・・・・・・正極板 2・・・・・・・負極板 3a,3b・・・セパレータ 4・・・・・・・電池缶 7・・・・・・・正極リード 8・・・・・・・ガスケット 9・・・・・・・電池蓋 1 ... ・ Positive electrode plate 2 ・ ・ ・ ・ Negative electrode plate 3a, 3b ・ ・ ・ Separator 4 ・ ・ ・ ・ Battery can 7 ・ ・ ・ ・ ・ Positive electrode lead 8 ・ ・... Gasket 9 ... Battery lid

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年10月19日[Submission date] October 19, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Name of item to be amended] Title of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の名称】非水電解液二次電池の製造方法Title: Method for manufacturing non-aqueous electrolyte secondary battery

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素材料を負極活物質とする負極、正
極、セパレータ及び非水電解液を電池缶の中に封入して
電池を組立て、その直後に初期充電を行い、さらにエー
ジング、本充電を順次行うことを特徴とする非水電解液
二次電池の製造方法。
1. A battery is assembled by enclosing a negative electrode using a carbon material as a negative electrode active material, a positive electrode, a separator and a non-aqueous electrolyte in a battery can, and immediately after that, initial charging is performed, and then aging and main charging are performed. A method for manufacturing a non-aqueous electrolyte secondary battery, which is performed sequentially.
【請求項2】 電池を組み立てた直後に行う初期充電の
際の充電電気量は、本充電の際の総充電電気量の0.5
〜11%であることを特徴とする請求項1記載の非水電
解液二次電池の製造方法。
2. The amount of electricity charged during initial charging immediately after the battery is assembled is 0.5 of the total amount of electricity charged during main charging.
It is -11%, The manufacturing method of the non-aqueous electrolyte secondary battery of Claim 1 characterized by the above-mentioned.
【請求項3】 電池を組み立てた後、3日以内に初期充
電を行うことを特徴とする請求項1記載の非水電解液二
次電池の製造方法。
3. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein initial charging is performed within 3 days after the battery is assembled.
JP09385193A 1993-03-30 1993-03-30 Manufacturing method of non-aqueous electrolyte secondary battery Expired - Lifetime JP3336672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09385193A JP3336672B2 (en) 1993-03-30 1993-03-30 Manufacturing method of non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09385193A JP3336672B2 (en) 1993-03-30 1993-03-30 Manufacturing method of non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH06290811A true JPH06290811A (en) 1994-10-18
JP3336672B2 JP3336672B2 (en) 2002-10-21

Family

ID=14093921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09385193A Expired - Lifetime JP3336672B2 (en) 1993-03-30 1993-03-30 Manufacturing method of non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3336672B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030487A1 (en) * 1996-02-16 1997-08-21 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
WO1998054778A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Non-aqueous electrolytic secondary cell
WO1999050920A1 (en) * 1998-03-26 1999-10-07 Tdk Corporation Method of manufacturing electrode of nonaqueous electrolytic battery
JP2002164086A (en) * 2000-11-28 2002-06-07 Matsushita Electric Ind Co Ltd Method of manufacturing for nonaqueous secondary battery
JP2002352864A (en) * 2001-05-23 2002-12-06 Denso Corp Method for testing secondary battery
JP2003187855A (en) * 2001-11-29 2003-07-04 Samsung Sdi Co Ltd Manufacturing method for secondary battery
JP2015153484A (en) * 2014-02-12 2015-08-24 株式会社豊田自動織機 Method for manufacturing nonaqueous secondary battery
JP2017139107A (en) * 2016-02-03 2017-08-10 日立化成株式会社 Method for initially charging lithium secondary battery
JP2017182993A (en) * 2016-03-29 2017-10-05 日立化成株式会社 Method for manufacturing lithium ion secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030487A1 (en) * 1996-02-16 1997-08-21 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
CN1114237C (en) * 1996-02-16 2003-07-09 宇部兴产株式会社 Nonaqueous secondary battery
WO1998054778A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Non-aqueous electrolytic secondary cell
WO1999050920A1 (en) * 1998-03-26 1999-10-07 Tdk Corporation Method of manufacturing electrode of nonaqueous electrolytic battery
US6475554B1 (en) 1998-03-26 2002-11-05 Tdk Corporation Method of producing electrode of non-aqueous electrolyte battery
JP2002164086A (en) * 2000-11-28 2002-06-07 Matsushita Electric Ind Co Ltd Method of manufacturing for nonaqueous secondary battery
JP2002352864A (en) * 2001-05-23 2002-12-06 Denso Corp Method for testing secondary battery
JP2003187855A (en) * 2001-11-29 2003-07-04 Samsung Sdi Co Ltd Manufacturing method for secondary battery
JP4554148B2 (en) * 2001-11-29 2010-09-29 三星エスディアイ株式会社 Manufacturing method of secondary battery
JP2015153484A (en) * 2014-02-12 2015-08-24 株式会社豊田自動織機 Method for manufacturing nonaqueous secondary battery
JP2017139107A (en) * 2016-02-03 2017-08-10 日立化成株式会社 Method for initially charging lithium secondary battery
JP2017182993A (en) * 2016-03-29 2017-10-05 日立化成株式会社 Method for manufacturing lithium ion secondary battery

Also Published As

Publication number Publication date
JP3336672B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
US5721067A (en) Rechargeable lithium battery having improved reversible capacity
JP3028582B2 (en) Non-aqueous electrolyte secondary battery
JP3282189B2 (en) Non-aqueous electrolyte secondary battery
Bergstöm et al. A neutron diffraction cell for studying lithium-insertion processes in electrode materials
JP2001167763A (en) Lithium secondary battery
JPH10223259A (en) Lithium secondary battery and manufacture thereof
JPH06290811A (en) Manufacture of non-aqueous electrolyte secondary battery
JPH07235330A (en) Manufacture of nonaqueous electrolyte secondary battery
JP3061337B2 (en) Non-aqueous electrolyte secondary battery
JP2001023685A (en) Electrolyte and secondary battery using it
JP2001176490A (en) Nonaqueous electrolyte secondary battery
JP3306906B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3403858B2 (en) Organic electrolyte battery
JP3211259B2 (en) Non-aqueous electrolyte secondary battery
JPH06349524A (en) Secondary battery
JP3309449B2 (en) Non-aqueous electrolyte secondary battery
JPH10270090A (en) Manufacture of secondary lithium battery
JP3508151B2 (en) Battery
JP2000243452A (en) Lithium-ion secondary battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JP2961745B2 (en) Non-aqueous electrolyte secondary battery
JPH0845509A (en) Nonaqueous electrolyte secondary cell
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JP2775754B2 (en) Non-aqueous electrolyte secondary battery
JPH05217582A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11