JP2017139107A - Method for initially charging lithium secondary battery - Google Patents

Method for initially charging lithium secondary battery Download PDF

Info

Publication number
JP2017139107A
JP2017139107A JP2016018625A JP2016018625A JP2017139107A JP 2017139107 A JP2017139107 A JP 2017139107A JP 2016018625 A JP2016018625 A JP 2016018625A JP 2016018625 A JP2016018625 A JP 2016018625A JP 2017139107 A JP2017139107 A JP 2017139107A
Authority
JP
Japan
Prior art keywords
charging
lithium secondary
secondary battery
negative electrode
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016018625A
Other languages
Japanese (ja)
Other versions
JP6728724B2 (en
JP2017139107A5 (en
Inventor
三郎 遠藤
Saburo Endo
三郎 遠藤
葉介 中林
Yosuke Nakabayashi
葉介 中林
正嗣 青谷
Masatsugu Aotani
正嗣 青谷
隆義 藤田
Takayoshi Fujita
隆義 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016018625A priority Critical patent/JP6728724B2/en
Publication of JP2017139107A publication Critical patent/JP2017139107A/en
Publication of JP2017139107A5 publication Critical patent/JP2017139107A5/ja
Application granted granted Critical
Publication of JP6728724B2 publication Critical patent/JP6728724B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for initially charging a lithium secondary battery, which enables the adequate permeation of an electrolyte into an electrode group while suppressing copper dissolution from a negative electrode current collector.SOLUTION: A method for initially charging a lithium secondary battery, of which the design capacity is 5 Ah or higher, comprises the steps of: charging the lithium secondary battery to 0.5% or more of the design capacity within 10 hours after injecting an electrolyte; and leaving the lithium secondary battery as it is for 0.5X hour or longer time after injecting the electrolyte, provided that the design capacity of the lithium secondary battery is represented by X Ah.SELECTED DRAWING: Figure 1

Description

本発明はリチウム二次電池の初充電方法に関し、特に5Ah以上の大型リチウム二次電池の生産性及び品質向上を図ったものに関する。   The present invention relates to an initial charging method of a lithium secondary battery, and more particularly, to an improvement in productivity and quality of a large lithium secondary battery of 5 Ah or more.

リチウム二次電池は、高エネルギー密度というメリットを活かし、昨今ではデジタルカメラやノートパソコン、携帯電話などのポータブル機器の電源として使用されている。また、近年では環境問題に対応すべく、電気自動車用途や電力貯蔵を目的とする大型のリチウム二次電池の研究開発が活発に行われている。   Lithium secondary batteries have been used as a power source for portable devices such as digital cameras, notebook computers and mobile phones, taking advantage of the high energy density. In recent years, research and development of large lithium secondary batteries for the purpose of electric vehicle use and power storage have been actively conducted in order to cope with environmental problems.

一般にリチウム二次電池は、リチウム遷移金属複合酸化物を含む正極活物質をアルミニウム箔等の正極集電体に塗布した正極板と、炭素材料を含む負極活物質を銅箔等の負極集電体に塗布した負極板とが、絶縁材で構成される多孔質状のセパレータを介して積層または捲回された極板群を電池容器に収容し、非水電解液を注液することで作製される。積層型と比べて捲回型の方が、生産工程が容易であり生産性が高いという利点がある。   Generally, a lithium secondary battery includes a positive electrode plate in which a positive electrode active material containing a lithium transition metal composite oxide is applied to a positive electrode current collector such as an aluminum foil, and a negative electrode current collector such as a copper foil in which a negative electrode active material containing a carbon material is applied. The negative electrode plate applied to the electrode plate is prepared by storing the electrode plate group laminated or wound through a porous separator made of an insulating material in a battery container and injecting a non-aqueous electrolyte. The Compared to the stacked type, the wound type has the advantage that the production process is easier and the productivity is higher.

ポータブル機器などで用いられている、一般的な捲回型リチウム二次電池の寸法は、直径が18mm、高さが65mmであり、18650型電池と呼ばれている。18650型電池の電池容量は、おおむね1.0〜3.5Ahである。一方、電気自動車や電力貯蔵用途に用いられるリチウム二次電池には、高容量だけでなく、高出力、長寿命、さらには低コスト化が求められる。高容量、高出力とするためには、捲回電極群を大きくしたり、捲回電極群の巻き数を多くしたりすることが一般的である。   The dimensions of a general wound lithium secondary battery used in portable devices and the like are 18 mm in diameter and 65 mm in height, and are called 18650 type batteries. The battery capacity of the 18650 type battery is approximately 1.0 to 3.5 Ah. On the other hand, lithium secondary batteries used for electric vehicles and power storage applications are required to have not only high capacity but also high output, long life, and cost reduction. In order to achieve high capacity and high output, it is common to enlarge the wound electrode group or increase the number of turns of the wound electrode group.

しかしながら、捲回電極群が大型化すると、電解液が捲回電極群内部に浸透するまでに時間を要するようになる。電解液の浸透が不十分のまま充放電を行うと、定格の電池容量が発現しないのみならず、捲回電極群内部の充放電反応が不均一となるため、実質の充電電流密度が局所的に高くなってしまい、負極上に金属リチウムが析出し、場合によってはセパレータを貫通して内部短絡に至る可能性がある。   However, when the wound electrode group is enlarged, it takes time for the electrolyte to penetrate into the wound electrode group. If charging / discharging is performed with insufficient electrolyte penetration, not only the rated battery capacity will be developed, but also the charging / discharging reaction inside the wound electrode group will be non-uniform, so the actual charging current density will be locally In some cases, metallic lithium is deposited on the negative electrode, and in some cases, it penetrates the separator and leads to an internal short circuit.

そこで、特許文献1では、正極板及び負極板が40回以上捲回されてなる、大型の捲回型リチウム二次電池において、非水電解液を注液後は24時間以上経てから第1回目の充電を行うことを提案している。   Therefore, in Patent Document 1, in a large wound lithium secondary battery in which the positive electrode plate and the negative electrode plate are wound 40 times or more, the first time is passed after 24 hours or more after pouring the non-aqueous electrolyte. Propose to charge.

特開2003−308878号公報JP 2003-308878 A

しかしながら、負極活物質が炭素材料を含み、かつ集電体が銅であると、電解液が注液された時点から銅の溶解が始まる。これは、充電を行っていない段階の負極の電位が3.4V程度あり、銅が電解液中に溶解する電位(3V程度)以上であるためである。銅が電解液中に溶解すると、セパレータに目詰まりを起こさせたり、負極集電体の集電性能が低下し、電池抵抗の増加を引き起こすのみならず、電解液中に溶解した銅が負極上に析出し、場合によっては内部短絡に至る懸念がある。なお、電池容器は一般的に金属材料によって構成されるが、電池容器が正極も負極も兼ねない電気的に中立の場合は、注液後に電解液中に溶解する懸念がある元素は銅のみである。   However, when the negative electrode active material includes a carbon material and the current collector is copper, dissolution of copper starts from the time when the electrolytic solution is injected. This is because the potential of the negative electrode at the stage where charging is not performed is about 3.4 V and is equal to or higher than the potential (about 3 V) at which copper dissolves in the electrolytic solution. When copper dissolves in the electrolyte, it causes clogging of the separator and the current collection performance of the negative electrode current collector decreases, causing not only an increase in battery resistance, but also the copper dissolved in the electrolyte on the negative electrode. In some cases, it may cause an internal short circuit. The battery container is generally made of a metal material. However, if the battery container is electrically neutral, which serves as both a positive electrode and a negative electrode, copper is the only element that may be dissolved in the electrolyte after injection. is there.

本発明の目的は、負極集電体である銅の電解液への溶解を抑えつつ、捲回型の電極群に電解液を十分に浸透させるようにした、リチウム二次電池の初充電方法を提案することである。   An object of the present invention is to provide an initial charging method for a lithium secondary battery in which the electrolytic solution is sufficiently infiltrated into a wound electrode group while suppressing dissolution of copper, which is a negative electrode current collector, into the electrolytic solution. It is to propose.

本発明は、負極活物質を保持する負極集電体に銅を含む負極と正極集電体に正極活物質が保持された正極とがセパレータを介して捲回されてなる捲回型の電極群が、電気的に中立の電池容器内に収納され、電池容器内に電解液が注液された、設計容量が5Ah以上のリチウム二次電池の初充電方法を、第1回目の充電ステップと、放置ステップと、第2回目の充電ステップとから実現する。第1回目の充電ステップでは、電池容器内に電解液の注液を開始してから始まる第1の期間内において、負極の負極活物質及び正極の正極活物質の表面が電解液と全面的に触れた状態で、銅が電解液中に溶解する電位を下回るまで負極の電位が下がるように第1回目の充電を行う。なお第1回目の充電開始は電解液の注液開始と同時行ってもよく、注液を開始して暫く経過した後に充電を開始してもよい。放置ステップでは、第1回目の充電ステップ後に、電解液が負極活物質及び正極活物質の内部に浸透する第2の期間が経過するまで充電を停止して放置する。そして第2回目の充電ステップでは、第2の期間が経過した後満充電になるまで第2回目の充電を行う。   The present invention provides a wound electrode group in which a negative electrode containing copper in a negative electrode current collector holding a negative electrode active material and a positive electrode in which the positive electrode current collector is held in a positive electrode current collector are wound through a separator. However, an initial charging method of a lithium secondary battery having a design capacity of 5 Ah or more, which is housed in an electrically neutral battery container and an electrolyte is injected into the battery container, the first charging step, This is realized by the leaving step and the second charging step. In the first charging step, the negative electrode active material of the negative electrode and the surface of the positive electrode active material of the positive electrode are entirely in contact with the electrolyte within a first period that starts after the injection of the electrolyte into the battery container is started. In the touched state, the first charge is performed such that the potential of the negative electrode is lowered until the potential of copper is lower than the potential at which the copper dissolves in the electrolytic solution. Note that the first charging start may be performed simultaneously with the start of the electrolyte injection, or the charging may be started after a while from the start of the injection. In the leaving step, after the first charging step, the charging is stopped and left until a second period in which the electrolytic solution penetrates into the negative electrode active material and the positive electrode active material has elapsed. Then, in the second charging step, the second charging is performed until the full charge is reached after the second period has elapsed.

本発明の基本的な考え方は、第1回目の充電ステップ(仮充電)をできるだけ早く、少しの電気量だけ入れて銅の溶出を防ぎ、十分な含浸期間を経てから通常の初充電を行うことで品質の向上を狙うことである。そこで本発明では、第1回目の充電ステップにおいて、第1の期間内において銅が電解液中に溶解する電位を下回るまで負極の電位が下がるように第1回目の充電を行うことにより、電極群内部での充放電不均一反応を最小限に抑えつつ、捲回型の電極群への電解液の浸透を促進させるとともに、浸透時間を十分に確保することができる。その結果、負極集電体に含まれる銅の溶解がほとんどない高品質な非水リチウム二次電池が製造可能であるとともに、電解液の浸透期間を短縮することができ、生産性の向上につながる。   The basic idea of the present invention is that the first charging step (preliminary charging) is performed as soon as possible, a small amount of electricity is added to prevent elution of copper, and a normal initial charging is performed after a sufficient impregnation period. The aim is to improve quality. Therefore, in the present invention, in the first charging step, the first charging is performed such that the potential of the negative electrode is lowered until the potential of the copper dissolves in the electrolytic solution within the first period, whereby the electrode group is obtained. While minimizing the internal charge / discharge heterogeneous reaction, the penetration of the electrolyte into the wound electrode group can be promoted, and a sufficient penetration time can be secured. As a result, it is possible to manufacture a high-quality non-aqueous lithium secondary battery that hardly dissolves copper contained in the negative electrode current collector, and it is possible to shorten the period of infiltration of the electrolytic solution, thereby improving productivity. .

本発明でリチウム二次電池の設計容量が5Ah以上に限定するのは、18650型電池のような小型リチウム二次電池は、捲回電極群の大きさに相対して、電解液の浸透速度が速いため、電解液を注液後ただちに第1回目の充電を行っても、電極群内部での充放電不均一反応は起こらず、上記のような課題は発生しないからである。   In the present invention, the design capacity of the lithium secondary battery is limited to 5 Ah or more. The small lithium secondary battery such as a 18650 type battery has an electrolyte penetration rate relative to the size of the wound electrode group. Because it is fast, even if the first charge is performed immediately after injecting the electrolytic solution, the charge / discharge heterogeneous reaction does not occur inside the electrode group, and the above-described problems do not occur.

設計容量5Ah以上のリチウム二次電池の正極活物質及び負極活物質の内部への電解液の浸透に最低限必要な電解液の浸透時間は、リチウム二次電池の大きさ、すなわち設計容量に比例し、必要な電解液浸透時間(時間)∝0.5×X(Ah)の関係になる。そのため電解液注液後にリチウム二次電池の設計容量の0.5%以上を充電することで、負極の電位は銅が電解液中に溶解する電位を下回り、かつ電池の自己放電を考慮し、負極の電位が再び銅が溶解する電位に戻ることを防ぐことができる。さらに、上記の充電を行うことで、電極を構成している活物質が収縮運動をするため、電解液の浸透を早める効果がある。具体的には、第1の期間を電解液注液後10時間以内とし、第1回目の充電ステップでの充電容量は、設計容量の0.5%以上とする。そして放置ステップでは、リチウム二次電池の設計容量をXAhとして表したときに、電解液注液後から0.5X時間以上放置状態になるように第2の期間を定める。   The penetration time of the electrolyte required for the penetration of the electrolyte into the positive electrode active material and the negative electrode active material of a lithium secondary battery with a design capacity of 5 Ah or more is proportional to the size of the lithium secondary battery, that is, the design capacity. The required electrolyte penetration time (time) ∝ 0.5 × X (Ah). Therefore, by charging 0.5% or more of the design capacity of the lithium secondary battery after injecting the electrolyte, the potential of the negative electrode is lower than the potential at which copper dissolves in the electrolyte, and the self-discharge of the battery is considered. It is possible to prevent the negative electrode potential from returning to the potential at which copper dissolves again. Furthermore, since the active material which comprises an electrode carries out contraction movement by performing said charging, there exists an effect which accelerates | stimulates the penetration | invasion of electrolyte solution. Specifically, the first period is within 10 hours after the electrolyte injection, and the charge capacity in the first charging step is 0.5% or more of the design capacity. In the leaving step, when the design capacity of the lithium secondary battery is expressed as XAh, a second period is determined so that the battery is left in a standing state for 0.5 X hours or longer after the electrolyte solution injection.

第1回目の充電ステップの充電容量は、設計容量の0.5〜40%であることが好ましい。そして第1の期間は、電池容量の大きさに係らず、上限が10時間である。電解液の注液後は、銅の溶解を防ぐために極力短い時間で上記の充電を行うことが好ましいが、10時間以内程度であれば銅の溶解反応はほとんど進行しないため、問題にならない。そして発明者の研究よると、第1の期間が10時間を超えると負極に使われている銅の溶出が進むので、問題となることが判っている。第1の期間に下限はなく、短くて済めば、短いほどよい。   The charge capacity of the first charging step is preferably 0.5 to 40% of the design capacity. In the first period, the upper limit is 10 hours regardless of the size of the battery capacity. After injecting the electrolytic solution, it is preferable to perform the above charging in a time as short as possible in order to prevent the dissolution of copper. However, if it is within about 10 hours, the dissolution reaction of copper hardly progresses, so that there is no problem. According to the inventor's research, it has been found that when the first period exceeds 10 hours, the elution of copper used in the negative electrode proceeds, which causes a problem. There is no lower limit in the first period, and it is better if it is shorter.

第1回目の充電ステップの充電電流は、0.02〜1.20ItAの範囲内であることが好ましい。第1回目の充電ステップの充電電流が、0.02より小さくなると第1の期間が長くなり過ぎる。またこの充電電流が1.20ItAより大きくなると、電極群内部での充放電不均一反応が促進されてしまうため、1.20ItA以下であることが好ましい。   The charging current of the first charging step is preferably in the range of 0.02 to 1.20 ItA. If the charging current of the first charging step becomes smaller than 0.02, the first period becomes too long. Moreover, when this charging current becomes larger than 1.20 ItA, the charge / discharge heterogeneous reaction inside the electrode group is promoted, so that it is preferably 1.20 ItA or less.

ここで、第1回目充電の充電容量が設計容量の0.5%であったと仮定すると、自己放電を考慮した電解液浸透時間の上限は240時間である。見方を変えると、第2の期間を含む、電解液注液後から第2回目充電開始までの期間は、250時間以内である。これ以上、第2回目充電を行わずにリチウム二次電池を放置していると、自己放電によって負極の電位が銅を溶解させる電位に戻る懸念がある。   Here, assuming that the charge capacity of the first charge is 0.5% of the design capacity, the upper limit of the electrolyte penetration time considering self-discharge is 240 hours. In other words, the period from the injection of the electrolyte solution to the start of the second charge, including the second period, is within 250 hours. Further, if the lithium secondary battery is left without performing the second charge, there is a concern that the potential of the negative electrode returns to the potential at which copper is dissolved by self-discharge.

本発明によれば、第1回目の充電を行う(具体的には、電解液注液後にリチウム二次電池の設計容量の0.5%以上の少容量の充電を行う)ことで、電極群内部での充放電不均一反応を最小限に抑えつつ、捲回電極群への電解液の浸透を促進させるとともに、浸透時間を十分に確保することができるため、集電体である銅の溶解がほとんどない高品質な非水リチウム二次電池が製造可能であるとともに、電解液の浸透期間を短縮することができるため、生産性の向上につながる。   According to the present invention, the first charge is performed (specifically, a small capacity charge of 0.5% or more of the design capacity of the lithium secondary battery is performed after electrolyte injection) While minimizing the internal charge / discharge heterogeneous reaction, it promotes the penetration of the electrolyte solution into the wound electrode group and ensures sufficient penetration time. A high-quality non-aqueous lithium secondary battery with almost no battery can be manufactured and the infiltration period of the electrolyte can be shortened, leading to an improvement in productivity.

電解液の注液後は、銅の溶解を防ぐために極力短い時間で上記の充電を行うことが好ましいが、10時間以内程度であれば銅の溶解反応はほとんど進行しないため、問題にならない。   After injecting the electrolytic solution, it is preferable to perform the above charging in a time as short as possible in order to prevent the dissolution of copper. However, if it is within about 10 hours, the dissolution reaction of copper hardly progresses, so that there is no problem.

本発明において、第1回目充電の充電容量は、電極群内部での充放電不均一反応を最小限に抑える目的で、リチウム二次電池の設計容量の30%未満であることが好ましく、より好ましくは25%以内であり、20%以内であることが最も好ましい。また、前記第1回目充電の充電電流値が高いと、電極群内部での充放電不均一反応が促進されてしまうため、1.0ItA以下であることが好ましい。一方で、第1回目充電の電流値が低すぎると、充電が完了するまでの時間が長くなり、生産性を損なうため、第1回目充電の電流値の好ましい範囲は0.01〜1.0ItAであり、より好ましくは0.03〜0.75ItAであり、さらに好ましくは0.05〜0.5ItAである。なお、本発明における前記第1回目充電の充電方法は、本発明明細書の技術的思想の範囲内であれば特に制限はなく、任意の充電方法を実施可能である。例えば、定電流充電、定電圧充電、定電力充電、パルス充電方法などがあげられる。   In the present invention, the charge capacity of the first charge is preferably less than 30% of the design capacity of the lithium secondary battery for the purpose of minimizing the charge / discharge heterogeneous reaction inside the electrode group, and more preferably. Is within 25%, most preferably within 20%. Moreover, since the charge / discharge heterogeneous reaction inside an electrode group will be accelerated | stimulated when the charging current value of the said 1st charge is high, it is preferable that it is 1.0 ItA or less. On the other hand, if the current value of the first charge is too low, the time until the charge is completed becomes longer and the productivity is impaired. Therefore, the preferred range of the current value of the first charge is 0.01 to 1.0 ItA. More preferably, it is 0.03-0.75 ItA, More preferably, it is 0.05-0.5 ItA. The charging method of the first charge in the present invention is not particularly limited as long as it is within the scope of the technical idea of the present specification, and any charging method can be implemented. For example, a constant current charge, a constant voltage charge, a constant power charge, a pulse charge method, etc. are mentioned.

本発明の一実施形態に係るリチウム二次電池の断面図である。It is sectional drawing of the lithium secondary battery which concerns on one Embodiment of this invention.

以下、本発明の実施形態について、図面等を参照して説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。   Embodiments of the present invention will be described below with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible.

リチウム二次電池20は、帯状の正極集電体に正極活物質が塗工された正極板と帯状の負極集電体に負極活物質が塗工された負極が、帯状セパレータW5を介して積層されて構成された帯状の積層体が長手方向に捲回されて構成された電極群6を用いている。電極群6は電池容器5に収容され、併せて電解液が電池容器5に収容されている。正極端子に正極集電タブが接続され、負極端子には負極集電タブがされ、電池容器5を密閉する電池蓋4には安全弁10が装着されている。   The lithium secondary battery 20 is formed by laminating a positive electrode plate coated with a positive electrode active material on a strip-shaped positive electrode current collector and a negative electrode coated with a negative electrode active material on a strip-shaped negative electrode current collector via a strip-shaped separator W5. An electrode group 6 is used, which is formed by winding a belt-like laminate formed in the longitudinal direction. The electrode group 6 is accommodated in the battery container 5, and the electrolytic solution is also accommodated in the battery container 5. A positive electrode current collecting tab is connected to the positive electrode terminal, a negative electrode current collecting tab is connected to the negative electrode terminal, and a safety valve 10 is attached to the battery lid 4 that seals the battery container 5.

電池容器5は、電解液による腐食やリチウムイオンとの合金化による材料の変質が起こらないように材料の選定を行う。アルミニウム、ステンレス鋼、ニッケルメッキ鋼製等の材料から選択される。電池容器5は、電気的に中立の状態に置かれる。   The material of the battery container 5 is selected so that the material does not deteriorate due to corrosion by the electrolytic solution or alloying with lithium ions. It is selected from materials such as aluminum, stainless steel, and nickel-plated steel. The battery case 5 is placed in an electrically neutral state.

軸芯11は、電極群6を支持できるものであれば、公知の任意のものを用いることができる。軸芯11がなくとも、電極群の形状保持が可能であれば、軸芯11用いなくてもよい。   As the shaft core 11, any known one can be used as long as it can support the electrode group 6. Even if the shaft core 11 is not provided, the shaft core 11 may not be used as long as the shape of the electrode group can be maintained.

電極群6は、図1に示した円筒形状の他に扁平形状等、捲回した形状であれば適用することができる。電池容器5の形状は、電極群6の形状に合わせ、円筒形、偏平長円形状、扁平楕円形状等の形状を選択してもよい。   The electrode group 6 can be applied as long as it is a wound shape such as a flat shape in addition to the cylindrical shape shown in FIG. The shape of the battery case 5 may be selected from shapes such as a cylindrical shape, a flat oval shape, and a flat oval shape according to the shape of the electrode group 6.

<正極>
正極は、正極活物質、導電剤、バインダおよび集電箔から構成される。正極活物質を例示すると、LiCoO2、LiNiO2、LiMn2O4、Fe(MoO4)3、FeF3、LiFePO4、およびLiMnPO4等である。ただし、本発明では、これらの活物質に限定されず他の正極活物質も用いることができる。
<Positive electrode>
The positive electrode is composed of a positive electrode active material, a conductive agent, a binder, and a current collector foil. Examples of the positive electrode active material include LiCoO2, LiNiO2, LiMn2O4, Fe (MoO4) 3, FeF3, LiFePO4, and LiMnPO4. However, the present invention is not limited to these active materials, and other positive electrode active materials can also be used.

正極活物質の粒径は、正極活物質、導電剤およびバインダにより正極集電箔上に形成される合剤層の厚さ以下になるように通常は規定される。正極活物質の粉末中に前記合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級や風流分級等により粗粒を除去し、合剤層厚さ以下の粒子に選別することが好ましい。   The particle size of the positive electrode active material is usually defined so as to be equal to or less than the thickness of the mixture layer formed on the positive electrode current collector foil by the positive electrode active material, the conductive agent and the binder. When the positive electrode active material powder has coarse particles having a size larger than the thickness of the mixture layer, the coarse particles are removed in advance by sieving classification or wind classification, and sorted into particles having a thickness of the mixture layer thickness or less. Is preferred.

また、正極活物質は、一般に酸化物系であるために電気抵抗が高い。そこで、電気伝導性を補うために、正極活物質には炭素粉末からなる導電剤を添加する。正極活物質および導電剤はともに通常は粉末であるので、粉末にバインダを混合して、粉末同士を結合させると同時にこれを塗工した正極集電体へ接着させることができる。   Moreover, since a positive electrode active material is generally an oxide type, its electrical resistance is high. Therefore, in order to supplement electrical conductivity, a conductive agent made of carbon powder is added to the positive electrode active material. Since both the positive electrode active material and the conductive agent are usually powders, a binder can be mixed with the powders to bond the powders to each other and to adhere to the coated positive electrode current collector.

正極集電体には、厚さ10〜100μmのアルミニウム箔、厚さ10〜100μmで孔径0.1〜10mmのアルミニウム穿孔箔、エキスパンドメタル、又は発泡金属板等が用いられる。アルミニウムの他に、ステンレスやチタン等の材質も適用可能である。本発明では、材質、形状、製造方法等に制限されることなく、任意の集電箔を使用することができる。   As the positive electrode current collector, an aluminum foil having a thickness of 10 to 100 μm, an aluminum perforated foil having a thickness of 10 to 100 μm and a pore diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, or the like is used. In addition to aluminum, materials such as stainless steel and titanium are also applicable. In the present invention, any current collector foil can be used without being limited by the material, shape, manufacturing method and the like.

<負極>
負極は、負極活物質、バインダおよび集電箔から構成される。必要に応じて、導電補助材が用いられる。負極活物質には炭素系材料が一般に用いられるが、酸化系材料であるチタン酸リチウム、SiやGeを含む材料等も用いることが出来る。
<Negative electrode>
The negative electrode is composed of a negative electrode active material, a binder, and a current collector foil. A conductive auxiliary material is used as necessary. A carbon-based material is generally used for the negative electrode active material, but materials including lithium titanate, Si and Ge, which are oxidation-based materials, can also be used.

バインダとしては、特に限定はないが、例えば、ポリフッ化ビニリデン、主骨格がポリアクリロニトリルであるバインダを用いるとよい。後述する熱処理における熱処理温度を低くすることができ、得られる電極の柔軟性が優れることから好ましい選択である。   The binder is not particularly limited. For example, it is preferable to use polyvinylidene fluoride and a binder whose main skeleton is polyacrylonitrile. This is a preferred choice because the heat treatment temperature in the heat treatment described below can be lowered and the flexibility of the resulting electrode is excellent.

負極集電体には銅が含有されており、それ以外は材質および形状について特に限定されず、箔、穿孔箔、帯状のメッシュ等の形態で用いればよい。また、多孔性材料、例えば、ポーラスメタル(発泡メタル)やカーボンペーパーなども使用可能である。   The negative electrode current collector contains copper, and other than that, the material and shape are not particularly limited, and the negative electrode current collector may be used in the form of foil, perforated foil, strip-shaped mesh, or the like. A porous material such as porous metal (foamed metal) or carbon paper can also be used.

<電解液>
電解液は、電解質、非水溶媒および添加剤から構成される。電解質の代表例としては、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(SO2F)2、LiN(C25SO22があり、特に、LiPF6、LiBF4またはLiN(CF3SO22、LiN(SO2F)2、が好ましい。これらの電解質は、1種を単独で用いてもよく、2種類以上を任意の組み合わせおよび比率で併用してもよい。
<Electrolyte>
The electrolytic solution is composed of an electrolyte, a non-aqueous solvent, and an additive. Typical examples of the electrolyte include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (SO 2 F) 2 , and LiN (C 2 F 5 SO 2 ) 2 . LiPF 6 , LiBF 4, LiN (CF 3 SO 2 ) 2 , LiN (SO 2 F) 2 are preferable. These electrolytes may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.

非水溶媒としては、鎖状および環状カーボネート、鎖状および環状カルボン酸エステル、鎖状および環状エーテル、含リン有機溶媒、含硫黄有機溶媒、含ホウ素有機溶媒等が挙げられる。本発明のリチウムイオン電池で用いる非水系電解液は、本発明の効果を著しく損なわない範囲において、各種の添加剤を含有していてもよい。   Examples of the non-aqueous solvent include linear and cyclic carbonates, linear and cyclic carboxylic acid esters, linear and cyclic ethers, phosphorus-containing organic solvents, sulfur-containing organic solvents, and boron-containing organic solvents. The non-aqueous electrolyte used in the lithium ion battery of the present invention may contain various additives as long as the effects of the present invention are not significantly impaired.

上記添加剤は、従来公知のものを任意に用いることができる。添加剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。添加剤としては、過充電防止剤や、高温保存後の容量維持特性やサイクル特性を改善するための助剤、電解液に難燃性を付与する難燃剤等が挙げられる。   A conventionally well-known thing can be arbitrarily used for the said additive. An additive may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio. Examples of the additive include an overcharge inhibitor, an auxiliary agent for improving capacity maintenance characteristics and cycle characteristics after high-temperature storage, and a flame retardant that imparts flame retardancy to the electrolyte.

これらの中でも、高温保存後の容量維持特性やサイクル特性を改善するための助剤として、不飽和結合およびハロゲン原子のうち少なくとも一方を有するカーボネートを加えることが好ましい。   Among these, it is preferable to add a carbonate having at least one of an unsaturated bond and a halogen atom as an auxiliary for improving capacity maintenance characteristics and cycle characteristics after high-temperature storage.

<セパレータ>
セパレータは、膜厚が1〜300μm、気孔率が20〜90%、100℃の環境下に1時間曝されたときの熱収縮率が20%以下であり、例えば、ポリプロピレンやポリエチレンなどよりなるオレフィン系樹脂の多孔質膜、ポリテトラフルオロエチレンなどからなるフッ素系樹脂の多孔質膜、セルロース製多孔質膜、アラミド製多孔質膜であり、これらの2種以上の多孔質膜を積層した構造としてもよく、或いはこれらの多孔質膜の表面にセラミック、バインダの混合物やアクリル系粘着剤などを塗布しても良い。
<Separator>
The separator has a film thickness of 1 to 300 μm, a porosity of 20 to 90%, and a thermal shrinkage rate of 20% or less when exposed to an environment of 100 ° C. for 1 hour. For example, an olefin made of polypropylene or polyethylene A porous film of a fluororesin, a porous film of a fluororesin made of polytetrafluoroethylene, a porous film made of cellulose, a porous film made of aramid, and a structure in which these two or more porous films are laminated Alternatively, a ceramic or binder mixture or an acrylic adhesive may be applied to the surface of the porous film.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

試験に用いた実施例1のリチウムイオン電池を下記のように製造した。   The lithium ion battery of Example 1 used for the test was manufactured as follows.

負極活物質は、平均粒子径10μmの易黒鉛化炭素、ポリフッ化ビニリデンバインダを固体質量比で93:7になるように配合し、70L混練機にて混合し、粘度調整のためNMPを適宜添加してスラリを調製した。なお、平均粒子径は、例えば界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製SALD−3000J)で測定することができ、平均粒子径はメジアン径(d50)として算出される。このスラリを塗工機にて厚さ10μmの圧延銅箔(リチウム電池グレード)の両面に実質的に均等かつ均質になるよう塗工した。塗工量は80g/m2とした。この際、圧延銅箔には50mmの活物質未塗布部を残し、該未塗布部を20mm間隔で幅10mmに切り欠きを入れ、負極板のリード片とした。その後、乾燥処理を実施し、電極密度が1.0g/cm3になるようにプレスして負極板を作製し、捲回される負極板の寸法を幅195mm、長さ8450mmとした。 For the negative electrode active material, graphitizable carbon having an average particle size of 10 μm and polyvinylidene fluoride binder are blended so that the solid mass ratio is 93: 7, mixed in a 70 L kneader, and NMP is appropriately added for viscosity adjustment. A slurry was prepared. The average particle size can be measured with a laser diffraction particle size distribution analyzer (for example, SALD-3000J, manufactured by Shimadzu Corporation) by dispersing a sample in purified water containing a surfactant, for example. The diameter is calculated as the median diameter (d50). This slurry was coated on a both sides of a rolled copper foil (lithium battery grade) having a thickness of 10 μm by a coating machine so as to be substantially uniform and homogeneous. The coating amount was 80 g / m 2 . At this time, 50 mm of the active material uncoated portion was left on the rolled copper foil, and the uncoated portion was cut into a width of 10 mm at intervals of 20 mm to obtain a lead piece of the negative electrode plate. Then, the drying process was implemented, it pressed so that an electrode density might be set to 1.0 g / cm < 3 >, the negative electrode plate was produced, and the dimension of the negative electrode plate wound was made into width 195mm and length 8450mm.

正極活物質として平均粒子径25μmのLiMn24と、平均粒子径7μmのLiNi1/3Co1/3Mn1/3、デンカブラック(電気化学工業製HS−100)、黒鉛粉末(日本黒鉛製J−SP−H)、ポリフッ化ビニリデンバインダを固体質量比で65:25:4:1:5になるように配合し、70L混練機にて混合し、粘度調整のためNMPを適宜添加してスラリを調製した。このスラリを塗工機にて厚さ20μmのアルミニウム箔(リチウム電池グレード)の両面に実質的に均等かつ均質になるよう塗布した。この際、アルミニウム箔には50mmの活物質未塗布部を残し、該未塗布部を20mm間隔で幅10mmに切り欠きを入れ、正極のリード片とした。その後、乾燥処理を実施し、電極密度を2.5g/cm3になるようにプレスして正極を作製し、捲回される正極の寸法を幅190mm、長さ9570mmとした。 LiMn 2 O 4 having an average particle size of 25 μm, LiNi 1/3 Co 1/3 Mn 1/3 having an average particle size of 7 μm, Denka Black (HS-100 manufactured by Denki Kagaku Kogyo), graphite powder (Nippon Graphite) J-SP-H) and polyvinylidene fluoride binder are mixed at a solid mass ratio of 65: 25: 4: 1: 5, mixed in a 70 L kneader, and NMP is added as appropriate for viscosity adjustment. A slurry was prepared. This slurry was applied to both sides of a 20 μm thick aluminum foil (lithium battery grade) with a coating machine so as to be substantially uniform and homogeneous. At this time, an active material uncoated portion of 50 mm was left on the aluminum foil, and the uncoated portion was cut into a width of 10 mm at intervals of 20 mm to form a positive electrode lead piece. Thereafter, a drying process was performed, the electrode density was pressed to 2.5 g / cm 3 to produce a positive electrode, and the dimensions of the wound positive electrode were 190 mm wide and 9570 mm long.

図1にリチウムイ二次電池の断面図を示す。上記正極と上記負極とを、これらが直接接触しないように厚さ30μmのポリエチレン製のセパレータW5を挟んで捲回した。このとき、正極のリード片と負極のリード片とが、それぞれ捲回群の互いに反対側の両端に位置するようにした。また、正極、負極、セパレータの長さを調整し、捲回群径は65±0.1mmとした。   FIG. 1 shows a cross-sectional view of a lithium secondary battery. The positive electrode and the negative electrode were wound with a separator W5 made of polyethylene having a thickness of 30 μm interposed therebetween so that they were not in direct contact with each other. At this time, the lead piece of the positive electrode and the lead piece of the negative electrode were respectively positioned at opposite ends of the winding group. The lengths of the positive electrode, negative electrode, and separator were adjusted, and the wound group diameter was 65 ± 0.1 mm.

次いで、図1に示すように、正極から導出されているリード片を変形させ、その全てを正極側の鍔部7の底部付近に集めて接触させた。正極側の鍔部7は、捲回群6の軸芯のほぼ延長線上にある極柱(正極外部端子1)の周囲から張り出すよう一体成形されており、底部と側部とを有する。その後、超音波溶接によりリード片を鍔部7の底部に接続し固定した。負極から導出されているリード片と負極側の鍔部7の底部も同様に接続し固定した。この負極側の鍔部7は、捲回群6の軸芯のほぼ延長線上にある極柱(負極外部端子1’)周囲から張り出すように一体成形されており、底部と側部とを有する。捲回群6の最大径部がステンレス製の電池容器5内径よりも僅かに小さくなるように絶縁被覆の厚さ(粘着テープの巻き数)を調整し、捲回群6を電池容器5内に挿入した。なお、電池容器5の外径は67mm、内径は66mmのものを用いた。   Next, as shown in FIG. 1, the lead pieces led out from the positive electrode were deformed, and all of them were collected near the bottom of the flange 7 on the positive electrode side and brought into contact with each other. The positive electrode side flange portion 7 is integrally formed so as to protrude from the periphery of the pole column (positive electrode external terminal 1) substantially on the extension line of the axis of the wound group 6, and has a bottom portion and a side portion. Thereafter, the lead piece was connected and fixed to the bottom of the flange 7 by ultrasonic welding. Similarly, the lead piece led out from the negative electrode and the bottom of the flange 7 on the negative electrode side were connected and fixed. The negative electrode side flange portion 7 is integrally formed so as to protrude from the periphery of the pole column (negative electrode external terminal 1 ′) substantially on the extension line of the axis of the wound group 6, and has a bottom portion and a side portion. . The thickness of the insulating coating (the number of windings of the adhesive tape) is adjusted so that the maximum diameter portion of the wound group 6 is slightly smaller than the inner diameter of the stainless steel battery container 5, and the wound group 6 is placed in the battery container 5. Inserted. The battery container 5 had an outer diameter of 67 mm and an inner diameter of 66 mm.

次いで、図1に示すように、セラミックワッシャ3’を、先端が正極外部端子1を構成する極柱および先端が負極外部端子1’を構成する極柱にそれぞれ嵌め込む。セラミックワッシャ3’は、アルミナ製であり、電池蓋4の裏面と当接する部分の厚さが2mm、内径16mm、外径25mmである。次いで、セラミックワッシャ3を電池蓋4に載置した状態で、正極外部端子1をセラミックワッシャ3に通し、また、他のセラミックワッシャ3を他の電池蓋4に載置した状態で、負極外部端子1’を他のセラミックワッシャ3に通す。セラミックワッシャ3は、アルミナ製であり、厚さ2mm、内径16mm、外径28mmの平板状である。   Next, as shown in FIG. 1, the ceramic washer 3 ′ is fitted into a pole column whose tip constitutes the positive electrode external terminal 1 and a pole column whose tip constitutes the negative electrode external terminal 1 ′. The ceramic washer 3 ′ is made of alumina, and the thickness of the portion in contact with the back surface of the battery lid 4 is 2 mm, the inner diameter is 16 mm, and the outer diameter is 25 mm. Next, with the ceramic washer 3 placed on the battery lid 4, the positive external terminal 1 is passed through the ceramic washer 3, and with the other ceramic washer 3 placed on the other battery lid 4, the negative external terminal Pass 1 'through another ceramic washer 3. The ceramic washer 3 is made of alumina and has a flat plate shape with a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 28 mm.

その後、電池蓋4の周囲の端面を電池容器5の開口部に嵌合し、双方の接触部の全域をレーザー溶接する。このとき、正極外部端子1および負極外部端子1’は、それぞれ電池蓋4の中心にある穴(孔)を貫通して電池蓋4の外部に突出している。電池蓋4には、電池の内圧上昇に応じて開裂する開裂弁10が設けられている。なお、開裂弁10の開裂圧は、1.3〜1.8MPaとした。   Then, the end surface around the battery lid 4 is fitted into the opening of the battery container 5, and the entire area of both contact portions is laser welded. At this time, the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ protrude through the hole (hole) in the center of the battery cover 4 and protrude outside the battery cover 4. The battery lid 4 is provided with a cleavage valve 10 that cleaves in response to an increase in the internal pressure of the battery. The cleavage pressure of the cleavage valve 10 was 1.3 to 1.8 MPa.

次いで、金属製のナット2を正極外部端子1および負極外部端子1’にそれぞれ螺着し、セラミックワッシャ3、セラミックワッシャ3’を介して電池蓋4を鍔部7とナット2間で締め付けることにより固定する。このときの締め付けトルク値は7N・mとした。この状態では、電池蓋4の裏面と鍔部7との間に介在させたゴム(EPDM)製のOリングの圧縮により電池容器5の内部の発電要素は外気から遮断されている。   Next, the metal nut 2 is screwed to the positive external terminal 1 and the negative external terminal 1 ′, and the battery cover 4 is tightened between the flange 7 and the nut 2 via the ceramic washer 3 and the ceramic washer 3 ′. Fix it. The tightening torque value at this time was 7 N · m. In this state, the power generation element inside the battery container 5 is shielded from the outside air by compression of a rubber (EPDM) O-ring interposed between the back surface of the battery lid 4 and the flange 7.

その後、電池蓋4に設けられた注液口15から電池容器5の内部を減圧し、電解液を350g電池容器5内に注入し、その後、注液口15を封止することにより円筒形リチウムイオン電池20を完成させた。   Thereafter, the inside of the battery container 5 is depressurized from the liquid injection port 15 provided in the battery lid 4, the electrolytic solution is injected into the 350 g battery container 5, and then the liquid injection port 15 is sealed to thereby form cylindrical lithium. The ion battery 20 was completed.

電解液としては、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートを、それぞれの体積比2:3:2で混合した混合溶液中へ、6フッ化リン酸リチウム(LiPF6)を1.2mol/L溶解したものを用いた。なお、本実施例で作製した円筒形リチウム二次電池20には、電池容器5の内圧の上昇に応じて電流を遮断するように作動する電流遮断機構は設けられていない。 As an electrolytic solution, 1.2 mol / L of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solution in which ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate were mixed at a volume ratio of 2: 3: 2. What was done was used. Note that the cylindrical lithium secondary battery 20 manufactured in this example is not provided with a current interrupting mechanism that operates so as to interrupt the current in accordance with the increase in the internal pressure of the battery container 5.

全ての工程をドライルーム内(露点温度:−60℃以下)で行い、正極と負極の充電容量比率を負極/正極=1.1、電池の放電容量を40Ahとなるように設計した。   All steps were performed in a dry room (dew point temperature: −60 ° C. or lower), and the charge capacity ratio of the positive electrode and the negative electrode was designed to be negative electrode / positive electrode = 1.1, and the discharge capacity of the battery was 40 Ah.

(実施例1)
電解液を注液した円筒型リチウム二次電池20を、注液から10時間後に0.1ItAの充電電流で、リチウム二次電池の設計容量に対して0.5%の容量まで充電し(第1回目充電)、注液から20時間(放置ステップにおける第2の期間を含む期間)後に1.0ItAの充電電流で4.2Vまで3時間の定電流定電圧充電を行い、リチウム二次電池を満充電とした(第2回目充電)。第2回目充電が終了したリチウム二次電池を1.0ItAの放電電流にて、リチウム二次電池の電圧が2.7Vとなるまで定電流放電し、電流値を積算することで放電容量を測定した。例えば、定電流放電の場合、放電容量(Ah)は以下の式によって得られる。
Example 1
The cylindrical lithium secondary battery 20 into which the electrolytic solution has been injected is charged to a capacity of 0.5% with respect to the design capacity of the lithium secondary battery at a charging current of 0.1 ItA 10 hours after the injection (No. 1). 1st charge), 20 hours after injection (period including the second period in the neglecting step), charge with constant current and constant voltage for 3 hours up to 4.2V with a charge current of 1.0 ItA, and recharge the lithium secondary battery. Fully charged (second charge). Discharge the lithium secondary battery after the second charge at a constant current of 1.0 ItA until the voltage of the lithium secondary battery reaches 2.7 V, and measure the discharge capacity by integrating the current value. did. For example, in the case of constant current discharge, the discharge capacity (Ah) is obtained by the following equation.

放電容量(Ah)=放電電流(A)×放電時間(時間)
(実施例2)
注液から第2回目充電までの時間(放置ステップにおける第2の期間を含む期間)を250時間とした以外は実施例1と同様とした。
Discharge capacity (Ah) = discharge current (A) × discharge time (hours)
(Example 2)
Example 1 was the same as Example 1 except that the time from the injection to the second charge (the period including the second period in the leaving step) was 250 hours.

(実施例3〜4)
第1回目充電の充電電流を変更した以外は実施例1と同様とした。実施例3では0.02ItA、実施例4では1.2ItAとした。
(Examples 3 to 4)
Example 1 was performed except that the charging current of the first charge was changed. In Example 3, it was 0.02 ItA, and in Example 4, it was 1.2 ItA.

(実施例5)
第1回目充電の充電容量を設計容量に対して40%とし、注液から第2回目充電までの時間(放置ステップにおける第2の期間を含む期間)を160時間とした以外は、実施例1と同様とした。
(Example 5)
Example 1 except that the charge capacity of the first charge is 40% of the design capacity and the time from the injection to the second charge (the period including the second period in the leaving step) is 160 hours. And the same.

(実施例6)
注液から第2回目充電までの時間(放置ステップにおける第2の期間を含む期間)を250時間とし、第1回目充電の充電電流を1.2ItAとした以外は実施例1と同様とした。
(Example 6)
The time from the injection to the second charge (the period including the second period in the leaving step) was 250 hours, and the charge current for the first charge was set to 1.2 ItA.

(実施例7)
注液から第2回目充電までの時間(放置ステップにおける第2の期間を含む期間)を250時間とし、第1回目充電の充電電流を1.2ItAとし、第1回目充電の充電容量を設計容量に対して40%とした以外は、実施例1と同様とした。
(Example 7)
The time from the injection to the second charge (the period including the second period in the leaving step) is 250 hours, the charge current of the first charge is 1.2 ItA, and the charge capacity of the first charge is the design capacity. Except for 40%, it was the same as Example 1.

(実施例8)
設計容量を80Ahとし、注液から第2回目充電までの時間(放置ステップにおける第2の期間を含む期間)を40時間とした以外は実施例1と同様である。
(Example 8)
Example 1 is the same as Example 1 except that the design capacity is 80 Ah and the time from the injection to the second charge (the period including the second period in the leaving step) is 40 hours.

(比較例1)
第1回目充電を実施しない以外は実施例1と同様とした。
(Comparative Example 1)
Example 1 was performed except that the first charging was not performed.

(比較例2)
第1回目充電の充電容量を設計容量に対して0.4%とした以外は実施例1と同様とした。
(Comparative Example 2)
Example 1 was the same as Example 1 except that the charge capacity of the first charge was 0.4% of the design capacity.

(比較例3)
注液から第2回目充電までの時間(放置ステップにおける第2の期間を含む期間)を15時間とした以外は実施例1と同様とした。
(Comparative Example 3)
Example 1 was the same as Example 1 except that the time from the injection to the second charge (the period including the second period in the leaving step) was 15 hours.

(比較例4)
注液から第1回目充電までの時間(第1の期間)を15時間とした以外は実施例1と同様とした。
(Comparative Example 4)
Example 1 was repeated except that the time from the injection to the first charge (first period) was 15 hours.

(比較例5)
第1回回目充電の充電電流を1.5ItAとした以外は実施例1と同様とした。
(Comparative Example 5)
The same operation as in Example 1 was performed except that the charging current of the first charge was 1.5 ItA.

(比較例6)
注液から第2回目充電までの時間(放置ステップにおける第2の期間を含む期間)を300時間とした以外は、実施例1と同様とした。
(Comparative Example 6)
Example 1 was the same as Example 1 except that the time from the injection to the second charge (the period including the second period in the leaving step) was 300 hours.

(銅の溶解量判定)
実施例1〜8、比較例1〜6の電池に対し、誘導結合プラズマ発光分光分析装置(例えば、サーモフィッシャーサイエンティフィック製iCAP6300)によって、第1回目充電の直前と第2回目充電の直前の電解液を採取し、電解液中に含まれる銅濃度を測定した。第1回目充電直前の電解液と第2回目充電直前の電解液が共に銅濃度0.5ppm未満であった場合を「○」、いずれかの電解液が銅濃度0.5ppm以上1.0ppm未満であった場合を「△」、いずれかの電解液が銅濃度1.0ppm以上であった場合を「×」と判定した。
(Copper dissolution amount determination)
For the batteries of Examples 1 to 8 and Comparative Examples 1 to 6, the inductively coupled plasma emission spectroscopic analyzer (for example, iCAP6300 manufactured by Thermo Fisher Scientific) was used immediately before the first charge and immediately before the second charge. The electrolytic solution was collected and the copper concentration contained in the electrolytic solution was measured. When both the electrolyte immediately before the first charge and the electrolyte immediately before the second charge had a copper concentration of less than 0.5 ppm, “◯” indicates that any one of the electrolytes has a copper concentration of 0.5 ppm or more and less than 1.0 ppm. And the case where any electrolyte solution had a copper concentration of 1.0 ppm or more was judged as “x”.

(放電容量の判定)
実施例1〜8、比較例1〜6の電池の放電容量において、設計容量の100%以上の容量が得られた場合を「○」、95%以上100%未満の容量が得られた場合を「△」、95%未満の容量が得られた場合を「×」と判定した。
(Determination of discharge capacity)
In the discharge capacities of the batteries of Examples 1 to 8 and Comparative Examples 1 to 6, “◯” represents a case where a capacity of 100% or more of the designed capacity was obtained, and represents a case where a capacity of 95% or more and less than 100% was obtained. When “Δ”, a capacity of less than 95% was obtained, it was determined as “x”.

表1に示すように、各実施例においては、銅の溶解量判定及び放電容量の判定ともに「×」がなかった。比較例1は第1回目充電を行っていないので銅の溶解を防ぐことができていない。比較例2は、第1回目充電の充電量が不足しており、リチウム二次電池の自己放電で、負極の電位が第1回目充電をかける前の電位に戻ってしまい、結果的に銅の溶解を防げていない。比較例3は、注液から第2回目充電までの時間が短すぎるため、リチウム二次電池に電解液が浸潤する時間が不十分であり、放電容量が不足した。比較例4は、注液から第1回目充電までの時間が長すぎて、銅の溶解を防ぐことができない。 As shown in Table 1, in each Example, there was no “x” in both the determination of the amount of dissolved copper and the determination of the discharge capacity. Since the comparative example 1 is not performing the 1st charge, it cannot prevent dissolution of copper. In Comparative Example 2, the charge amount of the first charge is insufficient, and the potential of the negative electrode returns to the potential before the first charge due to the self-discharge of the lithium secondary battery, resulting in the copper It does not prevent dissolution. In Comparative Example 3, since the time from the injection to the second charge was too short, the time for the electrolyte to infiltrate the lithium secondary battery was insufficient, and the discharge capacity was insufficient. In Comparative Example 4, the time from the injection to the first charge is too long, and the dissolution of copper cannot be prevented.

各実施例において、銅の溶解量判定あるいは放電容量の判定が「△」となっている実施例があるが、リチウム二次電池の実用上は問題ない。なお、実施例2、6、7では、注液から第2回目充電までの時間が比較的長かったため、自己放電によって負極電位が元の電位付近に戻り、第2回目充電前には銅の溶解が若干見られ始めていた。実施例4、6、7では第1回目充電の充電電流が比較的大きく、また、実施例5、7では、第1回目充電の充電容量が比較的大きかったため、電極群内部で充放電不均一反応が起き、金属リチウムの析出反応などにより、本来充放電で用いられるリチウムイオンが不足したため、放電容量が若干不足した。   In each example, there is an example in which the determination of the amount of dissolved copper or the determination of the discharge capacity is “Δ”, but there is no problem in practical use of the lithium secondary battery. In Examples 2, 6, and 7, since the time from the injection to the second charge was relatively long, the negative electrode potential returned to the vicinity of the original potential by self-discharge, and the copper dissolved before the second charge. Some have begun to be seen. In Examples 4, 6, and 7, the charge current of the first charge was relatively large, and in Examples 5 and 7, the charge capacity of the first charge was relatively large. Since the reaction occurred and the lithium ions originally used for charging and discharging were insufficient due to the deposition reaction of metallic lithium, the discharge capacity was slightly insufficient.

本発明によれば、負極集電体に含まれる銅の溶解がほとんどない高品質なリチウム二次電池が製造可能であるとともに、電解液の浸透期間を短縮することができ、生産性の向上につながる。   According to the present invention, it is possible to manufacture a high-quality lithium secondary battery that hardly dissolves copper contained in the negative electrode current collector, and it is possible to shorten the infiltration period of the electrolytic solution, thereby improving productivity. Connected.

1 正極外部端子
1’ 負極外部端子
2 金属ナット
3 セラミックワッシャ
3’ セラミックワッシャ
4 電池蓋(電池容器の一部)
5 電池容器
6 捲回群
7 外部端子鍔部
10 開裂弁
11 軸芯
15 注液口
20 円筒型リチウム二次電池
W1 正極集電体(正極の一部)
W2 正極活物質層(正極の一部)
W3 負極集電体(負極の一部)
W4 負極活物質層(負極の一部)
W5 セパレータ
1 Positive External Terminal 1 ′ Negative External Terminal 2 Metal Nut 3 Ceramic Washer 3 ′ Ceramic Washer 4 Battery Cover (Part of Battery Container)
5 Battery container 6 Winding group 7 External terminal flange 10 Cleavage valve 11 Shaft core 15 Injection port 20 Cylindrical lithium secondary battery W1 Positive electrode current collector (part of positive electrode)
W2 Positive electrode active material layer (part of positive electrode)
W3 Negative electrode current collector (part of negative electrode)
W4 Negative electrode active material layer (part of negative electrode)
W5 separator

Claims (6)

負極活物質を保持する負極集電体に銅を含む負極と正極集電体に正極活物質が保持された正極とがセパレータを介して捲回されてなる捲回型の電極群が、電気的に中立の電池容器内に収納され、前記電池容器内に電解液が注液された、設計容量が5Ah以上のリチウム二次電池の初充電方法であって、
前記電池容器内に前記電解液の注液を開始してから始まる第1の期間内において、前記負極の前記負極活物質及び前記正極の前記正極活物質の表面が前記電解液と全面的に触れた状態で、前記銅が前記電解液中に溶解する電位を下回るまで前記負極の電位が下がるように第1回目の充電を行う第1回目の充電ステップと、
その後前記電解液が前記負極活物質及び前記正極活物質の内部に浸透する第2の期間が経過するまで充電を停止して放置する放置ステップと、
前記第2の期間が経過した後満充電になるまで第2回目の充電を行う第2回目の充電ステップとを行うリチウム二次電池の初充電方法。
A wound electrode group in which a negative electrode containing copper in a negative electrode current collector holding a negative electrode active material and a positive electrode in which a positive electrode active material is held in a positive electrode current collector is wound through a separator is electrically The battery is stored in a neutral battery container, and an electrolytic solution is injected into the battery container, and the initial charging method of the lithium secondary battery having a design capacity of 5 Ah or more,
In the first period that starts after the injection of the electrolytic solution into the battery container, the surfaces of the negative electrode active material of the negative electrode and the positive electrode active material of the positive electrode are in full contact with the electrolytic solution. A first charging step in which the first charging is performed so that the potential of the negative electrode is lowered until the copper is lower than the potential at which the copper dissolves in the electrolytic solution;
And then leaving the charging to stop until a second period in which the electrolytic solution penetrates into the negative electrode active material and the positive electrode active material has passed,
An initial charging method for a lithium secondary battery, wherein a second charging step is performed in which a second charging is performed until the second charging period is fully charged after the second period has elapsed.
前記第1の期間を前記電解液注液後10時間以内とし、
前記第1回目の充電ステップでの充電容量は、前記設計容量の0.5%以上であり、
前記放置ステップでは、前記リチウム二次電池の前記設計容量をXAhとして表したときに、前記電解液注液後から0.5X時間以上放置状態になるように前記第2の期間を定めることを特徴とする請求項1に記載のリチウム二次電池の初充電方法。
The first period is within 10 hours after the electrolyte injection,
The charging capacity in the first charging step is 0.5% or more of the design capacity,
In the leaving step, when the design capacity of the lithium secondary battery is expressed as XAh, the second period is set so as to be left in a standing state for 0.5 X hours or more after the electrolyte injection. The initial charging method of the lithium secondary battery according to claim 1.
前記第1回目の充電ステップの前記充電容量が、前記設計容量の0.5〜40%であることを特徴とする請求項2に記載のリチウム二次電池の初充電方法。   3. The method for initially charging a lithium secondary battery according to claim 2, wherein the charging capacity of the first charging step is 0.5 to 40% of the designed capacity. 4. 前記第1回目の充電ステップの充電電流が0.02〜1.20ItAの範囲内であることを特徴とする、請求項2または3に記載のリチウム二次電池の初充電方法。   4. The method for initially charging a lithium secondary battery according to claim 2, wherein a charging current of the first charging step is in a range of 0.02 to 1.20 ItA. 5. 前記第2の期間を含む、前記電解液注液後から第2回目充電開始までの期間が250時間以内であることを特徴とする請求項1乃至4のいずれか1項に記載のリチウム二次電池の初充電方法。   5. The lithium secondary according to claim 1, wherein a period from the injection of the electrolytic solution to the start of the second charging is within 250 hours including the second period. First battery charging method. 前記第1の期間が10時間以内である請求項1に記載のリチウム二次電池の初充電方法。   The method for initially charging a lithium secondary battery according to claim 1, wherein the first period is within 10 hours.
JP2016018625A 2016-02-03 2016-02-03 First charge method of lithium secondary battery Expired - Fee Related JP6728724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016018625A JP6728724B2 (en) 2016-02-03 2016-02-03 First charge method of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016018625A JP6728724B2 (en) 2016-02-03 2016-02-03 First charge method of lithium secondary battery

Publications (3)

Publication Number Publication Date
JP2017139107A true JP2017139107A (en) 2017-08-10
JP2017139107A5 JP2017139107A5 (en) 2019-01-31
JP6728724B2 JP6728724B2 (en) 2020-07-22

Family

ID=59566085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016018625A Expired - Fee Related JP6728724B2 (en) 2016-02-03 2016-02-03 First charge method of lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6728724B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019179667A (en) * 2018-03-30 2019-10-17 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2021101041A1 (en) * 2019-11-19 2021-05-27 주식회사 엘지에너지솔루션 Secondary battery formation method
JP2022084169A (en) * 2020-11-26 2022-06-07 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method of lithium ion battery
WO2022163618A1 (en) * 2021-01-29 2022-08-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP2022551903A (en) * 2019-12-19 2022-12-14 エルジー エナジー ソリューション リミテッド Secondary battery and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290811A (en) * 1993-03-30 1994-10-18 Sony Corp Manufacture of non-aqueous electrolyte secondary battery
JP2003308878A (en) * 2002-04-17 2003-10-31 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
WO2013121563A1 (en) * 2012-02-16 2013-08-22 トヨタ自動車株式会社 Method for manufacturing secondary cell
JP2014238961A (en) * 2013-06-07 2014-12-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
US20150004474A1 (en) * 2013-07-01 2015-01-01 Samsung Sdl Co., Ltd. Secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290811A (en) * 1993-03-30 1994-10-18 Sony Corp Manufacture of non-aqueous electrolyte secondary battery
JP2003308878A (en) * 2002-04-17 2003-10-31 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
WO2013121563A1 (en) * 2012-02-16 2013-08-22 トヨタ自動車株式会社 Method for manufacturing secondary cell
JP2014238961A (en) * 2013-06-07 2014-12-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
US20150004474A1 (en) * 2013-07-01 2015-01-01 Samsung Sdl Co., Ltd. Secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019179667A (en) * 2018-03-30 2019-10-17 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2021101041A1 (en) * 2019-11-19 2021-05-27 주식회사 엘지에너지솔루션 Secondary battery formation method
JP2022551903A (en) * 2019-12-19 2022-12-14 エルジー エナジー ソリューション リミテッド Secondary battery and manufacturing method thereof
JP2022084169A (en) * 2020-11-26 2022-06-07 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method of lithium ion battery
JP7182590B2 (en) 2020-11-26 2022-12-02 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method of lithium ion battery
WO2022163618A1 (en) * 2021-01-29 2022-08-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6728724B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
JP5329310B2 (en) Lithium secondary battery using ionic liquid
CN102270759B (en) Cathode, lithium ion secondary battery, electric power tool and electrical vehicle
JP5872055B2 (en) Lithium secondary battery pack, electronic device using the same, charging system and charging method
JP2010225291A (en) Lithium-ion secondary battery and method of manufacturing the same
JP6728724B2 (en) First charge method of lithium secondary battery
JP2007273183A (en) Negative electrode and secondary battery
JP2017139107A5 (en)
JP2015072805A (en) Nonaqueous secondary battery
JP2008097879A (en) Lithium ion secondary battery
JP2009259502A (en) Nonaqueous electrolyte secondary battery
JP2011222388A (en) Laminated secondary battery
JP2016048624A (en) Lithium secondary battery
JP2009123424A (en) Nonaqueous electrolyte secondary battery
RU2644590C1 (en) Auxiliary battery with non-aqueous electrolyte and method of manufacturing the auxiliary battery with non-aqueous electrolyte
JP2010140737A (en) Nonaqueous electrolyte secondary battery
KR20130029328A (en) Non-aqueous electrolyte for electrochemical device and electrochemical device
JP2013098022A (en) Battery electrode plate and battery using the same
JP2011222128A (en) Secondary battery
JP2010015852A (en) Secondary battery
JP6668876B2 (en) Manufacturing method of lithium ion secondary battery
JP2006313736A (en) Non-aqueous electrolyte secondary battery
JP2016072119A (en) Lithium secondary battery
JP6709991B2 (en) Lithium ion secondary battery
JP2016126953A (en) Method for reducing unevenness in charging secondary battery, and method for manufacturing secondary battery
JP6392566B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R151 Written notification of patent or utility model registration

Ref document number: 6728724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees