JPH10270090A - Manufacture of secondary lithium battery - Google Patents

Manufacture of secondary lithium battery

Info

Publication number
JPH10270090A
JPH10270090A JP9092921A JP9292197A JPH10270090A JP H10270090 A JPH10270090 A JP H10270090A JP 9092921 A JP9092921 A JP 9092921A JP 9292197 A JP9292197 A JP 9292197A JP H10270090 A JPH10270090 A JP H10270090A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
battery
secondary battery
lithium metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9092921A
Other languages
Japanese (ja)
Inventor
Akihiko Koiwai
明彦 小岩井
Yoshitsugu Kojima
由継 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP9092921A priority Critical patent/JPH10270090A/en
Publication of JPH10270090A publication Critical patent/JPH10270090A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a secondary lithium battery, which allows the battery to be safely and easily obtained with a high discharge capacity. SOLUTION: This secondary lithium battery has a positive electrode 11, a negative electrode 12, organic electrolyte and a battery pack 19 to store these therein. As negative electrode active material constituting the negative electrode 12, carbon material is used which is formed of non-graphite material and graphite coexisting substance. A lithium metal 14 is previously arranged in the battery pack 19 and the organic electrolyte is filled in the battery pack 19 to make short-circuiting between the lithium metal 14 and the negative electrode 12. Then, the initial charging is made between the positive electrode 11 and the negative electrode 12 for the battery to bring in the battery an initially charged condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,負極活物質として炭素材料を用
いてなるリチウム二次電池の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method of manufacturing a lithium secondary battery using a carbon material as a negative electrode active material.

【0002】[0002]

【従来技術】近年,携帯電話のような電子機器の小型
化,コードレス化が急速に進んでいる。また,環境問
題,エネルギー問題から,電気自動車の開発,普及が望
まれている。従来,これらの製品に利用される二次電池
としては,ニッケルカドミウム電池,ニッケル水素電池
や鉛蓄電池が知られている。ところが,これらの二次電
池は重く,エネルギー密度も低い。
2. Description of the Related Art In recent years, miniaturization and cordlessness of electronic devices such as mobile phones have been rapidly progressing. In addition, development and diffusion of electric vehicles are desired due to environmental problems and energy problems. Conventionally, nickel cadmium batteries, nickel hydride batteries, and lead storage batteries have been known as secondary batteries used in these products. However, these secondary batteries are heavy and have low energy density.

【0003】そのため,比較的軽く,かつエネルギー密
度の高い二次電池として,黒鉛やコークス等のリチウム
イオンを吸収・保持・放出することができる炭素材料を
負極に用い,該炭素材料とリチウムイオンの出入りの方
向が反対となるリチウム含有金属酸化物を正極に用いた
リチウム二次電池が開発されている。このリチウム二次
電池は,充電により正極のリチウム含有金属酸化物から
負極にリチウムを供給し,放電により負極の炭素材料中
のリチウムを正極に戻すという,ロッキングチェア型電
池である。
[0003] Therefore, as a secondary battery that is relatively light and has a high energy density, a carbon material capable of absorbing, retaining and releasing lithium ions such as graphite and coke is used for the negative electrode, and the carbon material and the lithium ions are combined. 2. Description of the Related Art A lithium secondary battery using a lithium-containing metal oxide whose direction of entry and exit is opposite to a positive electrode has been developed. This lithium secondary battery is a rocking chair battery in which lithium is supplied from a lithium-containing metal oxide of a positive electrode to a negative electrode by charging, and lithium in a carbon material of the negative electrode is returned to the positive electrode by discharging.

【0004】[0004]

【解決しようとする課題】しかしながら,上記従来のリ
チウム二次電池の負極には初期充電で取り込まれたリチ
ウムの全てを放電により取り出すことができないという
問題がある。なお,放電した後も負極に残留するリチウ
ム量を不可逆容量と称する。このような不可逆容量を減
らし,より高容量のリチウム二次電池を得るために,従
来以下に示す技術が開発されている。
However, the negative electrode of the above-mentioned conventional lithium secondary battery has a problem that not all of the lithium taken in during initial charging can be taken out by discharging. The amount of lithium remaining on the negative electrode after discharging is referred to as irreversible capacity. In order to reduce such irreversible capacity and obtain a higher capacity lithium secondary battery, the following techniques have been conventionally developed.

【0005】一つは,リチウム二次電池を組み立てる前
に,上記負極にリチウムイオンをドープする方法である
(特開平5−41249号,特開平7−235330
号)。即ち,炭素材料を負極活物質とする負極を作製
し,該負極とリチウム金属またはリチウム合金とを接触
させ,これらを有機電解液中に浸漬する。あるいは,上
記負極とリチウム金属またはリチウム合金とをセパレー
タを介して対向させた後,これらに通電する。
One method is to dope the above negative electrode with lithium ions before assembling a lithium secondary battery (Japanese Patent Application Laid-Open Nos. 5-41249 and 7-235330).
issue). That is, a negative electrode using a carbon material as a negative electrode active material is prepared, the negative electrode is brought into contact with lithium metal or a lithium alloy, and these are immersed in an organic electrolyte. Alternatively, after the negative electrode and the lithium metal or lithium alloy are opposed to each other with a separator interposed therebetween, electricity is supplied to these.

【0006】以上により,上記負極を構成する炭素材料
中にリチウムイオンをドープすることができる。特に,
特開平7−235330号においては,不可逆容量相当
分のリチウムイオンをドープしている。
As described above, lithium ions can be doped into the carbon material constituting the negative electrode. Especially,
In Japanese Patent Application Laid-Open No. Hei 7-235330, lithium ions are doped in an amount equivalent to the irreversible capacity.

【0007】しかしながら,上記方法ではリチウム二次
電池の組み立て前に負極へリチウムイオンをドープす
る。上記負極は活性なリチウムイオンを含むため,リチ
ウム二次電池を組み立てる際に低露点の雰囲気を必要と
する等,製造上の困難を伴う。
However, in the above method, the negative electrode is doped with lithium ions before assembling the lithium secondary battery. Since the above-mentioned negative electrode contains active lithium ions, there is a difficulty in manufacturing such that an atmosphere with a low dew point is required when assembling a lithium secondary battery.

【0008】他の方法としては,リチウム二次電池を組
み立て後に,上記負極にリチウムイオンをドープする方
法である(特開平5−144472号,特開平5−14
4473号,特開平5−234621号)。
As another method, after assembling a lithium secondary battery, a method of doping lithium ions into the above-mentioned negative electrode is disclosed in Japanese Patent Application Laid-Open Nos. 5-144472 and 5-14.
4473, JP-A-5-234621).

【0009】即ち,炭素材料にリチウム金属(箔状,微
粒子状)を貼付して負極を作製する。その後,上記負極
を用いて電池を組み立てた後,電解液を注入する。これ
により,上記炭素材料と上記リチウム金属との間で局部
電池が構成され,上記炭素材料に対しリチウムイオンが
ドープされる。特に,特開平5−234621号におい
ては,不可逆容量相当分のリチウムイオンをドープして
いる。しかし,上記方法においても負極がリチウム金属
を合むため,製造時の安全性に問題がある。
That is, lithium metal (foil, fine particles) is attached to a carbon material to produce a negative electrode. Then, after assembling the battery using the negative electrode, an electrolyte is injected. As a result, a local battery is formed between the carbon material and the lithium metal, and the carbon material is doped with lithium ions. In particular, in Japanese Patent Laid-Open No. Hei 5-234621, lithium ions are doped for an irreversible capacity. However, even in the above method, there is a problem in safety at the time of manufacturing because the negative electrode is made of lithium metal.

【0010】他の方法としては,予備充電によりリチウ
ムを正極から負極へ移し,その後正極と,前もって電池
容器内に仕込んでおいたリチウム金属とを短絡させる。
これにより再び正極をリチウムの入った放電状態とな
し,その後もう一度充電する。以上により負極に不可逆
容量相当の余分のリチウムを導入する(特開平8−25
5635号)。
[0010] As another method, lithium is transferred from the positive electrode to the negative electrode by precharging, and then the positive electrode is short-circuited to lithium metal previously charged in the battery container.
As a result, the positive electrode is again brought into a discharge state containing lithium, and then charged again. As described above, extra lithium equivalent to the irreversible capacity is introduced into the negative electrode (Japanese Patent Laid-Open No. 8-25 / 1996).
No. 5635).

【0011】しかしながら,この方法では初期充電状態
のリチウム二次電池を作製するのに,2回の充電操作が
必要であり,製造工程が煩雑となる。また,リチウムと
高電位の正極とを短絡させるために電流の制御を行う抵
坑を電池に付属させる必要がある。このため,リチウム
二次電池の構造が複雑となるおそれがある。
However, this method requires two charging operations to produce a lithium secondary battery in an initially charged state, which complicates the manufacturing process. In addition, it is necessary to attach a resistor for controlling current to the battery in order to short-circuit lithium and the high-potential positive electrode. For this reason, the structure of the lithium secondary battery may be complicated.

【0012】本発明は,かかる問題点に鑑み,安全かつ
容易に高放電容量のリチウム二次電池を得ることができ
る,リチウム二次電池の製造方法を提供しようとするも
のである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a method of manufacturing a lithium secondary battery which can safely and easily obtain a lithium secondary battery having a high discharge capacity.

【0013】[0013]

【課題の解決手段】請求項1の発明は,正極と負極と有
機電解液とこれらを収納する電池容器とよりなるリチウ
ム二次電池を製造する方法において,上記負極を構成す
る負極活物質として非黒鉛質材料と黒鉛との共存体から
なる炭素材料を用い,上記電池容器内には予めリチウム
金属を配設しておき,上記電池容器内に有機電解液を注
入して上記リチウム金属と上記負極とを短絡させること
により,上記負極に不可逆容量相当分のリチウムを導入
するリチウム導入工程を行い,その後,上記正極と上記
負極との間に初期充電を行って初期充電状態とすること
を特徴とするリチウム二次電池の製造方法にある。
According to a first aspect of the present invention, there is provided a method of manufacturing a lithium secondary battery comprising a positive electrode, a negative electrode, an organic electrolyte, and a battery container accommodating them, wherein the negative electrode active material constituting the negative electrode is non-conductive. Using a carbon material composed of a coexistence of graphite material and graphite, a lithium metal is disposed in the battery container in advance, and an organic electrolyte is injected into the battery container to form the lithium metal and the negative electrode. And performing a lithium introduction step of introducing lithium equivalent to the irreversible capacity into the negative electrode, and thereafter performing an initial charge between the positive electrode and the negative electrode to obtain an initial charge state. To manufacture a lithium secondary battery.

【0014】上記不可逆容量とは,従来例に示すごと
く,放電後も負極に残留するリチウム量を電池容量に換
算した値である。
The irreversible capacity is a value obtained by converting the amount of lithium remaining on the negative electrode after discharge into a battery capacity as shown in the conventional example.

【0015】また,上記負極活物質としては,非黒鉛質
材料と黒鉛とが共存した炭素材料を用いる。負極とリチ
ウム金属との短絡によるリチウムの導入の際には,本発
明の如く,負極活物質として非黒鉛質材料と黒鉛との共
存体にリチウムを導入する。非黒鉛質材料は,リチウム
の保持機構がリチウム導入により即座にリチウムの電位
に近づく黒鉛とは異なり,急激な電位の低下が起こり難
く,リチウム導入を比較的速い速度で行うことができ
る。更に非黒鉛質材料に黒鉛が混入することにより非黒
鉛質材料の導電性が向上するため活物質全体にリチウム
の導入を行うことができる。
As the negative electrode active material, a carbon material in which a non-graphitic material and graphite coexist is used. When lithium is introduced by a short circuit between the negative electrode and lithium metal, as in the present invention, lithium is introduced into a coexistence of a non-graphitic material and graphite as a negative electrode active material. Non-graphitic materials, unlike graphite, whose lithium retention mechanism approaches the potential of lithium immediately upon introduction of lithium, are unlikely to cause a rapid drop in potential, and can be introduced at a relatively high speed. Furthermore, by mixing graphite into the non-graphite material, the conductivity of the non-graphite material is improved, so that lithium can be introduced into the entire active material.

【0016】上記非黒鉛質材料としては,易黒鉛化炭素
材料,難黒鉛化炭素材料等を用いることができる。更
に,易黒鉛化炭素材料としては,例えば石油生コーク
ス,石炭生コークス等を不活性雰囲気下で500〜15
00℃にて加熱処理して得られるコークスを用いること
ができる。
As the non-graphitic material, a graphitizable carbon material, a non-graphitizable carbon material and the like can be used. Further, as an easily graphitizable carbon material, for example, petroleum raw coke, coal raw coke, etc. under an inert atmosphere is 500 to 15%.
Coke obtained by heat treatment at 00 ° C. can be used.

【0017】また,上記負極は,例えば,上記炭素材料
とバインダとを溶剤にてぺースト状にした合剤を負極集
電体である銅箔の両面に塗布・乾燥し,その後これをロ
ールプレス機にて圧縮成形することにより得ることがで
きる。
The above-mentioned negative electrode is coated and dried on both surfaces of a copper foil serving as a negative electrode current collector, for example, by applying a mixture obtained by forming the above-mentioned carbon material and a binder into a paste with a solvent, and then rolling the mixture. It can be obtained by compression molding with a machine.

【0018】上記正極における正極活物質としては,リ
チウム遷移金属複合酸化物であれば特に限定されない。
例えば,LiX CoO2 ,LiX NiO2 ,LiMn2
4等が挙げられる。また,これらの化合物を2種類以
上混合したものを用いることもできる。また,上記正極
は,例えば,上記正極活物質の少なくとも一種類と導電
助材およびバインダとを混合溶剤にてペースト状にした
合剤を正極集電体であるアルミニウム箔の両面に塗布・
乾燥し,その後これをロールプレス機にて圧縮成形する
ことにより得ることができる。
The positive electrode active material of the positive electrode is not particularly limited as long as it is a lithium transition metal composite oxide.
For example, Li x CoO 2 , Li x NiO 2 , LiMn 2
O 4 and the like. A mixture of two or more of these compounds can also be used. The positive electrode may be prepared by applying a mixture of at least one type of the positive electrode active material, a conductive additive, and a binder into a paste with a mixed solvent on both surfaces of an aluminum foil serving as a positive electrode current collector.
It can be obtained by drying and then compressing it with a roll press.

【0019】上記有機電解液としては,リチウム塩を電
解質として,これを溶媒に溶解させた非水電解液を用い
ることができる。上記溶媒としてはリチウム塩を溶解可
能な非プロトン性有機溶媒であれば特に限定されない。
例えば,エチレンカーボネート,プロピレンカーボネー
ト,ジエチルカーボネート,ジメチルカーボネート,ジ
メトキシエタン,γ−ブチルラクトン,アセトニトリ
ル,テトラヒドロフラン,ジオキソラン,スルホラン等
より選ばれる1種類以上の物質を用いることができる。
As the organic electrolyte, a non-aqueous electrolyte obtained by dissolving a lithium salt as an electrolyte in a solvent can be used. The solvent is not particularly limited as long as it is an aprotic organic solvent capable of dissolving a lithium salt.
For example, one or more substances selected from ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, dimethoxyethane, γ-butyl lactone, acetonitrile, tetrahydrofuran, dioxolan, sulfolane and the like can be used.

【0020】また,上記リチウム塩としては,特に限定
されないが,例えば,LiClO4,LiPF6 ,Li
BF4 ,LiAsF6 ,LiCF3 SO3 ,LiI,L
iBr,LiC1等より選ばれる1種類以上の物質を用
いることができる。
The lithium salt is not particularly limited. For example, for example, LiClO 4 , LiPF 6 , Li
BF 4 , LiAsF 6 , LiCF 3 SO 3 , LiI, L
One or more kinds of substances selected from iBr, LiC1, and the like can be used.

【0021】本発明により製造されるリチウム二次電池
の形状は,円筒形,角型等,特に限定はされない。ま
た,その構造についても既存のリチウム二次電池を踏襲
することができる。例えば,後述する実施形態例におい
て示した円筒型電池は,長尺シート状の正極と負極とを
セパレータを介して対向させ,これらを円筒状に巻回
し,巻状体となす。この巻状体を有機電解液と共に電池
容器に配置することにより構成することができる。
The shape of the lithium secondary battery manufactured according to the present invention is not particularly limited, such as a cylindrical shape and a rectangular shape. In addition, the structure can follow the existing lithium secondary battery. For example, in a cylindrical battery shown in an embodiment described later, a long sheet-shaped positive electrode and a long sheet-shaped negative electrode are opposed to each other with a separator interposed therebetween, and these are wound into a cylindrical shape to form a roll. It can be configured by arranging the wound body together with the organic electrolyte in a battery container.

【0022】本発明にかる作用効果につき以下に説明す
る。本発明にかかるリチウム二次電池の製造方法におい
ては,上記リチウム金属と上記負極とを短絡させること
により,上記負極に不可逆容量相当分のリチウムを導入
するリチウム導入工程を行うことにある。
The operation and effect according to the present invention will be described below. In a method of manufacturing a lithium secondary battery according to the present invention, a lithium introducing step is performed to short-circuit the lithium metal and the negative electrode to introduce lithium corresponding to an irreversible capacity into the negative electrode.

【0023】ところで,上記負極にかかる負極活物質の
炭素材料は,リチウムが導入されていない時には初期状
態でリチウムに対して比較的大きな正の電位を有してお
り,リチウム金属と短絡することにより自然に炭素材料
に対しリチウムを導入することができる。この現象を利
用することにより,正極がもっているリチウムを負極に
充電により導入した時,負極の不可逆性によって失われ
ていた不可逆容量相当分のリチウムを予め負極に導入す
ることができる。
By the way, the carbon material of the negative electrode active material for the negative electrode has a relatively large positive potential with respect to lithium in an initial state when lithium is not introduced. Lithium can be naturally introduced into a carbon material. By utilizing this phenomenon, when lithium contained in the positive electrode is introduced into the negative electrode by charging, lithium equivalent to the irreversible capacity lost due to the irreversibility of the negative electrode can be introduced into the negative electrode in advance.

【0024】これにより,負極に不可逆容量相当分のリ
チウムを導入した後,充電により正極由来のリチウムを
負極に導入する。このとき,負極の不可逆容量相当分が
おおむねすべて埋められた状態となっているため,放電
により正極由来のリチウム量にほぼ相当する量のリチウ
ムを負極から取り出すことができ,リチウム二次電池の
放電容量を増すことができる。
Thus, after lithium corresponding to the irreversible capacity is introduced into the negative electrode, lithium derived from the positive electrode is introduced into the negative electrode by charging. At this time, since almost all the irreversible capacity of the negative electrode is buried, an amount of lithium substantially equivalent to the amount of lithium derived from the positive electrode can be taken out of the negative electrode by discharging, and the discharge of the lithium secondary battery can be reduced. The capacity can be increased.

【0025】また,本発明にかかる製造方法では,短絡
時にリチウム金属と負極との間に抵抗体を介在させな
い。このため,リチウム二次電池の構造が単純となり,
製造工程をより簡易とすることができる。また,本発明
にかかる製造方法では,リチウム金属を取り扱うのは電
池容器にこれを取付ける時のみである。このため,製造
工程がより安全となる。
In the manufacturing method according to the present invention, no resistor is interposed between the lithium metal and the negative electrode during a short circuit. This simplifies the structure of the lithium secondary battery,
The manufacturing process can be simplified. Further, in the manufacturing method according to the present invention, the lithium metal is handled only when the lithium metal is attached to the battery container. This makes the manufacturing process more secure.

【0026】以上のように,本発明によれば,安全かつ
容易に高放電容量のリチウム二次電池を得ることができ
る,リチウム二次電池の製造方法を提供することができ
る。
As described above, according to the present invention, it is possible to provide a method for manufacturing a lithium secondary battery that can safely and easily obtain a lithium secondary battery having a high discharge capacity.

【0027】更に,上記リチウム導入工程の詳細につい
て説明する。まず,リチウム金属を電池容器内の一部に
配置する。このリチウム金属と負極とを電気的に接触さ
せることにより,有機電解液を注入した時にリチウム金
属と負極との間に電位差が生じ,局部電池が形成され
る。これにより,リチウム金属から負極ヘリチウムイオ
ンを導入することができる。
Further, the details of the lithium introducing step will be described. First, lithium metal is placed in a part of the battery container. By bringing the lithium metal and the negative electrode into electrical contact, a potential difference is generated between the lithium metal and the negative electrode when the organic electrolyte is injected, and a local battery is formed. Thereby, lithium ions can be introduced from the lithium metal to the negative electrode.

【0028】なお,配置するリチウム金属の量は,不可
逆容量相当分か,それよりも若干多くすることが好まし
い。一般的にリチウム二次電池を構成する負極の容量は
正極の容量よりも大きいため,不可逆容量相当分よりも
若干多いリチウム金属を配置しても,負極にリチウムを
導入することができる。
It is preferable that the amount of lithium metal to be disposed is equivalent to the irreversible capacity or slightly larger than that. In general, the capacity of the negative electrode constituting the lithium secondary battery is larger than the capacity of the positive electrode, so that lithium can be introduced into the negative electrode even if lithium metal slightly larger than the irreversible capacity is arranged.

【0029】上記リチウム金属の上記電池容器内におけ
る配置位置であるが,負極の断面方向に配置することが
望ましい(図1参照)。これにより負極の端面からのリ
チウム導入が容易となる。
The position of the lithium metal in the battery case is preferably in the sectional direction of the negative electrode (see FIG. 1). This facilitates the introduction of lithium from the end face of the negative electrode.

【0030】また,負極には負極活物質の他に集電体を
有することが一般的であるが,該集電体の最外周部に上
記リチウム金属を貼付する場合が従来あった(特開平5
−144473)。この従来技術と比較した場合,リチ
ウムイオンの拡散に要する負極の長さが短いため,導入
されたリチウムイオンが負極の内部で一様な分布を取る
までの時間を短くすることができる。また,上記リチウ
ム金属の形状は特に限定されない。また,上記電池容器
内に配置するリチウム金属に対し集電体を設けることも
できる。この場合の集電体としては,ステンレス製メッ
シュ等を用いることが好ましい。
The negative electrode generally has a current collector in addition to the negative electrode active material, and the above-described lithium metal has been conventionally adhered to the outermost peripheral portion of the current collector (Japanese Patent Laid-Open Publication No. 5
-144733). Compared with this conventional technique, the length of the negative electrode required for lithium ion diffusion is shorter, so that the time required for the introduced lithium ions to take a uniform distribution inside the negative electrode can be shortened. The shape of the lithium metal is not particularly limited. In addition, a current collector may be provided for lithium metal disposed in the battery container. In this case, it is preferable to use a stainless steel mesh or the like as the current collector.

【0031】また,上記リチウム金属と負極とを電気的
に接続する方法は種々考えられるが,例えばステンレス
製の電池容器を用いて該電池容器と負極とを接続する場
合には,該電池容器の底部にリチウム金属を圧着するこ
とが好ましい(図1参照)。これにより,自然と上記電
池容器に負極を配置することにより,該負極とリチウム
金属とが電気的に接続される。また,上記リチウム金属
または,該リチウム金属に設けた集電体に接続したリー
ド板と負極に設けた集電体または該負極の集電体に接続
したリード板とを接続する方法を採用することもでき
る。
Various methods of electrically connecting the lithium metal and the negative electrode can be considered. For example, when the battery container and the negative electrode are connected using a stainless steel battery container, It is preferable to press lithium metal on the bottom (see FIG. 1). Thereby, by naturally disposing the negative electrode in the battery container, the negative electrode is electrically connected to the lithium metal. Further, a method of connecting the above-mentioned lithium metal or a lead plate connected to a current collector provided on the lithium metal to a current collector provided on the negative electrode or a lead plate connected to the current collector of the negative electrode is adopted. Can also.

【0032】[0032]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例 本発明の実施形態例にかかるリチウム二次電池の製造方
法及びこれにより製造したリチウム二次電池につき,図
1を用いて説明する。図1に示すごとく,本例のリチウ
ム二次電池1は,正極11と負極12と有機電解液とこ
れらを収納する電池容器19とよりなり,かつ上記負極
11を構成する負極活物質として非黒鉛質材料と黒鉛と
が共存した炭素材料を用いたリチウム二次電池1であ
る。
Embodiment Example A method for manufacturing a lithium secondary battery according to an embodiment of the present invention and a lithium secondary battery manufactured by the method will be described with reference to FIG. As shown in FIG. 1, a lithium secondary battery 1 of the present embodiment includes a positive electrode 11, a negative electrode 12, an organic electrolyte, and a battery container 19 for accommodating them, and a non-graphite as a negative electrode active material constituting the negative electrode 11. Secondary battery 1 using a carbon material in which a porous material and graphite coexist.

【0033】このリチウム二次電池1を製造する方法に
おいては,まず,上記電池容器19内には予めリチウム
金属14を配設し,上記電池容器19内に有機電解液を
注入して上記リチウム金属14と上記負極12とを短絡
させることにより,上記負極12に不可逆容量相当分の
リチウムを導入するリチウム導入工程を行う。その後,
上記正極11と上記負極12との間に初期充電を行って
初期充電状態とする。
In the method of manufacturing the lithium secondary battery 1, first, a lithium metal 14 is disposed in the battery container 19 in advance, and an organic electrolytic solution is injected into the battery container 19 to form the lithium metal. By short-circuiting the negative electrode 14 and the negative electrode 12, a lithium introduction step of introducing lithium corresponding to the irreversible capacity into the negative electrode 12 is performed. afterwards,
Initial charging is performed between the positive electrode 11 and the negative electrode 12 to obtain an initial charged state.

【0034】本例のリチウム二次電池1の構造について
詳細に説明する。図1に示すごとく,上記正極11と負
極12は長尺シートよりなり,両者の間に長尺状のセパ
レータ13を介在させた状態で芯材100に巻回され,
巻回体を形成する。この巻回体は電池容器19である電
池缶に配設されている。上記巻回体と電池容器19の底
部191との間には,多孔質絶縁板140を介してリチ
ウム金属14が配設されている。また,上記巻回体の上
端には絶縁板160及び封口板16が設けてある。
The structure of the lithium secondary battery 1 of this embodiment will be described in detail. As shown in FIG. 1, the positive electrode 11 and the negative electrode 12 are formed of long sheets, and are wound around a core material 100 with a long separator 13 interposed therebetween.
Form a wound body. This wound body is disposed on a battery can which is a battery container 19. The lithium metal 14 is provided between the wound body and the bottom 191 of the battery case 19 via a porous insulating plate 140. An insulating plate 160 and a sealing plate 16 are provided at the upper end of the wound body.

【0035】また,上記電池容器19の外側底部192
には図示を略した負極端子が設けられ,上記電池容器1
9の底部191は上記負極12とリード板120により
導通されている。また,上記電池容器19の上端には正
極端子170が設けられ,該正極端子170と上記正極
11との間はリード板110により導通が確保されてい
る。そして,上記正極11,負極12及びセパレータ1
3の相互間には,有機電解液が配置されている。
The outer bottom 192 of the battery case 19
Is provided with a negative electrode terminal (not shown).
9 is electrically connected to the negative electrode 12 by the lead plate 120. A positive terminal 170 is provided at the upper end of the battery case 19, and conduction between the positive terminal 170 and the positive electrode 11 is ensured by the lead plate 110. Then, the positive electrode 11, the negative electrode 12, and the separator 1
An organic electrolyte is arranged between the three.

【0036】次に,上記リチウム二次電池1の製造方法
の詳細及び作製されたリチウム二次電池1の性能につき
説明する。まず,石油生コークスを平均粒径30μmに
粉砕した。ついで,電気炉中,アルゴン気流下,温度8
00℃,保持時間1時間なる条件で上記粉砕した石油生
コークスを焼成し熱処理コークスとした。この熱処理コ
ークスを冷却した後,乳鉢で粉砕し,メッシュにて30
μm以下に分級したもの80重量部と平均粒径20μm
の天然黒鉛20重量部とを混合した。このコークスと黒
鉛とが共存した炭素材料が負極活物質となる。
Next, the details of the method of manufacturing the lithium secondary battery 1 and the performance of the manufactured lithium secondary battery 1 will be described. First, petroleum raw coke was pulverized to an average particle size of 30 μm. Then, in an electric furnace, under a stream of argon, at a temperature of 8
The ground petroleum raw coke was fired under the conditions of 00 ° C. and a holding time of 1 hour to obtain a heat-treated coke. After cooling this heat-treated coke, it is crushed in a mortar,
80 parts by weight and an average particle size of 20 μm
Was mixed with 20 parts by weight of natural graphite. The carbon material in which coke and graphite coexist becomes the negative electrode active material.

【0037】次いで,上記炭素材料100重量部と,カ
ルボキシルメチルセルロースNa粉末4重量部をイオン
交換水100重量部に溶解した溶液100重量部とを混
合することによりスラリーを得た。次いで,上記スラリ
ーをアプリケーターを用いて,厚さ10μmの銅箔(こ
の銅箔が負極集電体となる)上に塗布し,乾燥プレスし
た。これにより,その両面に負極活物質である炭素材科
が塗布された厚さ100μmの負極を得た。これを幅
5.2cm,長さ53cmのシート状にカットした。
Next, 100 parts by weight of the above carbon material and 100 parts by weight of a solution obtained by dissolving 4 parts by weight of carboxymethylcellulose Na powder in 100 parts by weight of ion-exchanged water were mixed to obtain a slurry. Next, the slurry was applied on a copper foil having a thickness of 10 μm (this copper foil becomes a negative electrode current collector) using an applicator, and dried and pressed. As a result, a 100 μm-thick negative electrode having both surfaces coated with a carbon material as a negative electrode active material was obtained. This was cut into a sheet having a width of 5.2 cm and a length of 53 cm.

【0038】一方,LiMn2 4 を100重量部,ア
セチレンブラックを8重量部を混合し,混合物とした。
また,ポリフッ化ビニリデン粉末10重量部を,N−メ
チルビロリドン90重量部に溶解した溶液を準備した。
上記溶液80重量部に対し,上記混合物100重量部を
混合することによりスラリーを得た。
On the other hand, 100 parts by weight of LiMn 2 O 4 and 8 parts by weight of acetylene black were mixed to form a mixture.
In addition, a solution was prepared by dissolving 10 parts by weight of polyvinylidene fluoride powder in 90 parts by weight of N-methylvirolidone.
A slurry was obtained by mixing 100 parts by weight of the mixture with 80 parts by weight of the solution.

【0039】このスラリーをアプリケーターを用いて,
厚さ20μmのアルミ箔(このアルミ箔が正極集電体と
なる)上に塗布し,乾燥プレスした。これにより,その
両面に正極活物質であるLiMn2 4 が塗布された厚
さ160μmの正極を得た。これを幅5.0cm,長さ
49cmのシート状にカットした。
This slurry was applied using an applicator.
It was applied on a 20-μm-thick aluminum foil (this aluminum foil would be a positive electrode current collector) and dried and pressed. As a result, a positive electrode having a thickness of 160 μm having LiMn 2 O 4 as a positive electrode active material applied to both surfaces thereof was obtained. This was cut into a sheet having a width of 5.0 cm and a length of 49 cm.

【0040】また,厚さ25μm,幅5.3cmの微多
孔質ポリエチレンシートを準備し,これをセパレータと
して用いた。次いで,上記正極11,負極12,セパレ
ータ13を,図1に示すごとく,芯材100に対し巻回
し巻回体とした。
Also, a microporous polyethylene sheet having a thickness of 25 μm and a width of 5.3 cm was prepared and used as a separator. Next, as shown in FIG. 1, the positive electrode 11, the negative electrode 12, and the separator 13 were wound around a core material 100 to form a wound body.

【0041】次に,厚さ150μm,幅5mmのアルミ
ニウムよりなる正極リード板110を準備した。また,
ニッケルよりなる負極リード板を準備した。次いで,上
記正極リード板110及び負極リード板をそれぞれ電池
容器19に取り付けた。なお,上記電池容器190はス
テンレス製の電池缶である。
Next, a positive electrode lead plate 110 made of aluminum and having a thickness of 150 μm and a width of 5 mm was prepared. Also,
A negative electrode lead plate made of nickel was prepared. Next, the positive electrode lead plate 110 and the negative electrode lead plate were respectively attached to the battery case 19. The battery container 190 is a stainless steel battery can.

【0042】次いで,上記正極11及び負極12の断面
方向である上記電池容器19の底部191には,上記巻
回体等の設置前に不可逆容量相当分(なお,この不可逆
容量は後述する比較電池1にかかるリチウム二次電池よ
り求めた),即ちリチウム金属50mgを圧着した。こ
のような状態にある電池容器19の底部191に対し,
厚さ50μmのポリエチレンよりなる多孔質絶縁板14
0を介して上記巻回体を設置した。その後,有機電解液
を電池容器19内に注液し,上記負極12とリチウム金
属14とは短絡した状態とした。
Next, the bottom 191 of the battery case 19, which is a cross-sectional direction of the positive electrode 11 and the negative electrode 12, has an irreversible capacity equivalent to the irreversible capacity before installation of the winding body and the like (this irreversible capacity is a comparative battery to be described later). 1), that is, 50 mg of lithium metal was pressed. With respect to the bottom 191 of the battery container 19 in such a state,
Porous insulating plate 14 made of polyethylene having a thickness of 50 μm
0, and the above-mentioned wound body was installed. Thereafter, an organic electrolyte was injected into the battery case 19, and the negative electrode 12 and the lithium metal 14 were in a short-circuit state.

【0043】次いで,上記巻回体の上部にポリプロピレ
ンよりなる絶縁板160,封口板16を配置した電池容
器190を密封した。その後,これを10日間放置し
た。なお,この時使用した有機電解液は,エチレンカー
ボネート,ジエチルカーボネートの1:1混合液に1モ
ル/リットルの濃度にLiPF6 を溶解させた溶液であ
る。これにより,上記リチウム金属14と負極12との
間が短絡され,リチウム導入工程が行なわれる。
Next, the battery case 190 in which the insulating plate 160 made of polypropylene and the sealing plate 16 were arranged on the upper part of the wound body was sealed. Then, it was left for 10 days. The organic electrolyte used at this time was a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / liter in a 1: 1 mixture of ethylene carbonate and diethyl carbonate. As a result, the lithium metal 14 and the negative electrode 12 are short-circuited, and a lithium introducing step is performed.

【0044】その後,上記リチウム二次電池1に対し,
0.5mA/cm2 の定電流・定電圧で電池電圧が4.
2Vになるまで充電した(充電時間:8時間)。これが
初回充電となる。続いて,0.5mA/cm2 の定電流
で電池電圧が3.0Vになるまで放電した。
After that, for the lithium secondary battery 1,
3. The battery voltage is 4 at a constant current and a constant voltage of 0.5 mA / cm 2 .
The battery was charged to 2 V (charge time: 8 hours). This is the first charge. Subsequently, the battery was discharged at a constant current of 0.5 mA / cm 2 until the battery voltage reached 3.0 V.

【0045】以上の初回充電における充電容量とその後
の放電容量との差から不可逆容量を求めることができ
た。この結果を本発明電池として表1に示す。同表に示
すごとく,本例にかかるリチウム二次電池1は不可逆容
量が小さく,高放電容量であることが分かった。
The irreversible capacity was obtained from the difference between the charge capacity in the first charge and the discharge capacity thereafter. The results are shown in Table 1 as the battery of the present invention. As shown in the table, it was found that the lithium secondary battery 1 according to the present example has a small irreversible capacity and a high discharge capacity.

【0046】また,上記リチウム二次電池1を上述の不
可逆容量の測定後に分解したところ,リチウム金属の残
存は観察されなかった。これにより,電池缶内に設置さ
れたリチウム金属から負極へのリチウム導入工程が問題
なくおこなわれたことが分かった。
When the lithium secondary battery 1 was disassembled after the above-mentioned measurement of the irreversible capacity, no residual lithium metal was observed. As a result, it was found that the process of introducing lithium from the lithium metal installed in the battery can to the negative electrode was performed without any problem.

【0047】次に比較電池1について説明する。比較電
池1にかかるリチウム二次電池は,本例にかかるリチウ
ム二次電池1と同一の構造を有し,同様の材料より構成
されている。ただし,電池容器の底部にはリチウム金属
を圧着していない。
Next, the comparative battery 1 will be described. The lithium secondary battery according to the comparative battery 1 has the same structure as the lithium secondary battery 1 according to the present embodiment, and is made of the same material. However, lithium metal was not crimped to the bottom of the battery case.

【0048】このような比較電池1にかかるリチウム二
次電池に対し,本発明電池にかかるリチウム二次電池と
同様に0.5mA/cm2 の定電流・定電圧で電池電圧
が4.2Vになるまで充電した(充電時間:8時間)。
これが初回充電となる。続いて,0.5mA/cm2
定電流で電池電圧が3.0Vになるまで放電した。
In contrast to the lithium secondary battery according to the battery of the present invention, the battery voltage was increased to 4.2 V at a constant current and a constant voltage of 0.5 mA / cm 2 , similarly to the lithium secondary battery according to the battery of the present invention. The battery was charged until charging (charge time: 8 hours).
This is the first charge. Subsequently, the battery was discharged at a constant current of 0.5 mA / cm 2 until the battery voltage reached 3.0 V.

【0049】以上の初回充電における充電容量とその後
の放電容量との差から不可逆容量を求めることができ
た。この結果を表1に示す。同表に示すごとく,比較電
池1にかかるリチウム二次電池は不可逆容量が大きく,
低放電容量であることが分かった。
The irreversible capacity was obtained from the difference between the charge capacity in the first charge and the discharge capacity thereafter. Table 1 shows the results. As shown in the table, the lithium secondary battery according to Comparative Battery 1 has a large irreversible capacity.
It was found that the discharge capacity was low.

【0050】次に比較電池2について説明する。比較電
池2は,負極活物質を熱処理コークスのみからなる炭素
材料とする以外は比較電池1と同一の構造を有し,同様
の材料より構成されている。ただし,比較電池1と同様
に電池容器の底部にはリチウム金属を圧着していない。
このような比較電池2に対して,本発明電池と同様に充
電および放電を行った。初回充電における充電容量とそ
の後の放電容量との差から不可逆容量を求めることがで
きた。この結果を表1に示す。
Next, the comparative battery 2 will be described. The comparative battery 2 has the same structure as that of the comparative battery 1 except that the negative electrode active material is a carbon material consisting of only heat-treated coke, and is made of the same material. However, like the comparative battery 1, lithium metal was not crimped to the bottom of the battery container.
Such a comparative battery 2 was charged and discharged in the same manner as the battery of the present invention. The irreversible capacity could be determined from the difference between the charge capacity in the first charge and the subsequent discharge capacity. Table 1 shows the results.

【0051】同表に示すがごとく,比較電池2は比較電
池1と同様に不可逆容量が大きく,低放電容量であるこ
とが分かった。
As shown in the table, Comparative Battery 2 was found to have a large irreversible capacity and a low discharge capacity, similarly to Comparative Battery 1.

【0052】さらに,比較電池3について説明する。比
較電池3は,比較電池2より求めた不可逆容量相当分,
即ちリチウム金属64mgを電池容器の底部に圧着する
以外は,比較電池2と同一の構造を有し,同様の材料か
ら構成されている。すなわち,熱処理コークスのみから
なる炭素材料が負極活物質である。比較電池3を組み立
て後,30日間放置した。これにより,リチウム金属と
負極との間が短絡され,負極へのリチウム導入工程が行
なわれた。
Next, the comparative battery 3 will be described. Comparative battery 3 is equivalent to the irreversible capacity obtained from comparative battery 2,
That is, except that 64 mg of lithium metal is crimped to the bottom of the battery container, it has the same structure as the comparative battery 2 and is made of the same material. That is, a carbon material consisting of only heat-treated coke is the negative electrode active material. After assembling the comparative battery 3, it was left for 30 days. As a result, the lithium metal and the negative electrode were short-circuited, and a step of introducing lithium into the negative electrode was performed.

【0053】その後,上記比較電池3に対して,本発明
電池と同様に充電および放電を行った。初回充電におけ
る充電容量とその後の放電容量との差から不可逆容量を
求めることができた。この結果を表1に示す。
Thereafter, the comparative battery 3 was charged and discharged in the same manner as the battery of the present invention. The irreversible capacity could be determined from the difference between the charge capacity in the first charge and the subsequent discharge capacity. Table 1 shows the results.

【0054】同表に示すがごとく,比較電池3は本発明
電池と同様に不可逆容量が小さく,高放電容量であるこ
とが分かった。しかし,比較電池3の完成までの期間は
本発明電池の完成までの期間よりも長い30日間であっ
た。
As shown in the table, it was found that the comparative battery 3 had a small irreversible capacity and a high discharge capacity like the battery of the present invention. However, the period until completion of the comparative battery 3 was 30 days longer than the period until completion of the battery of the present invention.

【0055】次に,本例における作用効果につき説明す
る。本例にかかるリチウム二次電池1の製造方法におい
ては,上記リチウム金属14と上記負極12とを短絡さ
せることにより,上記負極12に不可逆容量相当分のリ
チウムを導入するリチウム導入工程を行うことにある。
Next, the operation and effect of this embodiment will be described. In the method of manufacturing the lithium secondary battery 1 according to the present example, a lithium introduction step of introducing lithium equivalent to an irreversible capacity into the anode 12 by short-circuiting the lithium metal 14 and the anode 12 is performed. is there.

【0056】ところで,炭素材料は,リチウムが導入さ
れていない時には初期状態でリチウムに対して比較的大
きな正の電位を有しており,リチウム金属と短絡するこ
とにより自然に炭素材料に対しリチウムを導入すること
ができる。さらに,例のごとくコークスと黒鉛とが共存
した炭素材料を用いることにより,リチウム金属から炭
素材料へのリチウムの導入が適度な速度で行われるよう
になる。これにより正極11由来のリチウムの一部が,
負極12の不可逆容量のために放電時に負極に残るとい
うことを防止できる。
By the way, the carbon material has a relatively large positive potential with respect to lithium in the initial state when lithium is not introduced, and lithium is naturally added to the carbon material by short-circuiting with lithium metal. Can be introduced. Further, by using a carbon material in which coke and graphite coexist as in the example, introduction of lithium from lithium metal to the carbon material can be performed at an appropriate speed. As a result, part of the lithium derived from the positive electrode 11 becomes
It is possible to prevent the negative electrode 12 from remaining on the negative electrode during discharge due to the irreversible capacity.

【0057】このため上記負極12の不可逆容量が減少
し,正極11と負極12との間でやり取りされる充放電
可能なリチウム量を増やすことができる。このため,リ
チウム二次電池1の放電容量を増やすことができる。
As a result, the irreversible capacity of the negative electrode 12 is reduced, and the amount of chargeable / dischargeable lithium exchanged between the positive electrode 11 and the negative electrode 12 can be increased. Therefore, the discharge capacity of the lithium secondary battery 1 can be increased.

【0058】また,本例にかかる製造方法では,短絡時
にリチウム金属14と負極12との間に抵抗体を介在さ
せる必要がない(リチウムの導入が適度な速度で行なわ
れるため)。よって,リチウム二次電池1の構造が単純
となり,製造工程をより簡易とすることができる。ま
た,リチウム金属14を取り扱うのは電池容器19にこ
れを取付ける時のみであることから,製造工程がより安
全となる。
Further, in the manufacturing method according to the present embodiment, it is not necessary to interpose a resistor between the lithium metal 14 and the negative electrode 12 at the time of short circuit (since lithium is introduced at an appropriate speed). Therefore, the structure of the lithium secondary battery 1 is simplified, and the manufacturing process can be further simplified. In addition, since the lithium metal 14 is handled only when the battery metal 19 is attached to the battery case 19, the manufacturing process is more secure.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【発明の効果】上記のごとく,本発明によれば,安全か
つ容易に高放電容量のリチウム二次電池を得ることがで
きる,リチウム二次電池の製造方法を提供することがで
きる。
As described above, according to the present invention, it is possible to provide a method of manufacturing a lithium secondary battery that can safely and easily obtain a lithium secondary battery having a high discharge capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例における,リチウム二次電池の断面
説明図。
FIG. 1 is an explanatory cross-sectional view of a lithium secondary battery in an embodiment.

【符号の説明】[Explanation of symbols]

1...リチウム二次電池, 11...正極, 12...負極, 14...リチウム金属, 19...電池容器, 1. . . 10. lithium secondary battery, . . Positive electrode, 12 . . Negative electrode, 14. . . Lithium metal, 19. . . Battery case,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極と有機電解液とこれらを収納
する電池容器とよりなるリチウム二次電池を製造する方
法において,上記負極を構成する負極活物質として非黒
鉛質材料と黒鉛との共存体からなる炭素材料を用い,上
記電池容器内には予めリチウム金属を配設しておき,上
記電池容器内に有機電解液を注入して上記リチウム金属
と上記負極とを短絡させることにより,上記負極に不可
逆容量相当分のリチウムを導入するリチウム導入工程を
行い,その後,上記正極と上記負極との間に初期充電を
行って初期充電状態とすることを特徴とするリチウム二
次電池の製造方法。
1. A method for manufacturing a lithium secondary battery comprising a positive electrode, a negative electrode, an organic electrolyte and a battery container for accommodating them, wherein a non-graphitic material and graphite coexist as a negative electrode active material constituting the negative electrode. By using a carbon material made of a body and previously disposing lithium metal in the battery container, injecting an organic electrolyte into the battery container to short-circuit the lithium metal and the negative electrode, A method for producing a lithium secondary battery, comprising: performing a lithium introduction step of introducing lithium equivalent to an irreversible capacity into a negative electrode, and thereafter performing an initial charge between the positive electrode and the negative electrode to an initial charged state. .
JP9092921A 1997-03-26 1997-03-26 Manufacture of secondary lithium battery Pending JPH10270090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9092921A JPH10270090A (en) 1997-03-26 1997-03-26 Manufacture of secondary lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9092921A JPH10270090A (en) 1997-03-26 1997-03-26 Manufacture of secondary lithium battery

Publications (1)

Publication Number Publication Date
JPH10270090A true JPH10270090A (en) 1998-10-09

Family

ID=14067960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9092921A Pending JPH10270090A (en) 1997-03-26 1997-03-26 Manufacture of secondary lithium battery

Country Status (1)

Country Link
JP (1) JPH10270090A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235617A (en) * 2004-02-20 2005-09-02 Matsushita Electric Ind Co Ltd Lithium ion battery
JP2006156330A (en) * 2004-11-02 2006-06-15 Sanyo Electric Co Ltd Lithium secondary battery and method of manufacturing the same
JP2007115799A (en) * 2005-10-19 2007-05-10 Hitachi Aic Inc Electric double layer capacitor
JP2008098361A (en) * 2006-10-11 2008-04-24 Fdk Corp Storage element
WO2008096834A1 (en) * 2007-02-07 2008-08-14 Toyota Jidosha Kabushiki Kaisha Lithium ion battery before pre-doping and lithium ion battery manufacturing method
JP2009170384A (en) * 2008-01-21 2009-07-30 Nec Tokin Corp Lithium secondary battery
US8922171B2 (en) 2010-02-04 2014-12-30 Hitachi, Ltd. Nonaqueous electrolyte secondary battery apparatus and method for charging anode of the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235617A (en) * 2004-02-20 2005-09-02 Matsushita Electric Ind Co Ltd Lithium ion battery
JP4617682B2 (en) * 2004-02-20 2011-01-26 パナソニック株式会社 Lithium ion battery
JP2006156330A (en) * 2004-11-02 2006-06-15 Sanyo Electric Co Ltd Lithium secondary battery and method of manufacturing the same
JP2007115799A (en) * 2005-10-19 2007-05-10 Hitachi Aic Inc Electric double layer capacitor
JP2008098361A (en) * 2006-10-11 2008-04-24 Fdk Corp Storage element
WO2008096834A1 (en) * 2007-02-07 2008-08-14 Toyota Jidosha Kabushiki Kaisha Lithium ion battery before pre-doping and lithium ion battery manufacturing method
JP2008192540A (en) * 2007-02-07 2008-08-21 Toyota Motor Corp Lithium ion battery before pre-doping and manufacturing method of lithium ion battery
US8192868B2 (en) 2007-02-07 2012-06-05 Toyota Jidosha Kabushiki Kaisha Lithium ion battery before pre-doping and lithium ion battery manufacturing method
JP2009170384A (en) * 2008-01-21 2009-07-30 Nec Tokin Corp Lithium secondary battery
US8922171B2 (en) 2010-02-04 2014-12-30 Hitachi, Ltd. Nonaqueous electrolyte secondary battery apparatus and method for charging anode of the same

Similar Documents

Publication Publication Date Title
JP3028582B2 (en) Non-aqueous electrolyte secondary battery
US11011321B2 (en) Electrochemical energy storage device
JP2000077061A (en) Lithium ion battery
JPH10223259A (en) Lithium secondary battery and manufacture thereof
JP2000082498A (en) Nonaqueous electrolyte secondary battery
JPH11111266A (en) High polymer electrolyte secondary battery
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JP3448444B2 (en) Light storage battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH10270090A (en) Manufacture of secondary lithium battery
JP3336672B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
WO2015023857A1 (en) Lithium sulfur cell and preparation method
CN110521030B (en) Nonaqueous electrolyte storage element
JP2001015168A (en) Lithium secondary battery
JP3076887B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2000306610A (en) Nonaqueous electrolyte secondary battery
JP2000306607A (en) Nonaqueous electrolyte battery
JP2001196073A (en) Nonaqueous electrolyte battery
JP2001143763A (en) Flat non-aqueous electrolyte secondary battery
JPH05307974A (en) Organic electrolyte secondary battery
JPH1050312A (en) Nonaqueous electrolyte secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JPH0696802A (en) Thin non-aqueous electrolyte battery