JP2001167763A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2001167763A
JP2001167763A JP34978299A JP34978299A JP2001167763A JP 2001167763 A JP2001167763 A JP 2001167763A JP 34978299 A JP34978299 A JP 34978299A JP 34978299 A JP34978299 A JP 34978299A JP 2001167763 A JP2001167763 A JP 2001167763A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium secondary
secondary battery
conductive material
based oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34978299A
Other languages
Japanese (ja)
Other versions
JP2001167763A5 (en
Inventor
Takahiro Yamaki
孝博 山木
Hidetoshi Honbou
英利 本棒
Fusaji Kita
房次 喜多
Tetsuo Itsu
哲夫 伊津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Holdings Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP34978299A priority Critical patent/JP2001167763A/en
Publication of JP2001167763A publication Critical patent/JP2001167763A/en
Publication of JP2001167763A5 publication Critical patent/JP2001167763A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery having a large energy density and an excellent cycle characteristic. SOLUTION: A Lithium secondary battery is disclosed, which has a positive electrode 1 comprising Co-based oxides containing Li and Co, as positive electrode active substances, and a carbon-based conductive material; a negative electrode 2; and an organic electrolyte 4. The Co-based oxides contain at least one selected from Mg, Al, Mn, Ti and Sr, and the conductive material has amorphous carbons at least at its surface layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
に係わり、特に、エネルギー密度が高く、サイクル特性
に優れたリチウム二次電池に関する。
The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery having a high energy density and excellent cycle characteristics.

【0002】[0002]

【従来の技術】正極にリチウム(Li)およびコバルト
(Co)を含有するCo系酸化物を活物質として用いる
リチウム二次電池は、高電圧、高容量であるためその需
要がますます増えている。
2. Description of the Related Art Lithium secondary batteries using a Co-based oxide containing lithium (Li) and cobalt (Co) for the positive electrode as an active material are in high demand because of their high voltage and high capacity. .

【0003】従来のCo系酸化物を用いるリチウム二次
電池の構成は、コバルト酸リチウム(LiCoO2)が
正極活物質に用いられ、負極にはLiを挿入する黒鉛等
の炭素材料を含み、正極と負極を隔てるポリエチレン等
の高分子多孔質フィルムにリチウム塩を有機溶媒に溶解
した有機電解液が含浸されている。
A conventional lithium secondary battery using a Co-based oxide has a structure in which lithium cobalt oxide (LiCoO 2 ) is used as a positive electrode active material, a negative electrode contains a carbon material such as graphite into which Li is inserted, and a positive electrode has a positive electrode. An organic electrolytic solution obtained by dissolving a lithium salt in an organic solvent is impregnated in a polymer porous film of polyethylene or the like separating the anode and the negative electrode.

【0004】特に、LiClO4やLiPF6等のリチウ
ム塩をエチレンカーボネート(以下ECと云う)やジメ
チルカーボネート(以下DMCと云う)等の炭酸エステ
ル類の混合溶媒に溶解した有機電解液が、高容量のもの
が得られるとして広く用いられている。
In particular, an organic electrolyte in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved in a mixed solvent of carbonates such as ethylene carbonate (hereinafter referred to as EC) or dimethyl carbonate (hereinafter referred to as DMC) has a high capacity. Is widely used as a product.

【0005】また、Co系酸化物を正極活物質に用いる
場合、正極の電気抵抗を減らす目的で導電材が正極に加
えられるが、従来は化学的安定性や電気電導性の点か
ら、黒鉛等の結晶性の高い炭素材料が用いられてきた。
When a Co-based oxide is used as a positive electrode active material, a conductive material is added to the positive electrode in order to reduce the electric resistance of the positive electrode. However, conventionally, from the viewpoint of chemical stability and electric conductivity, graphite or the like is used. Has been used.

【0006】しかしながら、このようなLiCoO2
正極活物質として使用した従来のリチウム二次電池で
は、充電時の正極の最高電位が、金属Li基準で4.3
V程度に規定され、電池内でのLiCoO2の放電容量
は160mAh/g以下に制限されてきた。
However, in a conventional lithium secondary battery using such LiCoO 2 as a positive electrode active material, the maximum potential of the positive electrode at the time of charging is 4.3 based on metallic Li.
V, and the discharge capacity of LiCoO 2 in the battery has been limited to 160 mAh / g or less.

【0007】理論的には、金属Li基準で約4.8Vま
で充電することにより、LiCoO2の全てのLiが放
出され、理論容量は約274mAh/gに達するが、こ
のような、エネルギー密度を高めるため充電電位を引き
上げることは、充放電サイクルの進行により充放電の可
逆性が著しく劣化する、いわゆるサイクル劣化の問題が
あった。
[0007] Theoretically, by charging to about 4.8 V on the basis of metallic Li, all Li of LiCoO 2 is released and the theoretical capacity reaches about 274 mAh / g. Increasing the charging potential to increase the charge / discharge reversibility of the charge / discharge remarkably deteriorates with the progress of the charge / discharge cycle.

【0008】このサイクル劣化の要因として、正極の電
位が金属Li基準で4.3Vを超えると、LiCoO2
結晶構造の菱面体晶から単斜晶への相転移が進行し、L
iイオンの挿入と放出の可逆性が損なわれることが挙げ
られる。
As a cause of this cycle deterioration, when the potential of the positive electrode exceeds 4.3 V on the basis of metal Li, the phase transition of the crystal structure of LiCoO 2 from rhombohedral to monoclinic proceeds, and L
The reversibility of i-ion insertion and release is impaired.

【0009】さらにまた、別の要因として、充電により
高電位となった正極導電材である結晶性の高い炭素材表
面で、有機電解液を構成する有機溶媒や、リチウム塩の
酸化分解が進行することが挙げられる。この影響は、従
来のリチウム二次電池の金属Li基準で4.3Vの充電
電位では実用上支障はないが、充電電位を引き上げるに
つれて充放電効率の低下が著しくなる。
Further, as another factor, the oxidative decomposition of the organic solvent and the lithium salt constituting the organic electrolytic solution proceeds on the surface of the highly conductive carbon material, which is the positive electrode conductive material which has been raised to a high potential by charging. It is mentioned. This effect does not hinder practical use at a charge potential of 4.3 V based on metal Li of a conventional lithium secondary battery, but the charge / discharge efficiency is significantly reduced as the charge potential is increased.

【0010】[0010]

【発明が解決しようとする課題】正極に用いるCo系酸
化物のサイクル特性を改善するため、各種の元素を添加
することが提案(例えば、特開平8−31408号公
報、特開平6−44973号公報)されているが、有機
電解液の分解を引き起こす充電電位の引き上げに対して
は十分ではない。
In order to improve the cycle characteristics of the Co-based oxide used for the positive electrode, it is proposed to add various elements (for example, JP-A-8-31408 and JP-A-6-44973). However, it is not enough to raise the charging potential that causes the decomposition of the organic electrolyte.

【0011】また、高電位での有機電解液の分解の問題
を解決するため、有機電解液の代わりに硫化物系のリチ
ウムイオン伝導性固体電解質を用いることが提案(特開
平11−21803号公報)されているが、充放電サイ
クルの進行による劣化を検討するまでには至っていな
い。
Further, in order to solve the problem of decomposition of the organic electrolyte at a high potential, it has been proposed to use a sulfide-based lithium ion conductive solid electrolyte instead of the organic electrolyte (Japanese Patent Laid-Open No. 11-21803). ), But it has not reached the point of studying the deterioration due to the progress of the charge / discharge cycle.

【0012】本発明の目的は、上記の問題を解決するた
め、正極活物質として用いるCo系酸化物と、正極中の
導電材を規定して、エネルギー密度が高く、かつ、サイ
クル特性の優れたリチウム二次電池を提供することにあ
る。
[0012] An object of the present invention is to solve the above problems by defining a Co-based oxide used as a positive electrode active material and a conductive material in the positive electrode to provide a high energy density and excellent cycle characteristics. An object of the present invention is to provide a lithium secondary battery.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成する本
発明の要旨は、正極活物質としてLiおよびCoを含有
するCo系酸化物と、主成分が炭素である導電材とを含
む正極と、負極と、有機電解液を有するリチウム二次電
池において、前記Co系酸化物がMg、Al、Mn、T
iおよびSrから選ばれる少なくとも1種を含有し、か
つ、前記導電材の少なくともその表層に非晶質炭素質を
有することを特徴とするリチウム二次電池にある。
The gist of the present invention to achieve the above object is to provide a positive electrode containing a Co-based oxide containing Li and Co as a positive electrode active material and a conductive material whose main component is carbon. , A negative electrode, and an organic electrolytic solution, wherein the Co-based oxide is Mg, Al, Mn, T
A lithium secondary battery containing at least one selected from i and Sr, and having an amorphous carbonaceous material in at least a surface layer of the conductive material.

【0014】このような電池の構成により、充電時にお
ける正極の最高電位を、金属Li基準で4.4V〜4.8
Vとすることができると同時に、充放電サイクルの進行
による充放電の可逆性の劣化を抑制することができる。
[0014] With such a battery configuration, the maximum potential of the positive electrode during charging is 4.4 V to 4.8 on the basis of metal Li.
V, and at the same time, deterioration of the reversibility of charge / discharge due to the progress of the charge / discharge cycle can be suppressed.

【0015】即ち、充電時における正極の最高電位を、
金属Li基準で4.4V以上とすることで、正極活物質
の放電容量を向上させることができる。これにより、電
池内の正極活物質量を低減することができ、負極活物質
量を増やすことができる。従って、限られた電池容積に
おいて、より高エネルギー密度のリチウム二次電池が得
られる。
That is, the maximum potential of the positive electrode during charging is
By setting the voltage to 4.4 V or more based on the metal Li, the discharge capacity of the positive electrode active material can be improved. Thereby, the amount of the positive electrode active material in the battery can be reduced, and the amount of the negative electrode active material can be increased. Therefore, a lithium secondary battery having a higher energy density can be obtained in a limited battery capacity.

【0016】なお、このエネルギー密度は、正極の充電
電位を高めるほど大きくなり、理論的には4.8Vまで
可能であるが、サイクル劣化の点から、本発明における
正極の最高電位の上限は、金属Li基準で4.6V以下
がより望ましい。この正極電位の規定は、正極活物質で
あるCo系酸化物の物性に基因するものであるから、電
池内の負極の種類によらず決められるものである。
The energy density increases as the charge potential of the positive electrode increases, and can theoretically be up to 4.8 V. However, from the viewpoint of cycle deterioration, the upper limit of the maximum potential of the positive electrode in the present invention is: 4.6V or less is more desirable based on metal Li. Since the definition of the positive electrode potential is based on the physical properties of the Co-based oxide as the positive electrode active material, it is determined regardless of the type of the negative electrode in the battery.

【0017】なお、前記の充電時における正極の最高電
位とは、通常二次電池を満充電状態とするのに必要な定
電圧充電もしくは定電流充電における電位が相当する。
しかし、充電中の電池の電圧は、充電器により制御され
るものであるから、本発明で規定するところの充電時に
おける正極の最高電位とは、充電器の充電設定電圧に基
づくものであってもよい。
The maximum potential of the positive electrode during the charging corresponds to a potential in a constant voltage charge or a constant current charge that is necessary to bring the secondary battery into a fully charged state.
However, since the voltage of the battery during charging is controlled by the charger, the maximum potential of the positive electrode during charging as defined in the present invention is based on the charging set voltage of the charger. Is also good.

【0018】[0018]

【発明の実施の形態】本発明におけるCo系酸化物は、
Mg、Al、Mn、TiおよびSrから選ばれる少なく
とも1種を含有するもので、充放電サイクルの進行によ
るCo系酸化物の、相転移に伴う充放電の可逆性の劣化
を抑制する効果がある。
BEST MODE FOR CARRYING OUT THE INVENTION The Co-based oxide in the present invention comprises:
It contains at least one selected from Mg, Al, Mn, Ti and Sr, and has an effect of suppressing deterioration of reversibility of charge / discharge due to phase transition of a Co-based oxide due to progress of a charge / discharge cycle. .

【0019】これは、上記の添加元素がCoやLiと置
換もしくはCo系酸化物の結晶構造中に固溶することに
より、菱面体晶LiCoO2の理想的な層状結晶構造が
若干歪み、さらにこれらの添加元素が相転移の阻害点と
して作用することによるものと考えられる。添加する元
素の種類は必ずしも1種である必要はなく、複数種の元
素を添加してもよい。
This is because the ideal layered crystal structure of rhombohedral LiCoO 2 is slightly distorted because the above-mentioned additive element is substituted with Co or Li or forms a solid solution in the crystal structure of a Co-based oxide. It is considered that this is because the added element of acts as an inhibition point of the phase transition. The kind of element to be added is not necessarily one kind, and a plurality of kinds of elements may be added.

【0020】本発明における正極活物質であるCo系酸
化物は、一般式、LixCoyz2(但し、AはMg、
Al、Mn、TiおよびSrから選ばれる少なくとも1
種であり、x、y、zはそれぞれ0.9≦x≦1.1、
0.97≦y≦1.00、0.01≦z≦0.03)で表す
ことができる。
The Co-based oxide as the positive electrode active material in the present invention is represented by the general formula: Li x Co y Az O 2 (where A is Mg,
At least one selected from Al, Mn, Ti and Sr
X, y, and z are respectively 0.9 ≦ x ≦ 1.1,
0.97 ≦ y ≦ 1.00, 0.01 ≦ z ≦ 0.03).

【0021】xの値は、Co系酸化物の作製段階におけ
る化学量論組成からのずれを示すもので、通常0.9≦
x≦1.1の範囲のものがよい。
The value of x indicates a deviation from the stoichiometric composition at the stage of preparing the Co-based oxide, and is usually 0.9 ≦≦
Those in the range of x ≦ 1.1 are preferred.

【0022】yの値は、従来のLiCoO2ではy=1
である。yの値は特に限定されないが、y=1に近いほ
ど高い放電容量が得られ、その望ましい値は0.97≦
y≦1.00である。
The value of y is y = 1 in the conventional LiCoO 2.
It is. Although the value of y is not particularly limited, a higher discharge capacity is obtained as y = 1, and the desirable value is 0.97 ≦
y ≦ 1.00.

【0023】またAで示す添加元素は、必ずしも1種で
はなく、複数種の元素であってもよく、また、zの値は
0.01≦z≦0.03が望ましい。これは0.01≦z
であると、Liイオンの挿入と放出の可逆性に対する添
加元素の効果がより十分に得られ、また、z≦0.03
であるとより高い放電容量が得られる。
The additive element represented by A is not necessarily one kind, but may be a plurality of kinds of elements. The value of z is preferably 0.01 ≦ z ≦ 0.03. This is 0.01 ≦ z
In this case, the effect of the added element on the reversibility of insertion and release of Li ions is more sufficiently obtained, and z ≦ 0.03.
, A higher discharge capacity can be obtained.

【0024】本発明において正極に用いる導電材は、非
晶質炭素もしくは少なくとも表層に非晶質炭素質を有し
主成分が炭素である導電材を用いる。これにより、高い
充電電位においても有機電解液の酸化分解を抑制するこ
とができる。
In the present invention, as the conductive material used for the positive electrode, use is made of amorphous carbon or a conductive material having amorphous carbonaceous material at least in its surface layer and whose main component is carbon. This makes it possible to suppress oxidative decomposition of the organic electrolyte even at a high charging potential.

【0025】導電材の構造としては、導電材全てが非晶
質炭素で形成されてもよいが、導電性の点から、電気伝
導率の高い黒鉛等の高結晶性の炭素材表面に、非晶質炭
素層を有することがより望ましい。特に、好ましい導電
材の形態としては、ラマンスペクトルにおいて、154
0cm~1〜1600cm~1の範囲に存在するピークの半
値幅が100cm~1以上のものであり、非晶質炭素質が
高結晶性の炭素材表面を十分に覆っているものである。
As for the structure of the conductive material, the entire conductive material may be formed of amorphous carbon. However, from the viewpoint of conductivity, the surface of a highly crystalline carbon material such as graphite having a high electrical conductivity is formed on a non-crystalline surface. It is more desirable to have a crystalline carbon layer. In particular, a preferred form of the conductive material is 154 in the Raman spectrum.
0 cm ~ is 1 shall ~1600Cm ~ half width of peaks present in the first range of 100 cm ~ 1 or more, in which amorphous carbonaceous is adequately covered carbon material surface of high crystallinity.

【0026】なお、本発明におけるラマンスペクトルの
ピークの半値幅は、図1に示すよう1800cm~1と1
000cm~1の信号強度を結ぶ直線をベースラインと
し、このベースラインを基準としたピーク高さの1/2
の点におけるピークの幅として規定される。
It should be noted that the half-value width of the peak of the Raman spectrum in the present invention ranges from 1800 cm to 1 as shown in FIG.
A straight line connecting the signal intensities of 000 cm to 1 is defined as a baseline, and 1 / of the peak height based on this baseline.
Is defined as the width of the peak at the point.

【0027】本発明における表面に非晶質炭素質層を有
する炭素導電材の作製法としては、例えば、液状の樹
脂、ピッチやタール等に、人造黒鉛等の炭素材を浸漬後
焼成することで得られる。また気相法として、プロパン
やアセチレン等の炭化水素ガスを熱分解により炭素化
し、これを炭素材表面に堆積させることでも作製でき
る。
The method for producing a carbon conductive material having an amorphous carbonaceous layer on its surface according to the present invention is, for example, a method in which a carbon material such as artificial graphite is immersed in a liquid resin, pitch or tar, and then fired. can get. Further, as a gas phase method, it can also be produced by carbonizing a hydrocarbon gas such as propane or acetylene by thermal decomposition and depositing it on the surface of a carbon material.

【0028】さらに、本発明におけるリチウム二次電池
の特徴として、Mg、Al、Mn、TiおよびSrから
選ばれる少なくとも1種を含有するCo系酸化物を正極
活物質として使用し、かつ、少なくともその表層に非晶
質炭素質を有する炭素導電材を使用し、充電時における
正極の最高電位を金属Li基準で4.4V〜4.8V、望
ましくは4.4V〜4.6Vとすることで、電池内の正極
活物質の初期放電容量が160mAh/g以上で、か
つ、規定の充放電を10回繰り返した際の電池の容量維
持率80%以上のものである。
Further, as a feature of the lithium secondary battery of the present invention, a Co-based oxide containing at least one selected from Mg, Al, Mn, Ti and Sr is used as a positive electrode active material, and By using a carbon conductive material having amorphous carbonaceous material for the surface layer, and setting the maximum potential of the positive electrode during charging to 4.4 V to 4.8 V, preferably 4.4 V to 4.6 V, based on metal Li, The initial discharge capacity of the positive electrode active material in the battery is 160 mAh / g or more, and the capacity retention rate of the battery is 80% or more when specified charge / discharge is repeated 10 times.

【0029】本発明の電池に用いる正極には、Co系酸
化物と導電材をポリフッ化ビニリデンなどの結着剤を適
宜添加した合剤を基に作成される。例えば、アルミ箔な
どの集電材料を芯材とし成形体に仕上げたものが用いら
れる。
The positive electrode used in the battery of the present invention is prepared based on a mixture obtained by appropriately adding a Co-based oxide and a conductive material to a binder such as polyvinylidene fluoride. For example, a molded product using a current collector material such as an aluminum foil as a core material and used as a core is used.

【0030】また、本発明の電池に用いる負極として
は、炭素材料またはLi挿入もしくは化合物の形成が可
能な材料を用いて、これに結着剤などを適宜添加した合
剤をもとに作成される。例えば、合剤を溶媒に分散さ
せ、銅箔などの集電材料に塗布乾燥後、成形体に仕上げ
たものを用いる。
The negative electrode used in the battery of the present invention is made of a carbon material or a material capable of inserting Li or forming a compound, and is prepared based on a mixture obtained by appropriately adding a binder and the like thereto. You. For example, a mixture obtained by dispersing a mixture in a solvent, coating and drying a current collecting material such as a copper foil, and then forming a molded product is used.

【0031】炭素材料は、例えば、天然黒鉛、人造黒
鉛、あるいは、重質油、コールタール、ピッチ系繊維な
どを加熱処理して炭化し、粉砕することによって得られ
る炭素材料を用いる。また、Li挿入もしくは化合物の
形成が可能な材料としては、アルミニウムなどの金属、
シリコンなどを含む金属酸化物、および、炭素材料を含
めたこれらの材料の複合材が挙げられる。
As the carbon material, for example, natural graphite, artificial graphite, or a carbon material obtained by heat-treating heavy oil, coal tar, pitch-based fiber, or the like, and carbonizing and pulverizing the material is used. Materials capable of forming Li or forming a compound include metals such as aluminum,
Examples include metal oxides containing silicon and the like, and composites of these materials including carbon materials.

【0032】上記の正極と負極とを隔て、絶縁を目的と
するためにポリエチレン、ポリプロピレン等の有機高分
子材料で形成される多孔質フィルムや、ゲル状の有機高
分子化合物等を挟み込み、これに電池内に注液した有機
電解液を含浸する。
For the purpose of insulation, a porous film formed of an organic polymer material such as polyethylene or polypropylene, a gel-like organic polymer compound, or the like is sandwiched between the positive electrode and the negative electrode. The organic electrolyte injected into the battery is impregnated.

【0033】上記の有機電解液としては、従来と同様の
もの、例えばリチウム塩を有機溶媒に溶解して使用する
ことができる。該有機溶媒として、エチレンカーボネー
ト(EC)、プロピレンカーボネート(PC)、ブチレ
ンカーボネート(BC)、ジメチルカーボネート(DM
C)、メチルエチルカーボネート(MEC)、ジエチル
カーボネート(DEC)などの炭酸エステル類や、γ―
ブチロラクトン(γ―BL)、酢酸メチル(EA)など
のエステル類、1,3−ジオキソラン、1,2−ジメトキ
シエタンなどのエーテル類が挙げられる。
As the above-mentioned organic electrolyte, the same one as in the prior art, for example, a lithium salt dissolved in an organic solvent can be used. As the organic solvent, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DM
C), carbonates such as methyl ethyl carbonate (MEC) and diethyl carbonate (DEC), and γ-
Esters such as butyrolactone (γ-BL) and methyl acetate (EA); and ethers such as 1,3-dioxolan and 1,2-dimethoxyethane.

【0034】その他に、スルホランなどの硫黄化合物、
含窒素化合物、含珪素化合物、含フッ素化合物、含リン
化合物などの有機溶媒が挙げられ、これらは単独あるい
は混合して用いることができる。
In addition, sulfur compounds such as sulfolane,
Organic solvents such as a nitrogen-containing compound, a silicon-containing compound, a fluorine-containing compound, and a phosphorus-containing compound can be used, and these can be used alone or as a mixture.

【0035】有機溶媒に溶解させるリチウム塩にはLi
ClO4、LiCF3SO3、LiPF6、LiBF4、L
iAsF6などがあり、上記溶媒に0.1〜2モル/リッ
トル溶解させる。次に、本発明を実施例により具体的に
説明する。
Lithium salts dissolved in organic solvents include Li
ClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , L
IAsF 6 include, be 0.1 to 2 mol / l dissolved in the solvent. Next, the present invention will be specifically described with reference to examples.

【0036】〔実施例 1〕本発明の電池形態には、筒
型、ボタン型、コイン型、角型などの各種の形態がある
が、本実施例ではボタン型電池を例に説明する。
[Embodiment 1] The battery form of the present invention includes various forms such as a tubular type, a button type, a coin type, and a square type. In this example, a button type battery will be described as an example.

【0037】まず、ECとMECの混合溶媒(EC/M
EC=1/2)にLiPF6を1.4モル/リットル相当
加えて、混合することにより有機電解液を調製した。
First, a mixed solvent of EC and MEC (EC / M
EC = 1/2), and an organic electrolyte solution was prepared by adding LiPF 6 corresponding to 1.4 mol / liter and mixing.

【0038】導電材として、平均粒径5μmの内部が黒
鉛で表面に非晶質炭素質層を有する塊状の炭素材(A)
を用いた。この導電材のラマンスペクトルを測定したと
ころ1585cm~1のピークの半値幅は104cm~1
あった。
As a conductive material, a massive carbon material (A) having an average particle size of 5 μm and having graphite inside and an amorphous carbonaceous layer on the surface (A)
Was used. FWHM of 1585 cm ~ 1 peak was measured Raman spectrum of the conductive material was 104cm ~ 1.

【0039】次に、平均粒径7μmのAl添加Co系酸
化物(LiCo0.97Al0.032)を正極活物質とし、
この活物質91.5重量%に、導電材として炭素材
(A)を4.5重量%加えて混合し、結着剤として予め
4重量%のポリフッ化ビニリデンをN−メチルピロリド
ンに溶解させた溶液に分散させてスラリーにした。
Next, an Al-added Co-based oxide (LiCo 0.97 Al 0.03 O 2 ) having an average particle size of 7 μm was used as a positive electrode active material.
To 91.5% by weight of this active material, 4.5% by weight of a carbon material (A) was added as a conductive material and mixed, and 4% by weight of polyvinylidene fluoride was previously dissolved in N-methylpyrrolidone as a binder. The slurry was dispersed in the solution.

【0040】この正極合剤スラリーを、正極集電体であ
るアルミニウム箔(厚さ20μm)の片面に塗布量が2
4.0mg/cm2となるよう均一に塗布し、乾燥後ロー
ラープレス機により正極合剤密度が3.2g/cm3にな
るよう圧縮成形し、所定の大きさに打ち抜き、円板状の
正極を作製した。
The positive electrode mixture slurry was coated on one side of an aluminum foil (thickness: 20 μm) as a positive electrode current collector with a coating amount of 2 μm.
After coating uniformly to 4.0 mg / cm 2 , drying and compression molding with a roller press so that the density of the positive electrode mixture becomes 3.2 g / cm 3 , punching out to a predetermined size, and disc-shaped positive electrode Was prepared.

【0041】これとは別に、平均粒径20μmの燐片状
黒鉛92重量%を、結着剤として予め8重量部のポリフ
ッ化ビニリデンを、N−メチルピロリドンに溶解させた
溶液に分散させてスラリーにした。この負極合剤スラリ
ーを、負極集電体として銅箔(厚さ15μm)の片面
に、塗布量が16.5mg/cm2となるよう塗布し、乾
燥後ローラープレス機により負極合剤密度が1.5g/
cm3となるよう圧縮成形し、所定の大きさに打ち抜
き、円板状の負極を作製した。
Separately, a slurry was prepared by dispersing 92% by weight of flaky graphite having an average particle diameter of 20 μm in a solution in which 8 parts by weight of polyvinylidene fluoride was dissolved in N-methylpyrrolidone in advance as a binder. I made it. This negative electrode mixture slurry was applied to one surface of a copper foil (thickness: 15 μm) as a negative electrode current collector so as to have an application amount of 16.5 mg / cm 2. After drying, the negative electrode mixture density was 1% by a roller press. .5g /
It was compression-molded to a size of cm 3 and punched out into a predetermined size to produce a disk-shaped negative electrode.

【0042】次に、上記の正極1,負極2,セパレータ
3の順に電池ケース5に収容した。なお、このセパレー
タは厚さ25μmで気孔率38%の微多孔性ポリエチレ
ンフィルムを用いた。
Next, the positive electrode 1, the negative electrode 2, and the separator 3 were accommodated in the battery case 5 in this order. The separator used was a microporous polyethylene film having a thickness of 25 μm and a porosity of 38%.

【0043】また、電池ケース5の内面にはAl箔シー
ト14を配置してある。さらに、上記の有機電解液4を
注液し、ポリプロピレン製のパッキング7を介して封口
し、図2に示すボタン型のリチウム二次電池を作製し
た。
An Al foil sheet 14 is arranged on the inner surface of the battery case 5. Further, the above-mentioned organic electrolytic solution 4 was injected and sealed via a polypropylene packing 7, thereby producing a button-type lithium secondary battery shown in FIG.

【0044】図3は、上記正極1の断面をSEMで観察
した場合の拡大模式断面図である。正極集電体8に、C
o系酸化物9と、表面に非晶質炭素層12を有する導電
材10が、結着剤13により固着されている。電池内に
注液した有機電解液はこれらの隙間に浸透する。
FIG. 3 is an enlarged schematic cross-sectional view when the cross section of the positive electrode 1 is observed by SEM. C for the positive electrode current collector 8
An o-based oxide 9 and a conductive material 10 having an amorphous carbon layer 12 on the surface are fixed by a binder 13. The organic electrolyte injected into the battery penetrates these gaps.

【0045】〔実施例 2〕実施例1とはAlの添加量
が異なるCo系酸化物(LiCo0.99Al0.012)を
正極活物質とした以外は、実施例1と同様にしてボタン
型のリチウム二次電池を作製した。
Example 2 A button-type electrode was prepared in the same manner as in Example 1 except that a Co-based oxide (LiCo 0.99 Al 0.01 O 2 ) having a different amount of Al added was used as the positive electrode active material. A lithium secondary battery was manufactured.

【0046】〔実施例 3〜8〕正極活物質として、M
g添加Co系酸化物(LiCoMg0.032)、Mn添
加Co系酸化物(LiCo0.97Mn0.032)、Sr添
加Co系酸化物(LiCo0.99Sr0.012)、Alと
Mn添加Co系酸化物(LiCo0.97Al0.02Mn0.01
2)、TiとMg添加Co系酸化物(LiCo0.98
0.02Mg0.012)、およびAlとTiとMn添加C
o系酸化物(LiCo0.97Al0.01Ti0.01Mn0.01
2)を用い、実施例1と同様にして、それぞれボタン型
のリチウム二次電池を作製した。
[Examples 3 to 8] As the positive electrode active material, M
g-added Co-based oxide (LiCoMg 0.03 O 2 ), Mn-added Co-based oxide (LiCo 0.97 Mn 0.03 O 2 ), Sr-added Co-based oxide (LiCo 0.99 Sr 0.01 O 2 ), Al and Mn-added Co-based oxide (LiCo 0.97 Al 0.02 Mn 0.01
O 2 ), Ti and Mg-added Co-based oxides (LiCo 0.98 T
i 0.02 Mg 0.01 O 2 ), and Al, Ti and Mn added C
o-based oxide (LiCo 0.97 Al 0.01 Ti 0.01 Mn 0.01 O
Using 2 ), button-type lithium secondary batteries were produced in the same manner as in Example 1.

【0047】〔実施例 9〕正極の塗布量が25.5m
g/cm2、負極の塗布量が15.7mg/cm2になる
ようにして、それぞれ電極を作製し、実施例1と同様に
してボタン型のリチウム二次電池を作製した。
Example 9 The coating amount of the positive electrode was 25.5 m
g / cm 2 and the application amount of the negative electrode were 15.7 mg / cm 2 , respectively, to produce electrodes, and a button-type lithium secondary battery was produced in the same manner as in Example 1.

【0048】〔実施例 10〕正極の塗布量が21.7
mg/cm2、負極の塗布量が17.5mg/cm2にな
るようそれぞれ電極を作製し、実施例1と同様にしてボ
タン型のリチウム二次電池を作製した。
Example 10 The coating amount of the positive electrode was 21.7.
mg / cm 2, the coating amount of the negative electrode to produce a respective electrode so as to be 17.5 mg / cm 2, to prepare a lithium secondary battery of the button type in the same manner as in Example 1.

【0049】〔比較例 1〕導電材として、平均粒径5
μmの内部が黒鉛で表面に非晶質炭素層を有する塊状の
炭素材(B)を用いた。この導電材のラマンスペクトル
を測定したところ1585cm~1のピークの半値幅は6
6cm~1であった。
Comparative Example 1 As a conductive material, an average particle size of 5
A lump-shaped carbon material (B) having graphite inside and having an amorphous carbon layer on the surface was used. When the Raman spectrum of this conductive material was measured, the half-value width of the peak at 1585 cm- 1 was 6
It was 6 cm- 1 .

【0050】平均粒径7μmの従来型の元素無添加のC
o系酸化物(LiCoO2)を正極活物質とし、導電材
として炭素材(B)を用い、それ以外は実施例1と同様
にしてボタン型のリチウム二次電池を作製した。
Conventional element-free C having an average particle size of 7 μm
A button-type lithium secondary battery was manufactured in the same manner as in Example 1 except that an o-based oxide (LiCoO 2 ) was used as a positive electrode active material and a carbon material (B) was used as a conductive material.

【0051】〔比較例 2〕正極の塗布量が26.5m
g/cm2、負極の塗布量が15.3mg/cm2になる
ようそれぞれ電極を作製し、比較例1と同様にしてボタ
ン型のリチウム二次電池を作製した。
[Comparative Example 2] The coating amount of the positive electrode was 26.5 m.
g / cm 2 , and an application amount of the negative electrode of 15.3 mg / cm 2 , respectively, and an electrode was produced, and a button-type lithium secondary battery was produced in the same manner as in Comparative Example 1.

【0052】前記実施例1〜8および比較例1のボタン
型のリチウム二次電池について、充電電流0.5mA、
正極電位が金属Li基準で4.5Vまで充電し、4.5V
に達した後は4.5Vの定電圧で2時間保持し、放電は
0.5mAで3.0Vまで放電するサイクルを繰り返す、
充放電試験を行った。
The charge current of the button-type lithium secondary batteries of Examples 1 to 8 and Comparative Example 1 was 0.5 mA,
The positive electrode potential is charged up to 4.5 V based on metal Li, and 4.5 V
After that, the battery is held at a constant voltage of 4.5 V for 2 hours, and the discharge is repeated at a current of 0.5 mA until the voltage reaches 3.0 V.
A charge / discharge test was performed.

【0053】前記実施例9のボタン型のリチウム二次電
池については、上記の充放電試験における充電正極電位
を金属Li基準で4.4Vとした充放電試験を行った。
The button-type lithium secondary battery of Example 9 was subjected to a charge / discharge test in which the charge positive electrode potential in the above charge / discharge test was 4.4 V based on metal Li.

【0054】同様に前記実施例10のボタン型のリチウ
ム二次電池については、充電正極電位を金属Li基準で
4.6Vとした充放電試験を行った。
Similarly, for the button-type lithium secondary battery of Example 10, a charge / discharge test was performed with the charge positive electrode potential set to 4.6 V based on metal Li.

【0055】前記比較例2のボタン型のリチウム二次電
池については、上記の充放電試験における充電正極電位
を、従来のリチウム二次電池と同様の金属Li基準で
4.3Vとした充放電試験を行った。
With respect to the button-type lithium secondary battery of Comparative Example 2, the charge / discharge test in which the positive electrode potential in the above-described charge / discharge test was 4.3 V based on the same metal Li as the conventional lithium secondary battery was performed. Was done.

【0056】以上の充放電試験における電池の初期容量
値と、正極活物質初期放電容量および10サイクル後の
電池の容量維持率を表1に示す。
Table 1 shows the initial capacity value of the battery in the above charge / discharge test, the initial discharge capacity of the positive electrode active material, and the capacity retention rate of the battery after 10 cycles.

【0057】[0057]

【表1】 [Table 1]

【0058】従来のリチウム二次電池の構成では、比較
例1に示すよう充電電位を4.5Vとすることで、正極
活物質の初期放電容量は高いものの、容量維持率が低く
サイクル特性が劣る。さらに比較例2に示すよう、サイ
クル特性を維持するためには、充電電位を4.3Vと
し、正極活物質の初期放電容量を低く押さえなければな
らない。
In the structure of the conventional lithium secondary battery, as shown in Comparative Example 1, by setting the charging potential to 4.5 V, the initial discharge capacity of the positive electrode active material is high, but the capacity retention ratio is low and the cycle characteristics are inferior. . Furthermore, as shown in Comparative Example 2, in order to maintain the cycle characteristics, the charging potential must be 4.3 V and the initial discharge capacity of the positive electrode active material must be kept low.

【0059】これに対し、実施例1〜10においては、
正極活物質の初期放電容量160mAh/g以上で電池
の放電容量が高く、かつ、容量維持率が80%以上とサ
イクル特性にも優れることが分かる。
On the other hand, in Examples 1 to 10,
It can be seen that the discharge capacity of the battery is high when the initial discharge capacity of the positive electrode active material is 160 mAh / g or more, and that the capacity retention rate is 80% or more and the cycle characteristics are also excellent.

【0060】[0060]

【発明の効果】本発明によれば、正極にMg、Al、M
n、TiおよびSrから選ばれる少なくとも1種を含有
するCo系酸化物を活物質として用い、かつ、少なくと
も表層に非晶質炭素質を有する炭素導電材を用いること
で、エネルギー密度が高く、かつ、サイクル特性に優れ
たリチウム二次電池を提供することができる。
According to the present invention, Mg, Al, M
By using a Co-based oxide containing at least one selected from n, Ti, and Sr as an active material and using a carbon conductive material having amorphous carbonaceous material at least in a surface layer, the energy density is high, and Thus, a lithium secondary battery having excellent cycle characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】表層が非晶質炭素である炭素材のラマンスペク
トルのグラフである。
FIG. 1 is a graph of a Raman spectrum of a carbon material whose surface layer is amorphous carbon.

【図2】本発明のリチウム二次電池の構成の一例を示す
ボタン型リチウム二次電池の縦断面図である。
FIG. 2 is a longitudinal sectional view of a button-type lithium secondary battery showing an example of the configuration of the lithium secondary battery of the present invention.

【図3】本発明のリチウム二次電池の構成の一例を示す
正極の断面の拡大模式図である。
FIG. 3 is an enlarged schematic diagram of a cross section of a positive electrode showing an example of a configuration of a lithium secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1…正極、2…負極、3…セパレータ、4…有機電解
液、5…電池ケース、6…封口板、7…パッキング、8
…正極集電体、9…Co系酸化物、10…導電材、11
…黒鉛、12…非晶質炭素層、13…結着剤、14…A
l箔シート。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator, 4 ... Organic electrolyte, 5 ... Battery case, 6 ... Sealing plate, 7 ... Packing, 8
... Positive electrode current collector, 9 ... Co-based oxide, 10 ... Conductive material, 11
... graphite, 12 ... amorphous carbon layer, 13 ... binder, 14 ... A
l foil sheet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本棒 英利 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 喜多 房次 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 伊津 哲夫 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H003 AA02 AA04 BB05 BC01 BC06 BD00 BD03 5H014 AA01 EE10 HH00 HH01 HH04 5H029 AJ03 AJ05 AK03 AL06 AL07 AM03 AM05 AM07 BJ03 DJ16 DJ17 HJ02 HJ13 HJ19  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Eritoshi Honbo 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. 1-88 Inside Hitachi Maxell Co., Ltd. (72) Inventor Tetsuo Itsu 1-88 Ushitora, Ibaraki-shi, Osaka F-term inside Hitachi Maxell Co., Ltd. 5H003 AA02 AA04 BB05 BC01 BC06 BD00 BD03 5H014 AA01 EE10 HH00 HH01 HH04 5H029 AJ03 AJ05 AK03 AL06 AL07 AM03 AM05 AM07 BJ03 DJ16 DJ17 HJ02 HJ13 HJ19

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質としてLiおよびCoを含有
するCo系酸化物と、主成分が炭素である導電材とを含
む正極と、負極と、有機電解液を有するリチウム二次電
池において、前記Co系酸化物がMg、Al、Mn、T
iおよびSrから選ばれる少なくとも1種を含有し、か
つ、前記導電材の少なくともその表層に非晶質炭素質を
有することを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising: a positive electrode including a Co-based oxide containing Li and Co as a positive electrode active material; a conductive material whose main component is carbon; a negative electrode; and an organic electrolyte. Co-based oxide is Mg, Al, Mn, T
A lithium secondary battery comprising at least one selected from i and Sr, and having an amorphous carbonaceous material in at least a surface layer of the conductive material.
【請求項2】 前記Co系酸化物が一般式、LixCoy
z2(但し、AはMg、Al、Mn、TiおよびSr
から選ばれる少なくとも1種で、x、y、zはそれぞれ
0.9≦x≦1.1、0.97≦y≦1.00、0.01≦
z≦0.03)で示されることを特徴とする請求項1に
記載のリチウム二次電池。
2. The Co-based oxide has a general formula: Li x Co y
A z O 2 (where A is Mg, Al, Mn, Ti and Sr
Wherein x, y and z are 0.9 ≦ x ≦ 1.1, 0.97 ≦ y ≦ 1.00 and 0.01 ≦, respectively.
2. The lithium secondary battery according to claim 1, wherein z ≦ 0.03). 3.
【請求項3】 前記導電材は、ラマンスペクトルにおけ
る1540cm~1〜1600cm~1の範囲に存在するピ
ークの半値幅が100cm~1以上である請求項1または
2に記載のリチウム二次電池。
Wherein said conductive material is a lithium secondary battery according to claim 1 or 2 half-width of the peaks present in the range of 1540cm ~ 1 ~1600cm ~ 1 in the Raman spectrum is 100 cm ~ 1 or more.
【請求項4】 正極活物質の放電容量が160mAh/
g以上で、かつ、充放電を10回繰り返した際の容量保
持率が80%以上である請求項1〜3のいずれかに記載
のリチウム二次電池。
4. The discharge capacity of the positive electrode active material is 160 mAh /
The lithium secondary battery according to any one of claims 1 to 3, wherein the capacity retention rate is 80% or more when charging and discharging are repeated 10 times or more.
JP34978299A 1999-12-09 1999-12-09 Lithium secondary battery Pending JP2001167763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34978299A JP2001167763A (en) 1999-12-09 1999-12-09 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34978299A JP2001167763A (en) 1999-12-09 1999-12-09 Lithium secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006018522A Division JP2006173137A (en) 2006-01-27 2006-01-27 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001167763A true JP2001167763A (en) 2001-06-22
JP2001167763A5 JP2001167763A5 (en) 2006-03-16

Family

ID=18406086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34978299A Pending JP2001167763A (en) 1999-12-09 1999-12-09 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2001167763A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203553A (en) * 2000-12-28 2002-07-19 Sony Corp Positive-electrode active material and non-aqueous electrolyte secondary battery
WO2003009407A2 (en) * 2001-07-14 2003-01-30 The University Court Of The University Of St Andrews Managanese oxide material for electrochemical cells
JP2005050779A (en) * 2003-02-03 2005-02-24 Sanyo Electric Co Ltd Nonaqueous electrolytic solution secondary battery
JP2005150039A (en) * 2003-11-19 2005-06-09 Sanyo Electric Co Ltd Lithium secondary battery
JP2005243301A (en) * 2004-02-24 2005-09-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006173099A (en) * 2004-11-19 2006-06-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2006331941A (en) * 2005-05-27 2006-12-07 Sony Corp Positive electrode active material, positive electrode, and battery
JP2007273427A (en) * 2006-03-31 2007-10-18 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery
WO2009136589A1 (en) * 2008-05-07 2009-11-12 日立マクセル株式会社 Nonaqueous secondary battery and electronic device
US8415058B2 (en) 2006-10-26 2013-04-09 Hitachi Maxell, Ltd. Nonaqueous secondary battery comprising at least two lithium-containing transition metal oxides of different average particle sizes
US8445129B2 (en) 2005-05-27 2013-05-21 Sony Corporation Cathode active material, method of manufacturing it, cathode, and battery
JP2014013727A (en) * 2012-07-05 2014-01-23 Toyota Industries Corp Lithium ion secondary battery
JP2017139077A (en) * 2016-02-02 2017-08-10 日本化学産業株式会社 Positive electrode active material for lithium ion secondary battery
CN113149083A (en) * 2016-03-14 2021-07-23 苹果公司 Cathode active material for lithium ion battery
US11114663B2 (en) 2016-09-20 2021-09-07 Apple Inc. Cathode active materials having improved particle morphologies
JP2021158083A (en) * 2020-03-30 2021-10-07 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US11462736B2 (en) 2016-09-21 2022-10-04 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203553A (en) * 2000-12-28 2002-07-19 Sony Corp Positive-electrode active material and non-aqueous electrolyte secondary battery
WO2003009407A2 (en) * 2001-07-14 2003-01-30 The University Court Of The University Of St Andrews Managanese oxide material for electrochemical cells
WO2003009407A3 (en) * 2001-07-14 2004-10-28 Univ St Andrews Managanese oxide material for electrochemical cells
JP2005050779A (en) * 2003-02-03 2005-02-24 Sanyo Electric Co Ltd Nonaqueous electrolytic solution secondary battery
JP2005150039A (en) * 2003-11-19 2005-06-09 Sanyo Electric Co Ltd Lithium secondary battery
JP4497899B2 (en) * 2003-11-19 2010-07-07 三洋電機株式会社 Lithium secondary battery
JP4502664B2 (en) * 2004-02-24 2010-07-14 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP2005243301A (en) * 2004-02-24 2005-09-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006173099A (en) * 2004-11-19 2006-06-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2006331941A (en) * 2005-05-27 2006-12-07 Sony Corp Positive electrode active material, positive electrode, and battery
US8445129B2 (en) 2005-05-27 2013-05-21 Sony Corporation Cathode active material, method of manufacturing it, cathode, and battery
JP2007273427A (en) * 2006-03-31 2007-10-18 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery
US8415058B2 (en) 2006-10-26 2013-04-09 Hitachi Maxell, Ltd. Nonaqueous secondary battery comprising at least two lithium-containing transition metal oxides of different average particle sizes
US9350019B2 (en) 2006-10-26 2016-05-24 Hitachi Maxell, Ltd. Nonaqueous secondary battery and method of using the same
US8691446B2 (en) 2006-10-26 2014-04-08 Hitachi Maxell, Ltd. Nonaqueous secondary battery and method of using the same
WO2009136589A1 (en) * 2008-05-07 2009-11-12 日立マクセル株式会社 Nonaqueous secondary battery and electronic device
US8795884B2 (en) 2008-05-07 2014-08-05 Hitachi Maxell, Ltd. Nonaqueous secondary battery and electronic device
JP2014013727A (en) * 2012-07-05 2014-01-23 Toyota Industries Corp Lithium ion secondary battery
JP2017139077A (en) * 2016-02-02 2017-08-10 日本化学産業株式会社 Positive electrode active material for lithium ion secondary battery
CN113149083A (en) * 2016-03-14 2021-07-23 苹果公司 Cathode active material for lithium ion battery
CN114583154A (en) * 2016-03-14 2022-06-03 苹果公司 Cathode active material for lithium ion battery
US11362331B2 (en) * 2016-03-14 2022-06-14 Apple Inc. Cathode active materials for lithium-ion batteries
US11870069B2 (en) * 2016-03-14 2024-01-09 Apple Inc. Cathode active materials for lithium-ion batteries
US11114663B2 (en) 2016-09-20 2021-09-07 Apple Inc. Cathode active materials having improved particle morphologies
US11462736B2 (en) 2016-09-21 2022-10-04 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
JP2021158083A (en) * 2020-03-30 2021-10-07 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US11444282B2 (en) 2020-03-30 2022-09-13 Sumitomo Metal Mining Co., Ltd. Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4629027B2 (en) High capacity anode material for lithium secondary battery
KR101073223B1 (en) anode mixture for lithium secondary battery and Lithium secondary battery using the same
JP5716093B2 (en) Positive electrode active material for lithium ion capacitor and method for producing the same
JP4837614B2 (en) Lithium secondary battery
KR101383360B1 (en) Positive active material for lithium ion capacitor and preparation method thereof
JP2001167763A (en) Lithium secondary battery
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
EP2945211B1 (en) Lithium titanate oxide as negative electrode in li-ion cells
CN105280880B (en) Positive electrode for nonaqueous electrolyte secondary battery, and system thereof
KR20120123380A (en) Variable capacity cell assembly
KR20090066019A (en) Anode comprising surface treated anode active material and lithium battery using the same
KR20140024079A (en) Eletrolyte for high voltage lithium rechargeable battery and lithium rechargeable battery comprising the same
JP2013229307A (en) Nonaqueous electrolyte solution and lithium ion secondary battery
KR20190044536A (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
JP2005093414A (en) Lithium cell
JP2010272380A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
JP2002117836A (en) Negative electrode for nonaqueous electrolyte secondary battery and battery using it
KR100873578B1 (en) Anode active material for secondary battery with high capacity
KR20070063185A (en) Electrode active material for secondary battery
KR20200104650A (en) Compound for electrolyte of lithium secondary battery, electrolyte for lithium secondary battery and lithium secondary battery including the same
JP2006173137A (en) Lithium secondary battery
KR20220046267A (en) Anodeless lithium secondary battery and preparing method thereof
JP2004273186A (en) Lithium battery
KR101084080B1 (en) Non-aqueous electrolyte secondary cell
KR20080029480A (en) Lithium secondary battery, and hybrid capacitor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060127

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080110

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210