JPH06260183A - Diaphragm for aqueous solvent electrochemical device and battery with aqueous solvent using same - Google Patents

Diaphragm for aqueous solvent electrochemical device and battery with aqueous solvent using same

Info

Publication number
JPH06260183A
JPH06260183A JP5043469A JP4346993A JPH06260183A JP H06260183 A JPH06260183 A JP H06260183A JP 5043469 A JP5043469 A JP 5043469A JP 4346993 A JP4346993 A JP 4346993A JP H06260183 A JPH06260183 A JP H06260183A
Authority
JP
Japan
Prior art keywords
diaphragm
battery
negative electrode
positive electrode
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5043469A
Other languages
Japanese (ja)
Inventor
Toshio Shigematsu
敏夫 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5043469A priority Critical patent/JPH06260183A/en
Publication of JPH06260183A publication Critical patent/JPH06260183A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To lessen the internal resistance satisfactorily and provide excellent separating ability for electrolytic solution by furnishing a diaphragm with a porous film, and furnishing a hydrophilic resin in the pores of this film. CONSTITUTION:A redox flow type battery 1 having a diaphragm for an electrochemical device of aqueous solvent type has a battery reaction cell 2, positive electrode liquid tank 3, and negative electrode liquid tank 4. The inside of the battery reaction cell 2 is partitioned by a diaphragm 5 of aqueous solvent type consisting of an ion exchange film, wherein one side forms a positive electrode cell 2a while the other constitutes a negative electrode cell 2b. A positive electrode 6 is accommodated in the positive electrode cell 2a while a negative electrode 7 is contained in the negative electrode cell 2b. The disphragm 5 has a porous film with pores and a hydrophilic resin furnished in the whole or a part of voids of these pores at least partially. By the use of this diaphragm, the internal resistance of the battery itself can be reduced, and mixing of the electrolyte through the diaphragm be reduced, so that the resultant aqueous solvent type battery is achieved with an enhanced high efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水溶媒系電気化学装置
用隔膜およびそれを用いた水溶媒系電池に関し、特に十
分低い内部抵抗と電解液の分離能に優れた水溶媒系電気
化学装置用隔膜、および該隔膜を用いた高効率かつ高容
量の水溶媒系電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane for a water-solvent type electrochemical device and a water-solvent type battery using the same, and particularly to a water-solvent type electrochemical device excellent in sufficiently low internal resistance and separability of an electrolytic solution. The present invention relates to a diaphragm for use, and a high-efficiency and high-capacity water-solvent battery using the diaphragm.

【0002】[0002]

【従来の技術】揚水発電に代わる電力貯蔵用電池装置と
して、種々の新型電池が開発されている。
2. Description of the Related Art Various new types of batteries have been developed as a battery device for storing electric power, which replaces pumped-storage power generation.

【0003】このような新型電池のうち、たとえば、レ
ドックスフロー型電池や、亜鉛臭素電池等の電解液流通
型電池は特に注目されている。
Among such new batteries, for example, redox flow type batteries and electrolyte flow type batteries such as zinc bromine batteries have received particular attention.

【0004】電解液流通型電池装置の構造と、動作原理
をレドックスフロー型電池を例にとり、以下に説明す
る。
The structure and operating principle of the electrolyte flow type battery device will be described below by taking a redox flow type battery as an example.

【0005】図1は、レドックスフロー型電池の一具体
例を概略的に示す構成図である。図1を参照して、この
レドックスフロー型電池1は、電池反応セル2、正極液
タンク3、および、負極液タンク4を備える。
FIG. 1 is a schematic diagram showing a specific example of a redox flow battery. With reference to FIG. 1, the redox flow battery 1 includes a battery reaction cell 2, a positive electrode liquid tank 3, and a negative electrode liquid tank 4.

【0006】電池反応セル2内は、たとえば、イオン交
換膜等からなる隔膜5により仕切られており、一方側が
正極セル2a、他方側が負極セル2bを構成する。
The inside of the battery reaction cell 2 is partitioned by a diaphragm 5 made of, for example, an ion exchange membrane, and one side constitutes a positive electrode cell 2a and the other side constitutes a negative electrode cell 2b.

【0007】正極セル2a内には、正極6が収容され、
また、負極セル2b内には負極7が収容される。
A positive electrode 6 is housed in the positive electrode cell 2a,
Further, the negative electrode 7 is accommodated in the negative electrode cell 2b.

【0008】正極セル2aと正極液タンク3とは、正極
液を正極液タンク3から正極セル2aに供給する正極液
供給用管路8と、正極液を正極セル2aから正極液タン
ク3に回収する正極液回収用管路9とにより連結され
る。
The positive electrode cell 2a and the positive electrode liquid tank 3 are a positive electrode liquid supply line 8 for supplying the positive electrode liquid from the positive electrode liquid tank 3 to the positive electrode cell 2a, and the positive electrode liquid is recovered from the positive electrode cell 2a to the positive electrode liquid tank 3. It is connected to the positive electrode liquid recovery conduit 9 for

【0009】また、正極液供給用管路8には、正極液の
流通循環手段として、ポンプ10が設けられており、正
極セル2aと正極液タンク3との間において、正極液が
流通循環できるようになっている。
Further, a pump 10 is provided in the positive electrode liquid supply conduit 8 as a positive and negative liquid circulating means for circulating the positive electrode liquid between the positive electrode cell 2a and the positive electrode liquid tank 3. It is like this.

【0010】他方、負極セル2bと負極液タンク4と
は、負極液を負極液タンク4から負極セル2bに供給す
る負極液供給用管路11と、負極液を負極セル2bから
負極液タンク4に回収する負極液回収用管路12とによ
り連結される。
On the other hand, the negative electrode cell 2b and the negative electrode liquid tank 4 include a negative electrode liquid supply line 11 for supplying the negative electrode liquid from the negative electrode liquid tank 4 to the negative electrode cell 2b, and the negative electrode liquid from the negative electrode cell 2b to the negative electrode liquid tank 4. It is connected to the negative electrode liquid recovery conduit 12 for recovering the negative electrode.

【0011】また、負極液供給用管路11には、負極液
の流通循環手段としてポンプ13が設けられており、負
極セル2bと負極液タンク4との間において、負極液が
流通循環できるようになっている。
A pump 13 is provided in the negative electrode liquid supply conduit 11 as a means for circulating and circulating the negative electrode liquid so that the negative electrode liquid can be circulated and circulated between the negative electrode cell 2b and the negative electrode liquid tank 4. It has become.

【0012】正極液タンク3内には、電解液として正極
電解液が蓄えられており、また、負極液タンク4内に
は、電解液として負極電解液が蓄えられる。
A positive electrode electrolytic solution is stored as an electrolytic solution in the positive electrode solution tank 3, and a negative electrode electrolytic solution is stored as an electrolytic solution in the negative electrode solution tank 4.

【0013】正極電解液としては、たとえば、鉄イオン
のような原子価の変化するイオンの水溶液が用いられ、
また、負極電解液としては、たとえば、クロムイオンの
ような原子価の変化するイオンの水溶液が用いられる。
As the positive electrode electrolyte, for example, an aqueous solution of ions whose valence changes, such as iron ions, is used.
Further, as the negative electrode electrolyte, for example, an aqueous solution of ions whose valence changes such as chromium ions is used.

【0014】たとえば、そのような正極電解液として、
正極活物質Fe3+/Fe2+を含む塩酸水溶液を用い、負
極電解液として、負極活物質Cr2+/Cr3+を含む塩酸
水溶液を用いることができる。
For example, as such a positive electrode electrolyte,
A hydrochloric acid aqueous solution containing the positive electrode active material Fe 3+ / Fe 2+ can be used, and a hydrochloric acid aqueous solution containing the negative electrode active material Cr 2+ / Cr 3+ can be used as the negative electrode electrolyte.

【0015】このような電解液を用いたレドックスフロ
ー型電池1を用いて、充電時においては、負極液タンク
4に蓄えられたCr3+イオンを含む塩酸水溶液がポンプ
13により、負極セル2bに送られ、負極7において電
子を受け取り、Cr2+イオンに還元され、負極液タンク
4に回収される。
When the redox flow type battery 1 using such an electrolytic solution is used, the hydrochloric acid aqueous solution containing Cr 3+ ions stored in the negative electrode solution tank 4 is charged by the pump 13 into the negative electrode cell 2b during charging. The electrons are sent and received by the negative electrode 7, reduced to Cr 2+ ions, and collected in the negative electrode liquid tank 4.

【0016】他方、正極液タンク3に蓄えられたFe2+
イオンを含む塩酸水溶液がポンプ10により正極セル2
aに送られ、正極6において外部回路に電子を放出し
て、Fe3+に酸化され、正極液タンク3に回収される。
On the other hand, Fe 2+ stored in the cathode liquid tank 3
A hydrochloric acid aqueous solution containing ions is pumped by the pump 10 to the positive electrode cell 2
Then, the electrons are sent to the external circuit in the positive electrode 6, are oxidized to Fe 3+, and are collected in the positive electrode liquid tank 3.

【0017】また、放電時においては、負極液タンク4
に蓄えられたCr2+イオンを含む塩酸水溶液が、ポンプ
13により負極セル2bに送られ、負極7において外部
回路に電子を放出して、Cr3+イオンに酸化され、負極
液タンク4に回収される。
During discharge, the negative electrode liquid tank 4
The hydrochloric acid aqueous solution containing Cr 2+ ions stored in the negative electrode cell 2b is sent to the negative electrode cell 2b by the pump 13 and emits electrons to the external circuit at the negative electrode 7 to be oxidized into Cr 3+ ions and collected in the negative electrode liquid tank 4. To be done.

【0018】他方、正極液タンク3に蓄えられたFe3+
イオンを含む塩酸水溶液は、ポンプ10により正極セル
2aに送られ、正極6において外部回路から電子を受け
取り、Fe2+イオンに還元され、正極液タンク3に回収
される。
On the other hand, Fe 3+ stored in the positive electrode liquid tank 3
The aqueous hydrochloric acid solution containing ions is sent to the positive electrode cell 2a by the pump 10, receives electrons from the external circuit at the positive electrode 6, is reduced to Fe 2+ ions, and is collected in the positive electrode liquid tank 3.

【0019】このようなレドックスフロー型電池におい
ては、正極6および負極7における充放電反応は、下記
の式のようになる。
In such a redox flow type battery, the charge / discharge reaction at the positive electrode 6 and the negative electrode 7 is expressed by the following equation.

【0020】[0020]

【化1】 [Chemical 1]

【0021】[0021]

【発明が解決しようとする課題】しかしながら、上記し
たレドックスフロー型電池1は、通常の電池とは異な
り、正極液と負極液との構成の異なる2液型電池構成で
あるため、両電解液の混合を阻止する必要があり、その
ため選択性の強いイオン交換膜が隔膜5として用いられ
ている。隔膜5としてイオン交換膜を用いた場合、レド
ックスフロー型電池1の内部抵抗を低減することができ
ず、したがって、高い充放電効率を達成することができ
ないという問題があった。すなわち、イオン交換膜は、
機械的強度の問題から、膜厚として約100μm〜20
0μm必要であり、このため内部抵抗を1.0Ω・cm
2 以下にするのは困難であった。
However, unlike the normal battery, the redox flow type battery 1 described above has a two-component type battery configuration in which the positive electrode solution and the negative electrode solution are different from each other. Since it is necessary to prevent the mixing, an ion exchange membrane having a strong selectivity is used as the diaphragm 5. When an ion exchange membrane is used as the diaphragm 5, there is a problem that the internal resistance of the redox flow battery 1 cannot be reduced, and thus high charge / discharge efficiency cannot be achieved. That is, the ion exchange membrane is
Due to the problem of mechanical strength, the film thickness is about 100 μm to 20 μm.
0 μm is required, so the internal resistance is 1.0 Ω · cm.
It was difficult to make it less than 2 .

【0022】また、隔膜5は、上記したような選択性の
強いイオン交換膜、すなわち電極活物質の通過を防止す
ることができ、しかもH+ およびCl- のようなイオン
移動担体を通過させ得るという特殊機能を有しなければ
ならないため、隔膜5を構成する材料のコストが高くつ
くという欠点があった。
Further, the diaphragm 5 can prevent the ion exchange membrane having a strong selectivity as described above, that is, the electrode active material from passing therethrough, and can pass the ion transfer carrier such as H + and Cl −. Therefore, there is a drawback that the cost of the material forming the diaphragm 5 is high because it must have a special function.

【0023】このような問題を解決するための技術とし
て、本発明者らは、特開昭61−22575号公報にお
いて、隔膜5として、イオン交換膜の代わりに多孔質膜
を用いた電池を開示している。
As a technique for solving such a problem, the inventors of the present invention have disclosed a battery using a porous membrane instead of an ion exchange membrane as the diaphragm 5 in Japanese Patent Laid-Open No. 61-22575. is doing.

【0024】特開昭61−22575号公報に記載され
る多孔質膜は、たとえば、セルロース系樹脂、ポリエチ
レンやポリプロピレン等のポリオレフィン系樹脂、フッ
素樹脂等の材料からなり、多孔質膜の複数の孔の孔径が
0.05μm以上0.5μm以下に適切に選ばれ、ま
た、気孔率を約30%〜90%、膜厚を約20μm〜3
00μm程度とすることにより、隔膜5の内部抵抗をイ
オン交換膜を用いた場合に比べ低減することができる。
多孔質膜を用いた場合の内部抵抗は0.2Ω・cm2
上2Ω・cm2 以下程度である。さらに、特開昭61−
22575号公報に記載される多孔質膜は、材料の原料
コストがイオン交換膜に比べ安いため、製造コストの低
減を図れるという効果もある。
The porous membrane described in Japanese Patent Laid-Open No. 61-22575 is made of, for example, a material such as a cellulose resin, a polyolefin resin such as polyethylene or polypropylene, or a fluororesin, and has a plurality of pores in the porous membrane. Is appropriately selected from 0.05 μm to 0.5 μm, the porosity is about 30% to 90%, and the film thickness is about 20 μm to 3 μm.
By setting the thickness to about 00 μm, the internal resistance of the diaphragm 5 can be reduced as compared with the case where an ion exchange membrane is used.
The internal resistance in the case of using the porous membrane is on the order 0.2 [Omega] · cm 2 or more 2 [Omega · cm 2 or less. Furthermore, JP-A-61-1
The porous membrane described in Japanese Patent No. 22575 has a raw material cost lower than that of the ion exchange membrane, and thus has an effect of reducing manufacturing cost.

【0025】しかしながら、特開昭61−22575号
公報に記載される多孔質膜は、隔膜としての内部抵抗を
十分に低減することができ、電圧損失(電圧損失は、電
圧効率で評価される)は、イオン交換膜に比べ低減でき
る一方、正極液と負極液が隔膜5として用いている多孔
質膜を介して、互いに混合される結果、その自己放電に
より、電池効率(電池効率は、電流効率で評価される)
の低下を招来することは免れ得なかった。
However, the porous membrane described in Japanese Patent Application Laid-Open No. 61-22575 can sufficiently reduce the internal resistance as a diaphragm, and voltage loss (voltage loss is evaluated by voltage efficiency). Can be reduced as compared with the ion exchange membrane, but the positive electrode liquid and the negative electrode liquid are mixed with each other through the porous membrane used as the diaphragm 5, and as a result, the self-discharge causes the battery efficiency (the battery efficiency to be the current efficiency Evaluated by)
It was unavoidable that it would lead to a decline in.

【0026】また、本発明者らは、特開昭61−225
74号公報において、隔膜5として、イオン交換膜の代
わりに膨潤膜を用いた電池を開示している。
The inventors of the present invention have also disclosed in JP-A-61-225.
Japanese Patent Publication No. 74 discloses a battery using a swelling membrane instead of an ion exchange membrane as the diaphragm 5.

【0027】特開昭61−22574号公報に記載され
る膨潤膜は、たとえば、セルロース系樹脂、ポリ酢酸ビ
ニル、ポリビニルアルコール、シリコン樹脂、およびこ
れらを含む共重合体、あるいはブレンド品などの材料か
らなり、含水率が1wt%〜50wt%に適切に選ば
れ、膜厚を10μm〜200μm程度とすることによ
り、隔膜5の内部抵抗をイオン交換膜を用いた場合に比
べ低減することができる。膨潤膜を用いた場合の内部抵
抗は、0.2Ω・cm2 以上5Ω・cm2 以下程度であ
る。また、このような膨潤膜は、高温環境下において
も、特性が変化しないので高温環境下でのエネルギー効
率を上昇させることができるという長所がある。さら
に、特開昭61−22574号公報に記載される膨潤膜
は、材料がイオン交換膜に比べ比較的安価であるため、
イオン交換膜に比べ、製造コストの低減を図れるという
効果もある。
The swelling film described in JP-A-61-2574 is made of, for example, a material such as a cellulosic resin, polyvinyl acetate, polyvinyl alcohol, a silicone resin, a copolymer containing them, or a blended product. By properly selecting the water content to 1 wt% to 50 wt% and setting the film thickness to about 10 μm to 200 μm, the internal resistance of the diaphragm 5 can be reduced as compared with the case where the ion exchange membrane is used. The internal resistance in the case of using the swelling film is the degree 0.2 [Omega] · cm 2 or more 5 [Omega · cm 2 or less. In addition, such a swollen film has the advantage that the energy efficiency can be increased in a high temperature environment because the characteristics do not change even in a high temperature environment. Further, the swelling membrane described in JP-A-61-2574 is relatively inexpensive as compared with the ion exchange membrane,
There is also an effect that the manufacturing cost can be reduced as compared with the ion exchange membrane.

【0028】しかしながら、特開昭61−22574号
公報に記載される膨潤膜は、隔膜としての内部抵抗は十
分に低減させることができる一方、正極液と負極液が隔
膜5として用いている膨潤膜を介して、互いに混合され
る結果、その自己放電により電池効率の低下を招来する
ことは免れ得なかった。
However, the swelling film described in JP-A-61-2574 can sufficiently reduce the internal resistance as a diaphragm, while the positive electrode liquid and the negative electrode liquid are used as the diaphragm 5. As a result of being mixed with each other through the, it was unavoidable that the self-discharge caused a decrease in battery efficiency.

【0029】また、一般的に膨潤膜は、長期的に酸に耐
える材料が少なく、さらに、内部抵抗を小さくできる膨
潤膜は、耐酸性に優れず、また、機械的強度が十分でな
いという問題があった。このため、レドックスフロー型
電池の隔膜として用いることのできる膨潤膜は、材料が
限定されるという問題があった。
In general, the swelling film has few materials capable of withstanding acid for a long period of time, and further, the swelling film capable of reducing the internal resistance is not excellent in acid resistance and has insufficient mechanical strength. there were. Therefore, there is a problem that the material of the swelling film that can be used as the diaphragm of the redox flow battery is limited.

【0030】また、機械的特性に優れた多孔度の大きい
多孔質膜と、電解液の分離能を高めるための薄い膜とを
物理的に貼り合わせてなる膜と膜とが2層構造を有する
隔膜の研究が行なわれているが、いずれも、イオン交換
膜単独、多孔質膜単独、および膨潤膜単独を用いた隔膜
に比べ、内部抵抗および電解液の分離能の点において、
有意な差を示すに至っていない。
Further, a porous membrane having excellent mechanical properties and high porosity, and a membrane formed by physically bonding a thin membrane for enhancing the separating ability of the electrolytic solution have a two-layer structure. Diaphragms have been studied, but in both cases, in terms of internal resistance and separability of electrolytic solution, compared to a diaphragm using an ion exchange membrane alone, a porous membrane alone, and a swelling membrane alone.
It has not reached a significant difference.

【0031】水溶媒系電池用隔膜としては、プロトン導
電性が大きく、プロトン選択透過性が大きく、機械的・
化学的強度が大きく、また、電解液との濡れ性が大きい
隔膜が長年望まれていた。
As a membrane for a water-solvent battery, the proton conductivity is high, the proton selective permeability is high, and
A diaphragm having high chemical strength and high wettability with an electrolytic solution has been desired for many years.

【0032】本発明は、以上のような問題を解決するた
めになされたものであって、内部抵抗が十分小さく、か
つ、電解液の分離能に優れた水溶媒系電気化学装置用隔
膜およびそれを用いた水溶媒系電池を提供することを目
的とする。
The present invention has been made in order to solve the above problems, and has a sufficiently small internal resistance and excellent separability of an electrolytic solution, and a membrane for a water-solvent electrochemical device. It is an object of the present invention to provide an aqueous solvent battery using

【0033】[0033]

【課題を解決するための手段】本発明に従う水溶媒系電
気化学装置用隔膜は、複数の孔部を有する多孔質膜と、
多孔質膜の複数の孔部の少なくとも一部の空隙部内全体
にまたは部分的に設けられた親水性樹脂とを備える。
A diaphragm for a water-solvent-based electrochemical device according to the present invention comprises a porous membrane having a plurality of pores,
And a hydrophilic resin provided entirely or partially in the voids of at least some of the plurality of pores of the porous membrane.

【0034】親水性樹脂は、好ましくは、イオン交換樹
脂である。また、本発明に従う水溶媒系電池は、正極
と、負極と、正極と負極との間に設けられた隔膜とを含
む水溶媒系電池であって、隔膜は、複数の孔部を有する
多孔質膜と、多孔質膜の複数の孔部の少なくとも一部の
空隙部内全体にまたは部分的に設けられた親水性樹脂と
を備える。
The hydrophilic resin is preferably an ion exchange resin. Further, the water-solvent battery according to the present invention is a water-solvent battery including a positive electrode, a negative electrode, and a diaphragm provided between the positive electrode and the negative electrode, and the diaphragm is a porous material having a plurality of pores. A membrane and a hydrophilic resin provided entirely or partially in the voids of at least some of the plurality of pores of the porous membrane.

【0035】[0035]

【作用】レドックスフロー型電池を例にとり、隔膜とし
て要求される機能をさらに詳細に説明する。
The function required as a diaphragm will be described in more detail by taking a redox flow battery as an example.

【0036】図2は、隔膜に要求される機能を説明する
ためのものであり、図1に示すレドックスフロー型電池
1の電池反応セル2の隔膜5の近傍を拡大して示す断面
図である。
FIG. 2 is for explaining the function required for the diaphragm, and is an enlarged sectional view showing the vicinity of the diaphragm 5 of the battery reaction cell 2 of the redox flow type battery 1 shown in FIG. .

【0037】図2を参照して、隔膜5の両側には、正極
液と負極液がそれぞれ供給される。隔膜5には、特に以
下の2つの機能が要求される。
With reference to FIG. 2, the positive electrode liquid and the negative electrode liquid are supplied to both sides of the diaphragm 5, respectively. The diaphragm 5 is required to have the following two functions.

【0038】(1) イオン隔離機能 すなわち、クロムイオン(Cr2+/Cr3+)と鉄イオン
(Fe3+/Fe2+)との隔離機能である。
(1) Ion Separating Function That is, it is a separating function of chromium ions (Cr 2+ / Cr 3+ ) and iron ions (Fe 3+ / Fe 2+ ).

【0039】(2) イオン透過機能 すなわち、水素イオンの透過機能である。(2) Ion permeation function, that is, a hydrogen ion permeation function.

【0040】本発明に従う水溶媒系電気化学装置用隔膜
は、複数の孔部を有する多孔質膜と、多孔質膜の複数の
孔部の少なくとも一部の空隙部内全体にまたは部分的に
設けられた親水性樹脂とを備える。
A water-solvent-based electrochemical device diaphragm according to the present invention is provided entirely or partially within a porous membrane having a plurality of pores and at least a part of the voids of the plurality of pores of the porous membrane. And a hydrophilic resin.

【0041】複数の孔部を有する多孔質膜単体では、イ
オン透過機能は十分に優れているが、イオン隔離機能が
不十分である。
A single porous membrane having a plurality of pores has a sufficiently excellent ion permeation function, but an insufficient ion isolation function.

【0042】一方、本発明に従う水溶媒系電気化学装置
用隔膜は、多孔質膜の複数の孔部の少なくとも一部の空
隙部内全体にまたは部分的に設けられた親水性樹脂とを
備える。このため、多孔質膜の複数の孔部の孔径が実質
的に小さくなり、かつ孔部に親水性機能および/または
イオン交換機能が付与されるという孔部の機能的制御に
よりイオン隔離機能が向上する。また、親水性樹脂とし
て、イオン交換樹脂を用いた場合には、さらに、イオン
隔離機能が向上する。
On the other hand, the water-solvent-based diaphragm for electrochemical device according to the present invention comprises a hydrophilic resin provided entirely or partially in the voids of at least some of the plurality of pores of the porous membrane. Therefore, the pore size of the plurality of pores of the porous membrane is substantially reduced, and the ion isolation function is improved by the functional control of the pores such that the pores have a hydrophilic function and / or an ion exchange function. To do. Further, when an ion exchange resin is used as the hydrophilic resin, the ion isolation function is further improved.

【0043】[0043]

【実施例】以下、本発明について実施例および比較例を
挙げて、さらに具体的に説明するが、本発明は、これら
の実施例のみに限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0044】実施例1 ポリプロピレン製多孔質膜(平均孔径0.05μm、厚
み約100μm、気孔率55%)の両面に、ナフィオン
溶液(5wt%)を極めて薄く(数μm厚)塗布した
後、乾燥させた。なお、ナフィオン溶液とは、ナフィオ
ン樹脂(デュポン社製)をメタノール等の溶剤に溶かし
た溶液をいう。
Example 1 A Nafion solution (5 wt%) was applied very thinly (several μm thick) on both sides of a polypropylene porous membrane (average pore size 0.05 μm, thickness about 100 μm, porosity 55%), and then dried. Let The Nafion solution is a solution prepared by dissolving Nafion resin (manufactured by DuPont) in a solvent such as methanol.

【0045】図1を参照して、レドックスフロー型電池
1の隔膜5として、上記隔膜を用いた、電極面積9cm
2 の小型電池セル(単セル)を構成し、充放電特性を調
べた。結果を表1に示す。なお、電解液としては、正極
液として、3NHClにFeCl2 1モルを溶解させた
もの、負極液として、3NHClにCrCl3 1モルを
溶解させたものを用いた。
Referring to FIG. 1, as the diaphragm 5 of the redox flow battery 1, the above diaphragm is used and the electrode area is 9 cm.
2 small battery cells (single cell) were constructed and the charge / discharge characteristics were investigated. The results are shown in Table 1. As the electrolytic solution, a positive electrode solution in which 1 mol of FeCl 2 was dissolved in 3N HCl, and a negative electrode solution in which 1 mol of CrCl 3 was dissolved in 3N HCl were used.

【0046】比較例1 実施例1と同様の小型単セルに、一般的な陽イオン交換
膜(イオン透過性を付与するためスルフォン化処理(S
3 - )を行なったスチレン−ジビニルベンゼン共重合
体、膜厚100〜200μm)を用いて、実施例1と同
様の試験を行なった。結果を表1に示す。
Comparative Example 1 A small single cell similar to that of Example 1 was added to a general cation exchange membrane (a sulfonation treatment (S for imparting ion permeability) (S
The same test as in Example 1 was conducted using a styrene-divinylbenzene copolymer subjected to O 3 ) and a film thickness of 100 to 200 μm). The results are shown in Table 1.

【0047】比較例2 実施例1で用いたポリプロピレン製多孔質膜のみを用い
て、実施例1と同様の充放電特性を調べた。結果を表1
に示す。
Comparative Example 2 The same charge / discharge characteristics as in Example 1 were examined using only the polypropylene porous film used in Example 1. The results are shown in Table 1.
Shown in.

【0048】[0048]

【表1】 [Table 1]

【0049】表1から明らかなように、実施例1は、電
流効率が、比較例2に比べ大きく改善されている。ま
た、実施例1は、比較例1および比較例2に比べ高いエ
ネルギー効率を示した。
As is clear from Table 1, the current efficiency of Example 1 is greatly improved as compared with Comparative Example 2. Further, Example 1 showed higher energy efficiency than Comparative Examples 1 and 2.

【0050】なお、以上の実施例に関する開示は、本発
明の単なる具体例に過ぎず、本発明の技術的範囲を何ら
制限するものではない。
It should be noted that the disclosure of the above embodiments is merely specific examples of the present invention and does not limit the technical scope of the present invention.

【0051】この発明において、複数の孔部を有する多
孔質膜の材質としては、特に限定するものではないが、
たとえば、ポリエチレン、ポリプロピレン、フッ素樹脂
等の耐酸材料(酸性に強い材料)を用いることができ
る。
In the present invention, the material of the porous membrane having a plurality of pores is not particularly limited,
For example, an acid resistant material (a material that is resistant to acidity) such as polyethylene, polypropylene or fluororesin can be used.

【0052】また、複数の孔部を有する多孔質膜の孔部
の平均孔径は、0.05μm以上1μm以下が好まし
い。0.05μm未満の小孔径は製作するのが困難であ
り、また、1μmより大きい孔径を有する場合は、電解
液が混合することになり好ましくない。
The average pore diameter of the pores of the porous membrane having a plurality of pores is preferably 0.05 μm or more and 1 μm or less. It is difficult to manufacture a small pore size of less than 0.05 μm, and if the pore size is more than 1 μm, the electrolytic solution is mixed, which is not preferable.

【0053】また、複数の孔部を有する多孔質膜の膜厚
は、10μm以上200μm以下が好ましい。10μm
未満の場合は、機械的強度が十分でなく好ましくなく、
また、200μmを超える膜厚では、内部抵抗が大きく
なり好ましくない。また、複数の孔部を有する多孔質膜
の気孔率は、特に限定されることはないが30%以上9
0%以下が好ましい。
The thickness of the porous film having a plurality of pores is preferably 10 μm or more and 200 μm or less. 10 μm
If less than, mechanical strength is not sufficient and is not preferable,
Further, if the film thickness exceeds 200 μm, the internal resistance becomes large, which is not preferable. The porosity of the porous film having a plurality of pores is not particularly limited, but is 30% or more 9
0% or less is preferable.

【0054】多孔質膜の複数の孔部の少なくとも一部の
空隙部内全体にまたは部分的に設ける親水性樹脂の材料
としては、特に限定されることはないが、たとえば、エ
チレンビニルアルコール樹脂、セルロース系樹脂、セル
ロース樹脂等を挙げることができる。このような親水性
樹脂の含水率としては、1wt%以上50wt%以下の
ものが好ましい。含水率が1wt%未満の場合は、隔膜
の内部抵抗が大きくなり好ましくなく、また、50wt
%を超える場合は、イオン隔離機能が低下し好ましくな
い。
The material of the hydrophilic resin provided entirely or partially in the voids of at least a part of the plurality of pores of the porous membrane is not particularly limited, and examples thereof include ethylene vinyl alcohol resin and cellulose. Examples of the resin include a resin and a cellulose resin. The water content of such hydrophilic resin is preferably 1 wt% or more and 50 wt% or less. If the water content is less than 1 wt%, the internal resistance of the diaphragm becomes large, which is not preferable.
When it exceeds%, the ion segregation function is deteriorated, which is not preferable.

【0055】また、多孔質膜の複数の孔部の少なくとも
一部の空隙部内全体にまたは部分的に親水性樹脂を設け
る工程は、特に限定されることはないが、たとえば、親
水性樹脂を、メタノール等の溶剤に溶かした後、多孔質
膜の少なくとも片方の表面に、溶剤に溶かした親水性樹
脂を塗布した後、乾燥させる方法、または、多孔質膜の
少なくとも片方の表面に、アクリル酸、メタクリル酸等
のモノマを塗布した後、電子線または化学的な方法によ
り重合させる方法等を挙げることができる。
The step of providing the hydrophilic resin entirely or partially in the voids of at least a part of the plurality of pores of the porous membrane is not particularly limited, but, for example, the hydrophilic resin is After dissolving in a solvent such as methanol, on at least one surface of the porous membrane, after applying a hydrophilic resin dissolved in a solvent, a method of drying, or at least one surface of the porous membrane, acrylic acid, Examples include a method in which a monomer such as methacrylic acid is applied and then polymerized by an electron beam or a chemical method.

【0056】多孔質膜の孔部の孔径を親水性樹脂を用い
て、制御する方法として、溶剤に溶かした親水性樹脂を
多孔質膜の少なくとも片方の表面に塗布した後、乾燥さ
せる方法を用いる場合は、塗布条件、たとえば、用いる
溶剤の量、塗布回数、樹脂濃度を変化させること等によ
り行なわれる。
As a method for controlling the pore size of the pores of the porous membrane by using the hydrophilic resin, a method of applying the hydrophilic resin dissolved in a solvent to at least one surface of the porous membrane and then drying it is used. In this case, it is carried out by changing the coating conditions such as the amount of solvent used, the number of coatings, and the resin concentration.

【0057】すなわち、本発明に従う隔膜では、溶剤に
溶かした親水性樹脂が、多孔質膜の複数の孔部の一部の
孔部に毛細管現象により導入された後、乾燥されること
により、多孔質膜の複数の孔部の少なくとも一部の空隙
部内全体にまたは部分的に親水性樹脂が設けられてい
る。
That is, in the membrane according to the present invention, the hydrophilic resin dissolved in the solvent is introduced into some of the plurality of pores of the porous membrane by the capillary phenomenon and then dried to obtain the porous membrane. The hydrophilic resin is provided entirely or partially in the voids of at least some of the plurality of pores of the quality membrane.

【0058】同様に、多孔質膜の孔部の孔径を親水性樹
脂を用いて制御する方法として、モノマを塗布した後、
電子線または化学的な方法により重合させる方法を用い
る場合は、塗布条件、たとえば、用いる溶剤の量、塗布
回数、樹脂濃度、電子線の量、または、反応速度を変化
させることにより行なわれる。
Similarly, as a method of controlling the pore size of the pores of the porous membrane by using a hydrophilic resin, after coating the monomer,
When a method of polymerizing by electron beam or a chemical method is used, it is carried out by changing coating conditions, for example, the amount of solvent used, the number of coatings, the resin concentration, the amount of electron beam, or the reaction rate.

【0059】すなわち、本発明に従う隔膜では、親水性
樹脂の原料となるモノマが、多孔質膜の複数の孔部の一
部の孔部に毛細管現象により導入された後、電子線また
は化学的な方法により重合されることにより、多孔質膜
の複数の孔部の少なくとも一部の空隙部内全体に、また
は、部分的に親水性樹脂が設けられている。
That is, in the diaphragm according to the present invention, the monomer as the raw material of the hydrophilic resin is introduced into some of the plural pores of the porous membrane by the capillary phenomenon, and then the electron beam or the chemical is used. By being polymerized by the method, the hydrophilic resin is provided entirely or partially in the voids of at least some of the plurality of pores of the porous membrane.

【0060】本発明において特徴的な点は、多孔質膜の
複数の孔部の少なくとも一部の空隙部内全体にまたは部
分的に親水性樹脂を設けた後において、本発明に従う多
孔質膜と親水性樹脂とからなる隔膜は、多孔質膜の少な
くとも片面のすべての表面が一様に親水性樹脂によりま
んべんなく必ずしも覆われていない点において、従来の
性質の異なる膜と膜とを物理的に貼り合わせてなる2層
構造の隔膜と異なっている。
A characteristic point of the present invention is that after the hydrophilic resin is provided entirely or partially in the voids of at least a part of the plurality of pores of the porous membrane, the porous membrane according to the present invention and the hydrophilic membrane are hydrophilic. A membrane composed of a hydrophobic resin is a physical membrane in which at least one surface of a porous membrane is not evenly covered with a hydrophilic resin evenly, and the conventional membranes having different properties are physically bonded to each other. It is different from the diaphragm having a two-layer structure.

【0061】本発明においては、親水性樹脂として、イ
オン交換樹脂を用いることができる。
In the present invention, an ion exchange resin can be used as the hydrophilic resin.

【0062】イオン交換樹脂の材料としては、特に限定
されることはないが、たとえば、下記一般式で示される
ナフィオン樹脂の他、
The material of the ion exchange resin is not particularly limited, but for example, in addition to the Nafion resin represented by the following general formula,

【0063】[0063]

【化2】 [Chemical 2]

【0064】一般的な公知のイオン交換樹脂、たとえ
ば、−SO3 H等の強酸性基等のイオン交換可能な酸性
基を有する不溶性樹脂を挙げることができる。イオン交
換樹脂の材料としては、特に限定されることはないが、
たとえば、スチレンとジビニルベンゼンの共重合体、ア
クリル酸、メタクリル酸、アクリルニトリル等を重合さ
せた公知の材料を用いることができる。
There may be mentioned a generally known ion exchange resin, for example, an insoluble resin having an ion-exchangeable acidic group such as a strong acidic group such as —SO 3 H. The material of the ion exchange resin is not particularly limited,
For example, a known material obtained by polymerizing a copolymer of styrene and divinylbenzene, acrylic acid, methacrylic acid, acrylonitrile, or the like can be used.

【0065】また、多孔質膜の複数の孔部の少なくとも
一部の空隙部内全体にまたは部分的にイオン交換樹脂を
設ける工程は、特に限定されることはないが、たとえ
ば、イオン交換樹脂を、メタノール等の溶剤に溶かした
後、多孔質膜の少なくとも片方の表面に、溶剤に溶かし
たイオン交換樹脂を塗布した後、乾燥させる方法を挙げ
ることができる。樹脂濃度は、特に限定されることはな
いが、たとえば、ナフィオン樹脂を用いる場合は、0.
1wt%〜5wt%の溶液を用いることができる。そし
て、溶媒に溶かしたイオン交換樹脂の塗布量は、多孔質
膜の少なくとも片方の表面に、膜厚1μm以上10μm
以下塗布するのが好ましい。1μm以下の塗布量では、
イオン隔離機能が十分でなく好ましくなく、また、10
μmを超えると、内部抵抗が大きくなり好ましくない。
The step of providing the ion exchange resin entirely or partially in the voids of at least a part of the plurality of pores of the porous membrane is not particularly limited, but, for example, A method may be mentioned in which, after being dissolved in a solvent such as methanol, at least one surface of the porous membrane is coated with the ion-exchange resin dissolved in the solvent and then dried. The resin concentration is not particularly limited, but for example, when Nafion resin is used, it is 0.
A solution of 1 wt% to 5 wt% can be used. Then, the coating amount of the ion exchange resin dissolved in the solvent is 1 μm or more and 10 μm or more on at least one surface of the porous membrane.
The following coating is preferred. With a coating amount of 1 μm or less,
The ion isolation function is not sufficient and is not preferable, and 10
If it exceeds μm, the internal resistance increases, which is not preferable.

【0066】なお、本発明に従う水溶媒系電気化学装置
用隔膜は、多孔質膜の少なくとも片側表面に親水性樹
脂、イオン交換樹脂を導入してもよく、また、多孔質膜
の両側表面に親水性樹脂、イオン交換樹脂を導入しても
よい。また、本発明によれば、本発明に従う水溶媒系電
気化学装置用隔膜を、水溶媒系電池に用いることによ
り、該電池(単セル)の内部抵抗を0.2Ω・cm2
上1Ω・cm2 以下とすることができる。
In the water-solvent system diaphragm for an electrochemical device according to the present invention, a hydrophilic resin or an ion exchange resin may be introduced into at least one surface of the porous membrane, or both surfaces of the porous membrane are hydrophilic. A resin or an ion exchange resin may be introduced. Further, according to the present invention, by using the membrane for a water-solvent electrochemical device according to the present invention in a water-solvent battery, the internal resistance of the battery (single cell) is 0.2 Ω · cm 2 or more and 1 Ω · cm. It can be 2 or less.

【0067】[0067]

【発明の効果】以上詳細に説明したように、本発明に従
う水溶媒系電気化学装置用隔膜は、上記した構成を有す
る結果、イオン透過機能と、イオン隔離機能の双方が向
上されている。したがって、本発明に従う水溶媒系電気
化学装置用隔膜を用いた、レドックスフロー型電池等の
水溶媒系電池は、電池自体の内部抵抗を低減させること
ができ、内部抵抗に起因する容量低下を抑制できるとと
もに、隔膜を介して電解液が混合されるのを低減するこ
とができ、自己放電に起因する容量低下を抑制すること
ができる結果、水溶媒系電池の高効率化を実現できる。
また、本発明に従う水溶媒系電気化学装置用隔膜は、材
料が安価であり、レドックスフロー型電池の隔膜に用い
ると安価でかつ効率の高い電力貯蔵用電池装置を構築で
きる。
As described in detail above, the membrane for a water-solvent electrochemical device according to the present invention has the above-mentioned structure, and as a result, has both an ion permeation function and an ion sequestration function. Therefore, a water-solvent battery such as a redox flow battery that uses the diaphragm for a water-solvent electrochemical device according to the present invention can reduce the internal resistance of the battery itself and suppress a decrease in capacity due to the internal resistance. In addition, it is possible to reduce the mixing of the electrolytic solution through the diaphragm and suppress the capacity decrease due to self-discharge. As a result, the efficiency of the water-solvent battery can be improved.
In addition, the water-solvent-based diaphragm for electrochemical device according to the present invention is inexpensive in material, and when used as a diaphragm for a redox flow battery, an inexpensive and highly efficient battery device for power storage can be constructed.

【0068】なお、本発明に従う水溶媒系電気化学装置
用隔膜は、レドックスフロー型電池を中心に説明した
が、水溶媒系電解質を用いた電気化学装置であるなら
ば、適用可能である。
The diaphragm for a water-solvent type electrochemical device according to the present invention has been mainly described for a redox flow battery, but it is applicable as long as it is an electrochemical device using a water-solvent type electrolyte.

【図面の簡単な説明】[Brief description of drawings]

【図1】レドックスフロー型電池の一具体例を概略的に
示す構成図である。
FIG. 1 is a configuration diagram schematically showing a specific example of a redox flow battery.

【図2】図1に示すレドックスフロー型電池1の電池反
応セル2内の隔膜5の近傍を拡大して示す概略的な断面
図である。
FIG. 2 is a schematic cross-sectional view showing an enlarged vicinity of a diaphragm 5 in a battery reaction cell 2 of the redox flow battery 1 shown in FIG.

【符号の説明】[Explanation of symbols]

1 レドックスフロー型電池 2 電池反応セル 3 正極液タンク 4 負極液タンク 5 隔膜 6 正極 7 負極 8 正極液供給用管路 9 正極液回収用管路 10、13 ポンプ 11 負極液供給用管路 12 負極液回収用管路 1 redox flow type battery 2 battery reaction cell 3 positive electrode liquid tank 4 negative electrode liquid tank 5 diaphragm 6 positive electrode 7 negative electrode 8 positive electrode liquid supply conduit 9 positive electrode liquid recovery conduit 10, 13 pump 11 negative electrode liquid supply conduit 12 negative electrode Liquid recovery line

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の孔部を有する多孔質膜と、 前記多孔質膜の複数の孔部の少なくとも一部の空隙部内
全体にまたは部分的に設けられた親水性樹脂とを備え
る、水溶媒系電気化学装置用隔膜。
1. A water solvent comprising a porous membrane having a plurality of pores, and a hydrophilic resin provided entirely or partially in a void portion of at least a part of the plurality of pores of the porous membrane. Diaphragm for electrochemical system.
【請求項2】 前記親水性樹脂は、イオン交換樹脂であ
る請求項1に記載の水溶媒系電気化学装置用隔膜。
2. The membrane for a water-solvent electrochemical device according to claim 1, wherein the hydrophilic resin is an ion exchange resin.
【請求項3】 正極と、 負極と、 前記正極と前記負極との間に設けられた隔膜とを含む水
溶媒系電池であって、 前記隔膜は、複数の孔部を有する多孔質膜と、 前記多孔質膜の複数の孔部の少なくとも一部の空隙部内
全体にまたは部分的に設けられた親水性樹脂とを備え
る、水溶媒系電池。
3. A water-solvent battery comprising a positive electrode, a negative electrode, and a diaphragm provided between the positive electrode and the negative electrode, wherein the diaphragm is a porous film having a plurality of pores, A water-solvent-based battery, comprising a hydrophilic resin provided entirely or partially in the voids of at least some of the plurality of pores of the porous membrane.
JP5043469A 1993-03-04 1993-03-04 Diaphragm for aqueous solvent electrochemical device and battery with aqueous solvent using same Withdrawn JPH06260183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5043469A JPH06260183A (en) 1993-03-04 1993-03-04 Diaphragm for aqueous solvent electrochemical device and battery with aqueous solvent using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5043469A JPH06260183A (en) 1993-03-04 1993-03-04 Diaphragm for aqueous solvent electrochemical device and battery with aqueous solvent using same

Publications (1)

Publication Number Publication Date
JPH06260183A true JPH06260183A (en) 1994-09-16

Family

ID=12664583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5043469A Withdrawn JPH06260183A (en) 1993-03-04 1993-03-04 Diaphragm for aqueous solvent electrochemical device and battery with aqueous solvent using same

Country Status (1)

Country Link
JP (1) JPH06260183A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108658A (en) * 1997-10-10 2011-06-02 3M Co Manufacturing method of membrane electrode
WO2013077347A1 (en) * 2011-11-22 2013-05-30 住友電気工業株式会社 Diaphragm for redox flow batteries
WO2013100082A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100079A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2013100087A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2013100083A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US9837678B2 (en) 2012-11-13 2017-12-05 Asahi Kasei E-Materials Corporation Separation membrane for redox flow secondary battery and redox flow secondary battery comprising the same
WO2018096895A1 (en) 2016-11-24 2018-05-31 旭化成株式会社 Carbon foam and membrane electrode composite
CN109075369A (en) * 2016-02-26 2018-12-21 凯斯西储大学 Composite membrane for flow battery
JP2020512658A (en) * 2017-03-31 2020-04-23 コーロン インダストリーズ インク Ion exchange membrane, method for producing the same, and energy storage device including the same
US11374234B2 (en) 2017-09-18 2022-06-28 Lotte Chemical Corporation Separation membrane complex and redox flow battery
WO2023069861A1 (en) * 2021-10-18 2023-04-27 Uop Llc Membrane electrode assembly for redox flow battery applications

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108658A (en) * 1997-10-10 2011-06-02 3M Co Manufacturing method of membrane electrode
JPWO2013077347A1 (en) * 2011-11-22 2015-04-27 住友電気工業株式会社 Membrane for redox flow battery
WO2013077347A1 (en) * 2011-11-22 2013-05-30 住友電気工業株式会社 Diaphragm for redox flow batteries
US10096855B2 (en) 2011-11-22 2018-10-09 Sumitomo Electric Industries, Ltd. Redox flow cell membrane
US9799906B2 (en) 2011-12-28 2017-10-24 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
EP3091600A1 (en) 2011-12-28 2016-11-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
KR20140098189A (en) 2011-12-28 2014-08-07 아사히 가세이 이-매터리얼즈 가부시키가이샤 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2013100087A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
EP3046174A1 (en) 2011-12-28 2016-07-20 Asahi Kasei E-materials Corporation Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
EP3091599A1 (en) 2011-12-28 2016-11-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
EP3091598A1 (en) 2011-12-28 2016-11-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
US10211474B2 (en) 2011-12-28 2019-02-19 Asahi Kasei E-Materials Corporation Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100079A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
US10256493B2 (en) 2011-12-28 2019-04-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US9905875B2 (en) 2011-12-28 2018-02-27 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100083A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100082A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US9837678B2 (en) 2012-11-13 2017-12-05 Asahi Kasei E-Materials Corporation Separation membrane for redox flow secondary battery and redox flow secondary battery comprising the same
JP2019510342A (en) * 2016-02-26 2019-04-11 ケース ウェスタン リザーブ ユニバーシティCase Western Reserve University Composite membrane for flow battery
CN109075369A (en) * 2016-02-26 2018-12-21 凯斯西储大学 Composite membrane for flow battery
US11444306B2 (en) 2016-02-26 2022-09-13 Case Western Reserve University Composite membranes for flow batteries
CN109075369B (en) * 2016-02-26 2023-05-30 凯斯西储大学 Composite membrane for flow battery
WO2018096895A1 (en) 2016-11-24 2018-05-31 旭化成株式会社 Carbon foam and membrane electrode composite
JP2020512658A (en) * 2017-03-31 2020-04-23 コーロン インダストリーズ インク Ion exchange membrane, method for producing the same, and energy storage device including the same
US11374234B2 (en) 2017-09-18 2022-06-28 Lotte Chemical Corporation Separation membrane complex and redox flow battery
WO2023069861A1 (en) * 2021-10-18 2023-04-27 Uop Llc Membrane electrode assembly for redox flow battery applications
US11804615B2 (en) 2021-10-18 2023-10-31 Uop Llc Membrane electrode assembly for redox flow battery applications

Similar Documents

Publication Publication Date Title
JP3505918B2 (en) Redox flow battery
JP5150895B2 (en) Membrane electrode assembly, method for producing membrane electrode assembly, and polymer electrolyte fuel cell
US11444306B2 (en) Composite membranes for flow batteries
WO2003003483A2 (en) Redox cell with non-selective permionic separator
EP2997617B1 (en) Flow battery with hydrated ion-exchange membrane having maximum water domain cluster sizes
JP2003517187A (en) Fuel cell having hydrophilic substrate layer
BG61743B1 (en) Electrochemical device with air electrode for energy generation
JPH06260183A (en) Diaphragm for aqueous solvent electrochemical device and battery with aqueous solvent using same
KR20150049753A (en) Amphoteric ion exchange membrane used for redox flow battery having low ion permeablility for vanadium ion and redox flow battery including the same
JPH11260390A (en) Redox flow battery
CN113169366A (en) Diaphragm for redox flow battery and method for manufacturing same
JP2009533801A (en) Composite water management electrolyte membrane for fuel cells
US11309564B2 (en) Method for manufacturing reinforced separator, reinforced separator manufactured using the same and redox flow battery
CN110326144B (en) Polymer electrolyte membrane, method for producing the same, electrochemical cell and flow cell, and composition for polymer electrolyte membrane
JP2673336B2 (en) Air-metal hydride secondary battery
JPS62226580A (en) Redox flow battery
US4824743A (en) Secondary battery with ion-exchange porous membrane
JPS60249266A (en) Separator for zinc-bromine battery
JPS59214173A (en) Separator for zinc-bromine battery
KR102244179B1 (en) Redox flow cell comprising cellulose
JP7069224B2 (en) Ion exchange separation membrane and flow battery containing it
CN117981131A (en) Method for improving redox flow battery performance
WO2023044287A1 (en) Method to improve redox flow battery performance
KR20200056069A (en) Multi-layer reinforced separator, preparation method for thereof and battery comprising the same
KR20200063540A (en) Ion-exchange membrane for redox flow battery, method of preparing same, and redox flow battery comprising same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509