JPH0624860A - Production of aluminous porous body - Google Patents

Production of aluminous porous body

Info

Publication number
JPH0624860A
JPH0624860A JP18265092A JP18265092A JPH0624860A JP H0624860 A JPH0624860 A JP H0624860A JP 18265092 A JP18265092 A JP 18265092A JP 18265092 A JP18265092 A JP 18265092A JP H0624860 A JPH0624860 A JP H0624860A
Authority
JP
Japan
Prior art keywords
alumina
surface area
specific surface
porous body
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18265092A
Other languages
Japanese (ja)
Inventor
Toshimi Fukui
俊巳 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosaki Refractories Co Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP18265092A priority Critical patent/JPH0624860A/en
Publication of JPH0624860A publication Critical patent/JPH0624860A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Abstract

PURPOSE:To efficiently produce an aluminous porous body used for a carrier for a heterogeneous catalyst such as for catalytic burner, for cleaning of exhaust gas out of internal combustion engine, for treatment of petroleum fraction, for organic synthesis or the like and capable of keeping high activity at a high temp. by the use of a large sized equipment. CONSTITUTION:The aluminous porous body obtained by treating with steam or hydrothermal treating an alumina precursor gel obtained by hydrolyzing a solution of aluminum alkoxide or aluminum alkoxide derivative expressed by a chemical formula Al(OR)3, where R is alkyl group, at 150-350 deg.C, drying and heat treating has large specific surface area and excellent heat resistance. A facilities to produce the aluminous porous body is simple, large sized and sufficient in mass-productivity because of unnecessity of a high temp. high pressure vessel compared with producing alumina aerogel under supercritical condition. And the cost of the facilities become inexpensive.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、触媒燃焼器や、内燃エ
ンジンで使用される排ガス浄化、石油留分の処理、有機
合成等の不均質触媒用坦体等に利用可能な、高温下で高
い活性を維持しうるアルミナ質多孔体の製造に関する。
BACKGROUND OF THE INVENTION The present invention is applicable to catalytic combustors, exhaust gas purification used in internal combustion engines, treatment of petroleum fractions, carriers for heterogeneous catalysts for organic synthesis, etc. The present invention relates to the production of an alumina porous body capable of maintaining high activity.

【0002】[0002]

【従来の技術】かかる用途に使用される不均質触媒坦体
は、広い反応活性面積を得るために高い比表面積と様々
な処理によってもその比表面積が高く保持されると共
に、内燃エンジンの排ガス浄化においては850℃程
度、石油化学プロセス、有機合成等においては200〜
600℃等の高温に耐えうる耐熱性を有する必要があ
る。
2. Description of the Related Art Heterogeneous catalyst carriers used for such applications have a high specific surface area in order to obtain a wide reaction active area and a high specific surface area by various treatments, and also purify exhaust gas of internal combustion engines. Is about 850 ° C, and in petrochemical processes, organic synthesis, etc.
It must have heat resistance to withstand high temperatures such as 600 ° C.

【0003】この不均質触媒坦体における耐熱性の必要
性はさらに苛酷なものとなりつつある。例えば、排ガス
浄化用触媒としては、NOxの規制強化に伴い、従来の
一段階の酸化触媒処理から、酸化−還元の二段階触媒の
方向に進みつつあり、このため、触媒層をより高温のエ
ンジンに近接させる必要性が出てきており、1000℃
前後での安定した耐熱性が要求されるようになった。
The need for heat resistance in this heterogeneous catalyst carrier is becoming more severe. For example, as an exhaust gas purifying catalyst, with the tightening of NOx regulations, it is progressing from the conventional one-step oxidation catalyst treatment to a two-step oxidation-reduction catalyst. Therefore, the catalyst layer has a higher temperature in the engine. Need to be close to the
Stable heat resistance before and after has come to be required.

【0004】一方において、近年触媒を用いて燃料と酸
素の反応を促進する接触燃焼法が注目を浴びている。こ
の接触燃焼法は、低温度での完全燃焼が可能、広範囲の
燃料/空気比で完全燃焼が可能、サーマルノックスの発
生が少ないなどの利点がある。この技術を確立するため
には1000℃以上で安定な耐熱性を有する触媒担体の
開発が必要である。
On the other hand, in recent years, a catalytic combustion method, which uses a catalyst to promote the reaction between fuel and oxygen, has been receiving attention. This catalytic combustion method has advantages such as complete combustion at a low temperature, complete combustion in a wide range of fuel / air ratio, and less generation of thermal knox. In order to establish this technology, it is necessary to develop a catalyst carrier that has stable heat resistance at 1000 ° C or higher.

【0005】かかる耐熱性を有する触媒担体として加熱
処理後も高い比表面積を保持することが可能な多孔質ア
ルミナの使用が試みられている。
As a catalyst carrier having such heat resistance, it has been attempted to use porous alumina capable of retaining a high specific surface area even after heat treatment.

【0006】従来、かかるアルミナとして、アルミニウ
ム塩、アルミン酸塩の中和又は交換分解やアルミニウム
アマルガム、アルミニウムアルコキシドの加水分解で合
成する比表面積が高いγ−アルミナの使用が知られてい
る。
[0006] Conventionally, as such alumina, it has been known to use γ-alumina having a high specific surface area which is synthesized by neutralization or exchange decomposition of aluminum salt or aluminate, or hydrolysis of aluminum amalgam or aluminum alkoxide.

【0007】しかしながら、γ−アルミナは、1000
〜1100℃でα−アルミナに転移する。そのため、比
表面積が激減し反応活性面積が低下し、1000℃以上
の高温域での使用はできず、その適用可能温度は精々6
00℃が限度である。
However, γ-alumina is 1000
Transition to α-alumina at ˜1100 ° C. Therefore, the specific surface area is drastically reduced, the reaction active area is reduced, and it cannot be used in a high temperature range of 1000 ° C or higher, and the applicable temperature is 6 at best.
The limit is 00 ° C.

【0008】また、特公昭58−53569号公報に
は、編目構造を有するα−アルミナ坦体が開示されてい
るが、その製造の過程でのアルミナのγ→α転移によっ
て急激に比表面積と強度が低下する。とくに、得られた
坦体の比表面積は精々30m2/gであって、γ−アル
ミナに比べると極めて低く、触媒担体能において劣った
ものとなる。
Further, Japanese Patent Publication No. 58-53569 discloses an α-alumina carrier having a knitting structure, and the γ → α transition of alumina in the process of production thereof causes a sudden increase in specific surface area and strength. Is reduced. In particular, the specific surface area of the obtained carrier is at most 30 m 2 / g, which is extremely low as compared with γ-alumina, which is inferior in catalyst support ability.

【0009】さらに、かかるアルミナ触媒担体の細孔分
布の制御と構造に関して多くの発明が開示されている。
Further, many inventions have been disclosed regarding the control and structure of the pore distribution of the alumina catalyst carrier.

【0010】例えば、特開昭57−123820号公
報、特開昭57−135721号公報、特開昭57−1
70822号公報には、カーボンブラツクの添加によっ
てバイモーダルな細孔半径分布を得ることが開示され、
また、特開昭58−252号公報には、2種以上の酸化
物を水蒸気下で加熱処理することによって細孔容積を調
整することが、さらには、特開昭58−119341号
公報には、アルミナ化合溶液を噴霧乾燥して全細孔容積
が0.8〜1.7ml/g、比表面積が80〜l35m
2 /gの多孔質表面を得ることが開示されている。さら
に、特開昭58−216740号公報には、2種以上の
ベーマイトゾルを混合することによって、マルチモーダ
ルな細孔径分布を得ることが開示され、さらには、特開
平1−254254号公報には噴霧乾燥による方法が開
示されている。
For example, JP-A-57-123820, JP-A-57-135721, and JP-A-57-1
No. 70822 discloses that a carbon black is added to obtain a bimodal pore radius distribution.
Further, in JP-A-58-252, it is possible to adjust the pore volume by heat-treating two or more kinds of oxides under steam, and further in JP-A-58-119341. , The alumina compound solution was spray-dried to have a total pore volume of 0.8 to 1.7 ml / g and a specific surface area of 80 to 135 m.
It is disclosed to obtain a porous surface of 2 / g. Further, JP-A-58-216740 discloses that a multimodal pore size distribution is obtained by mixing two or more kinds of boehmite sols, and further JP-A-1-254254 discloses. A method by spray drying is disclosed.

【0011】しかしながら、以上の特許文献は、何れも
が比較的低温域における細孔構造の制御に係るもので、
1000℃以上の高温域で使用されるアルミナ多孔体の
耐熱性の改善についての開示はない。
However, all of the above patent documents relate to the control of the pore structure in a relatively low temperature range.
There is no disclosure about improvement in heat resistance of the alumina porous body used in a high temperature range of 1000 ° C. or higher.

【0012】唯一、特開平3−199120号公報には
アルミナエアロゲルを臨界温度と臨界圧力を超えた状態
の下での乾燥によって、大きな比表面積と高温での優れ
た耐熱性を有するアルミナ多孔体を得る方法が記載され
ている。ところが、この製造法においては、乾燥に高温
高圧を必要とするため装置類が高価であって、且つ設備
の大型化ができないという欠点がある。
[0012] The only one disclosed in Japanese Patent Application Laid-Open No. 3-199120 is a porous alumina body having a large specific surface area and excellent heat resistance at high temperature by drying the alumina airgel under the condition of exceeding the critical temperature and the critical pressure. The method of obtaining is described. However, this manufacturing method has the drawbacks that the equipment is expensive and the equipment cannot be upsized because high temperature and high pressure are required for drying.

【0013】[0013]

【発明が解決しようとする課題】本発明の目的は、高温
域で優れた耐熱性を有し、且つ、高温域で高い比表面積
を保持できるアルミナ質多孔体を、大規模設備において
効率良く製造する方法を提供することにある。
An object of the present invention is to efficiently produce an alumina porous body having excellent heat resistance in a high temperature range and capable of retaining a high specific surface area in a high temperature range in a large-scale facility. To provide a way to do.

【0014】[0014]

【課題を解決するための手段】本発明は、アルミナ前駆
体となる空間容積を持つバルク体としてのゲルを100
〜350℃で水蒸気または水熱処理することを特徴とす
るもので、水蒸気または水熱処理温度により高温域での
耐熱性が異なるという知見に基づいて完成した。
According to the present invention, a gel as a bulk body having a space volume to be an alumina precursor is prepared.
It is characterized in that it is subjected to steam or hydrothermal treatment at ˜350 ° C., and it was completed based on the finding that the heat resistance in a high temperature region varies depending on the steam or hydrothermal treatment temperature.

【0015】すなわち、化学式Al(OR)3 で表され
るアルミニウムアルコキシドまたはアルミニウムアルコ
キシド誘導体溶液を加水分解し得られたアルミナ前駆体
ゲルを150〜350℃の温度範囲で水蒸気又は水熱処
理することで得られるアルミナ質多孔体は高い比表面積
と優れた耐熱性を有する。
That is, an alumina precursor gel obtained by hydrolyzing an aluminum alkoxide or aluminum alkoxide derivative solution represented by the chemical formula Al (OR) 3 is obtained by steam or hydrothermal treatment in the temperature range of 150 to 350 ° C. The porous alumina material has a high specific surface area and excellent heat resistance.

【0016】Rはアルキル基を示すが、価格、金属濃度
より炭素数がl〜6のアルキル基が好ましい。
Although R represents an alkyl group, an alkyl group having 1 to 6 carbon atoms is preferable in view of price and metal concentration.

【0017】アルミニウムアルコキシド誘導体は、OR
の少なくとも一つ以上が多配座有機化合物で置換された
ものを示す。
The aluminum alkoxide derivative is an OR
At least one of the above is substituted with a polydentate organic compound.

【0018】多配座有機化合物としては、β−ジケト
ン、β−ケトエステル、アルカノールアミンが好ましい
が、アルミニウムアルコキシドの加水分解速度を低下さ
せる化合物であれば、とくに限定されない。
The polydentate organic compound is preferably β-diketone, β-ketoester or alkanolamine, but is not particularly limited as long as it is a compound that reduces the hydrolysis rate of aluminum alkoxide.

【0019】とくに、アルミナ前駆体ゲルを非水溶剤中
に浸した状態で水蒸気又は水熱処理することが、高い比
表面積を有するアルミナ質多孔体を製造する上で有効で
ある。
In particular, steaming or hydrothermal treatment of the alumina precursor gel immersed in a non-aqueous solvent is effective for producing an alumina porous body having a high specific surface area.

【0020】さらに、100〜350℃、好ましくは、
250〜350℃のの温度範囲の水蒸気または水熱処理
によって、比表面積が200m2 /gを越すアルミナ前
駆体が得られ、1100℃以上の高温域、とくに、12
00℃の加熱処理後も30m2 /gを越す比表面積を有
するアルミナ質多孔体を製造することができる。
Further, 100 to 350 ° C., preferably
By the steam or hydrothermal treatment in the temperature range of 250 to 350 ° C., an alumina precursor having a specific surface area of more than 200 m 2 / g can be obtained.
Even after the heat treatment at 00 ° C., an alumina porous body having a specific surface area exceeding 30 m 2 / g can be produced.

【0021】アルミニウムアルコキシド誘導体のための
溶液としては、アルミニウム塩、アルミニウムアルコキ
シドあるいはアルミニウムアルコキシド誘導体が可溶な
有機溶剤であればとくに限定されないが、例えば、メタ
ノール、エタノール、プロパノールエチレングリコー
ル、メトキシエタノール、エトキシエタノール等のアル
コール類が好適に使用できる。
The solution for the aluminum alkoxide derivative is not particularly limited as long as it is an organic solvent in which the aluminum salt, aluminum alkoxide or aluminum alkoxide derivative is soluble, and examples thereof include methanol, ethanol, propanol ethylene glycol, methoxyethanol and ethoxy. Alcohols such as ethanol can be preferably used.

【0022】また、加水分解に際しては、アルミニウム
アルコキシドまたはアルミニウムアルコキシド誘導体の
0.5〜4倍モル量の水を用いることが好ましい。水量
が少ないとゲル化しないで溶液のままの状態となり、多
いと沈澱を生じる。
In the hydrolysis, it is preferable to use 0.5 to 4 times the molar amount of water of the aluminum alkoxide or the aluminum alkoxide derivative. When the amount of water is small, the solution remains as it is without gelation, and when it is large, precipitation occurs.

【0023】加水分解に際しての触媒として、塩酸、硝
酸などの鉱酸や酢酸などの有機酸等の酸や、不純物とし
ての金属を含まないアンモニアやアミンを用いることが
可能である。
As a catalyst for the hydrolysis, it is possible to use an acid such as a mineral acid such as hydrochloric acid or nitric acid or an organic acid such as acetic acid, or ammonia or amine containing no metal as an impurity.

【0024】高温処理は低温域処理に比較して比表面積
を若干減少させるが、高温域での耐熱性を増加させ、水
蒸気または水熱条件を変えることで使用温度により希望
の耐熱性と比表面積を選べる。
The high temperature treatment slightly reduces the specific surface area as compared with the low temperature treatment, but it increases the heat resistance in the high temperature region and changes the steam or hydrothermal conditions to obtain the desired heat resistance and specific surface area depending on the operating temperature. Can be selected.

【0025】本発明によればアルミナ単成分系のみでな
くゲル作製段階で他の成分を均一に混合することが可能
であることは言うまでもない。
It goes without saying that according to the present invention, not only the alumina single component system, but also other components can be uniformly mixed at the stage of gel preparation.

【0026】[0026]

【作用】本発明におけるアルミナ前駆体ゲルの使用は、
広範囲な熱処理条件、金属濃度で行うためにゲルの方が
取り扱い易いことによる。アルミナ前駆体ゲルに代わっ
て、アルミナ質のゾルを用いることも可能であるが、高
濃度化が困難であり、水系においては、ゾルを安定化す
るために酸を用いる必要がある。この酸の使用のため
に、水蒸気または水熱処理に際して処理槽内部が腐食さ
れる。そのため、処理槽にテフロン等の特殊処理が必要
となる。また、処理温度が200℃以下と限定されるこ
とになる。さらには水系では安定なゾルを得ることが困
難である。さらに、アルミナ前駆体ゲルの使用によっ
て、触媒金属、焼結抑制剤等の添加に際しての他の成分
の均一混合が容易となる。
The function of the alumina precursor gel in the present invention is
This is because the gel is easier to handle because it is performed under a wide range of heat treatment conditions and metal concentrations. It is possible to use an alumina sol instead of the alumina precursor gel, but it is difficult to increase the concentration, and in an aqueous system, it is necessary to use an acid to stabilize the sol. Due to the use of this acid, the inside of the treatment tank is corroded during steam or hydrothermal treatment. Therefore, special treatment such as Teflon is required for the treatment tank. Further, the processing temperature is limited to 200 ° C. or lower. Furthermore, it is difficult to obtain a stable sol in an aqueous system. Further, the use of the alumina precursor gel facilitates uniform mixing of other components when adding the catalyst metal, the sintering inhibitor and the like.

【0027】水蒸気又は水熱処理の温度としては、べー
マイトの結晶を成長させるためには100℃以上が必要
であるが、350℃以下で充分である。好ましくは、1
50〜300℃である。とくに、100〜250℃の温
度範囲の水蒸気または水熱処理によって比表面積が15
0m2 /gを越すアルミナ前駆体の作製が可能となる。
さらに、250〜350℃の温度範囲での水蒸気または
水熱処理によって、1200℃の加熱処理後も30m2
/g以上の比表面積を保持可能なアルミナ前駆体が製造
可能となる。
The temperature of the steam or hydrothermal treatment needs to be 100 ° C. or higher for growing the boehmite crystal, but 350 ° C. or lower is sufficient. Preferably 1
It is 50 to 300 ° C. Particularly, the specific surface area is 15 by steam or hydrothermal treatment in the temperature range of 100 to 250 ° C.
It is possible to produce an alumina precursor having a content of more than 0 m 2 / g.
Furthermore, by steam or hydrothermal treatment in the temperature range of 250 to 350 ° C., 30 m 2 after heat treatment at 1200 ° C.
It is possible to manufacture an alumina precursor capable of maintaining a specific surface area of not less than / g.

【0028】オートクレーブ処理により、細孔分布の制
御と機械的特性の向上に加えて、耐熱性に優れたアルミ
ナ質多孔体が得られる。
By the autoclave treatment, in addition to controlling the pore distribution and improving the mechanical properties, an alumina porous body having excellent heat resistance can be obtained.

【0029】ゲルを用いる事でアルミナ成分を空間へ固
定することができる。この状態で水蒸気又は水熱処理す
ることにより、空間的広がりを保持したままベーマイト
の結晶が成長できる。また、ベーマイトの結晶は針状に
成長することが知られている。従って、得られたアルミ
ナ前駆体はベーマイトの針状結晶が絡み合い、空孔を多
く含んだものとなっていると考えられる。結果として高
い比表面積と高い細孔容積が得られる。
By using a gel, the alumina component can be fixed in the space. By performing steam or hydrothermal treatment in this state, boehmite crystals can be grown while maintaining the spatial expansion. Further, it is known that boehmite crystals grow like needles. Therefore, it is considered that the obtained alumina precursor contains a large number of voids due to the interlocking of boehmite needle-like crystals. The result is a high specific surface area and a high pore volume.

【0030】水蒸気または水熱処理温度が高くなるとア
ルミナ前駆体中のベーマイトの結晶が大きくなり、低温
での処理に比べ比表面積は小さくなるが細孔径が大きく
なる。また、理由は明確でないが、θ相の安定領域が広
くなるので、α相への転移が抑えられ高温での比表面積
が高く保持されたと考えられる。
When the temperature of steam or hydrothermal treatment becomes high, the crystal of boehmite in the alumina precursor becomes large, and the specific surface area becomes small as compared with the treatment at low temperature, but the pore diameter becomes large. Further, although the reason is not clear, it is considered that the stable region of the θ phase is widened, so that the transition to the α phase is suppressed and the high specific surface area is maintained at a high temperature.

【0031】水は大きな表面張力を有するため乾燥時の
毛管応力の発生によりゲルの細孔を潰してしまう。ゲル
を直接水に漬けることを避けることにより水の毛管応力
によるゲルの収縮を避けることが可能となる。結果とし
てより高い比表面積が保持されると思われる。
Since water has a large surface tension, capillary stress is generated during drying and the pores of the gel are crushed. By avoiding soaking the gel directly in water, it is possible to avoid shrinkage of the gel due to capillary stress of water. It seems that a higher specific surface area is retained as a result.

【0032】[0032]

【実施例】【Example】

実施例l エチルアセテートアルミニウムジイソプロピレート27
4gをエタノール500mlに溶解した後72mlの水
を加え加水分解しゲルを得た。得られたゲルをオートク
レーブ中で270℃で保圧弁を用い20気圧以下に圧力
を保ち10時間水熱処理した。乾燥後、600、80
0、1000、1100、1200℃で5時間加熱処理
した。得られたアルミナ前駆体は1000℃までl00
2 /gを越す比表面積を保持し、さらに1200℃で
5時間加熱処理後も50.5m2 /gという高い比表面
積を保持していた。600℃から800℃ではγ相が、
1000℃以上ではθ相が主結晶相であった。1100
℃まではα相への転移は見られず、1200℃の加熱処
理において微量のα相が確認されたのみであった。ま
た、1000℃までの温度で加熱処理したサンプルは
1.00ml/gを越す大きな気孔容積を維持し、12
00℃でも0.45ml/gと他に類をみない高い値で
あった。乾燥後及び各温度で5時間加熱処理後の結晶
相、比表面積及び細孔容積をそれぞれ表lに示す。比表
面積及び細孔容積は窒素吸着によるBET法により測定
したものである。
Example l Ethyl acetate aluminum diisopropylate 27
After dissolving 4 g in 500 ml of ethanol, 72 ml of water was added and hydrolyzed to obtain a gel. The obtained gel was hydrothermally treated in an autoclave at 270 ° C. for 10 hours while maintaining the pressure below 20 atm using a pressure-holding valve. 600, 80 after drying
Heat treatment was performed at 0, 1000, 1100, and 1200 ° C. for 5 hours. The obtained alumina precursor was 100 up to 1000 ° C.
It had a specific surface area of more than m 2 / g and further had a high specific surface area of 50.5 m 2 / g even after heat treatment at 1200 ° C. for 5 hours. At 600 ° C to 800 ° C, the γ phase
At 1000 ° C. or higher, the θ phase was the main crystalline phase. 1100
No transition to the α phase was observed up to ° C, and only a trace amount of the α phase was confirmed in the heat treatment at 1200 ° C. In addition, the sample heat-treated at a temperature up to 1000 ° C. maintained a large pore volume exceeding 1.00 ml / g,
Even at 00 ° C., it was 0.45 ml / g, which was a high value unlike any other. Table 1 shows the crystal phase, the specific surface area, and the pore volume after drying and after heating for 5 hours at each temperature. The specific surface area and the pore volume are measured by the BET method using nitrogen adsorption.

【0033】[0033]

【表1】 実施例2 実施例lと同様の方法で得られたゲルをオートクレーブ
中、140、170、200、240、270℃で保圧
弁を用い10気圧以下に圧力を保ち、6時間水熱処理し
た。乾燥後、500、800、1000、1100、1
200℃で、5時間加熱処理した。低い水熱処理温度で
得られたアルミナ前駆体ほど高い比表面積を持ち、10
00℃以下の加熱処理に対して有効であることがわか
る。一方、水熱処理温度を上げると1000℃以上の高
温域での耐熱性が大幅に向上する。270℃処理アルミ
ナ前駆体は1200℃でも35.0m2 /gと高い比表
面積を保持した。乾燥後及び各温度で5時間加熱処理後
の比表面積を表2に示す。
[Table 1] Example 2 The gel obtained in the same manner as in Example 1 was hydrothermally treated in an autoclave at 140, 170, 200, 240, and 270 ° C. for 6 hours while maintaining the pressure at 10 atmospheric pressure or less using a pressure-holding valve. After drying, 500, 800, 1000, 1100, 1
It heat-processed at 200 degreeC for 5 hours. The alumina precursor obtained at a lower hydrothermal treatment temperature has a higher specific surface area and 10
It can be seen that it is effective for heat treatment at 00 ° C or lower. On the other hand, when the hydrothermal treatment temperature is raised, the heat resistance in a high temperature range of 1000 ° C. or higher is significantly improved. The 270 ° C.-treated alumina precursor retained a high specific surface area of 35.0 m 2 / g even at 1200 ° C. Table 2 shows the specific surface area after drying and after heating at each temperature for 5 hours.

【0034】[0034]

【表2】 実施例3 実施例2で得られたアルミナ前駆体を1100℃で、さ
らに10、50、100時間加熱処理した後、比表面積
を測定した。270℃水熱処理アルミナ前駆体は100
時間の加熱処理後も58.4m2 /gと200℃以下の
水熱処理温度のアルミナ前駆体の比表面積が10m2
g以下であるのに比べ、高い比表面積を保持している。
このように270℃の水熱処理で得られたアルミナ前駆
体は高温での長時間の加熱処理に対しても優れた耐熱性
を持つ。加熱処理後の比表面積の変化を表3に示す。
[Table 2] Example 3 The alumina precursor obtained in Example 2 was heat-treated at 1100 ° C. for 10, 50 and 100 hours, and then the specific surface area was measured. 270 ° C hydrothermal treatment alumina precursor is 100
Even after heat treatment for 5 hours, the specific surface area of the alumina precursor at a hydrothermal treatment temperature of 58.4 m 2 / g and 200 ° C. or lower is 10 m 2 / g.
It has a high specific surface area as compared with g or less.
As described above, the alumina precursor obtained by the hydrothermal treatment at 270 ° C. has excellent heat resistance even when heat-treated at a high temperature for a long time. Table 3 shows the change in specific surface area after the heat treatment.

【0035】[0035]

【表3】 比較例l 実施例lと同様の方法で得られたゲルを大気中乾燥させ
得られたゲルを実施例l,3と同様に加熱処理した。実
施例に比べ低い1000℃以上の加熱処理温度で急激な
比表面積の低下を伴いα相へ転移した。比表面積の変化
を表2に示す。
[Table 3] Comparative Example 1 The gel obtained in the same manner as in Example 1 was dried in the air, and the obtained gel was heat treated in the same manner as in Examples 1 and 3. At a heat treatment temperature of 1000 ° C. or higher, which is lower than in the examples, the α phase was transformed with a rapid decrease in specific surface area. Table 2 shows changes in the specific surface area.

【0036】比較例2 市販のγ−アルミナ(Condea社製、商標名 PU
RLOX:SBa−230)を実施例l、3と同様に加
熱処理した。1000℃以下の加熱処理ではl00m2
/g以上の比表面積を保持したが、1100℃以上の加
熱処理により急激な比表面積の低下を伴いα相へ転移し
た。比表面積の変化を表2と表3に示す。
Comparative Example 2 Commercially available γ-alumina (trade name PU manufactured by Condea Corporation)
RLOX: SBa-230) was heat treated in the same manner as in Examples 1 and 3. 100 m 2 for heat treatment below 1000 ° C
Although the specific surface area was kept above / g, the heat treatment at 1100 ° C. or above caused a rapid decrease in the specific surface area and transition to the α phase. The changes in specific surface area are shown in Tables 2 and 3.

【0037】実施例4 実施例lと同様の方法で得られたゲルをガラス容器中に
置き、水に直接触れることなくオートクレーブ中にセッ
トした。170℃で保圧弁を用い5気圧以下に圧力を保
ち6時間水蒸気処理した。得られたアルミナ前駆体の比
表面積は300m2 /gを越す値であった。エタノール
に浸さずに水蒸気又は水熱処理したアルミナ前駆体と比
べ加熱処理後も大きな比表面積を保持した。乾燥後及び
各温度で5時問加熱処理後の比表面積を表4に示す。
Example 4 The gel obtained in the same manner as in Example 1 was placed in a glass container and set in an autoclave without directly touching water. Using a pressure-retaining valve at 170 ° C., the pressure was maintained at 5 atm or less and steam treatment was performed for 6 hours. The specific surface area of the obtained alumina precursor was a value exceeding 300 m 2 / g. A large specific surface area was maintained after the heat treatment as compared with the alumina precursor that was subjected to steam or hydrothermal treatment without being immersed in ethanol. Table 4 shows the specific surface area after drying and after the heat treatment for 5 hours at each temperature.

【0038】[0038]

【表4】 上記実施例によるアルミナ系多孔体はバルク体であるの
で、触媒担体として用いる場合、従来法によるアルミナ
担体のように脱水、成形、乾燥による造粒成形の工程を
行う必要がない。
[Table 4] Since the alumina-based porous body according to the above-mentioned embodiment is a bulk body, when it is used as a catalyst carrier, it is not necessary to perform the steps of dehydration, molding, and granulation molding by drying unlike the conventional alumina carrier.

【0039】[0039]

【発明の効果】本発明によって以下の効果を奏する。The present invention has the following effects.

【0040】(1)高温での耐熱性の優れた触媒担体な
どに使用可能なアルミナ質多孔体を得ることができる。
(1) It is possible to obtain an alumina-based porous material which can be used as a catalyst carrier having excellent heat resistance at high temperatures.

【0041】(2)超臨界条件下でのアルミナエアロゲ
ルの作製と比べ高温高圧力容器を必要としないため、装
置をシンプルにでき大型化が可能であり量産性に富む。
また、装置の価格も安くすることができる。
(2) Compared with the production of alumina airgel under supercritical conditions, a high temperature and high pressure vessel is not required, so that the apparatus can be simplified and the size can be increased, and the mass productivity is excellent.
Also, the price of the device can be reduced.

【0042】(3)得られるアルミナ質多孔体が100
0℃を越す高温でも優れた耐熱性を有する。とくに、2
50℃以上の水蒸気叉は水熱処理で得られたアルミナ前
駆体は1100℃以上の高温域でこれまでにない優れた
耐熱性を有する。
(3) The obtained alumina porous material is 100
It has excellent heat resistance even at high temperatures exceeding 0 ° C. Especially 2
The alumina precursor obtained by steam or hydrothermal treatment at 50 ° C. or higher has unprecedented excellent heat resistance in a high temperature range of 1100 ° C. or higher.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Rをアルキル基として、化学式Al(O
R)3 で表されるアルミニウムアルコキシドまたはアル
ミニウムアルコキシド誘導体溶液を加水分解し得られた
アルミナ前駆体ゲルを100〜350℃の温度範囲で水
蒸気または水熱処理後乾燥加熱処理するアルミナ質多孔
体の製造方法。
1. The chemical formula Al (O
R) 3 A method for producing an alumina porous body, in which an aluminum precursor gel obtained by hydrolyzing an aluminum alkoxide or aluminum alkoxide derivative solution is subjected to steam or hydrothermal treatment and then dry heat treatment in a temperature range of 100 to 350 ° C. .
【請求項2】 請求項1の記載において、アルミナ前駆
体ゲルの水蒸気または水熱処理を、オートクレーブ中に
設置した解放容器中で、直接水に浸すことなく行うアル
ミナ質多孔体の製造方法。
2. The method for producing an alumina porous body according to claim 1, wherein the steam or hydrothermal treatment of the alumina precursor gel is carried out in an open container installed in an autoclave without being directly immersed in water.
JP18265092A 1992-07-09 1992-07-09 Production of aluminous porous body Pending JPH0624860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18265092A JPH0624860A (en) 1992-07-09 1992-07-09 Production of aluminous porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18265092A JPH0624860A (en) 1992-07-09 1992-07-09 Production of aluminous porous body

Publications (1)

Publication Number Publication Date
JPH0624860A true JPH0624860A (en) 1994-02-01

Family

ID=16122023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18265092A Pending JPH0624860A (en) 1992-07-09 1992-07-09 Production of aluminous porous body

Country Status (1)

Country Link
JP (1) JPH0624860A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797120B2 (en) 1999-01-29 2004-09-28 Kao Corporation Method of manufacturing pulp mold formed body
US9090951B2 (en) 2007-12-20 2015-07-28 Voestalpine Stahl Gmbh Method for producing coated and hardened components of steel and coated and hardened steel strip therefor
CN112592150A (en) * 2021-03-04 2021-04-02 中国人民解放军国防科技大学 Preparation method of alumina-silica aerogel heat-insulation composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797120B2 (en) 1999-01-29 2004-09-28 Kao Corporation Method of manufacturing pulp mold formed body
US9090951B2 (en) 2007-12-20 2015-07-28 Voestalpine Stahl Gmbh Method for producing coated and hardened components of steel and coated and hardened steel strip therefor
CN112592150A (en) * 2021-03-04 2021-04-02 中国人民解放军国防科技大学 Preparation method of alumina-silica aerogel heat-insulation composite material

Similar Documents

Publication Publication Date Title
KR100431919B1 (en) Composition Based On Zirconium Oxide and Cerium Oxide, Preparation Method Therefor and Use Thereof
JP5902158B2 (en) Compositions based on oxides of cerium, niobium and optionally zirconium and their use in catalysis
JP6240370B2 (en) Method for producing catalyst powder
KR101050861B1 (en) Compositions based on zirconium oxide and cerium oxide having high reducing ability and stable specific surface area, methods for their preparation, and use in exhaust gas treatment
JP4791445B2 (en) Compositions based on oxides of zirconium, praseodymium, lanthanum or neodymium, their preparation and use in catalyst systems
JP5148637B2 (en) High specific surface area cerium and other rare earth mixed oxides, preparation methods and use in catalysis
KR100844721B1 (en) Zirconium and yttrium oxide-based composition, method for preparing same and use thereof in a catalyst system
KR100338005B1 (en) Method for Treating Exhaust Gas of Internal Combustion Engines Functioning with Sulfur-Containing Fuel
JPH06316416A (en) Preparation of composition wherein mixed oxide of zirconium and cerium are base material
KR20000011064A (en) Composition having cerium oxide and zirconium oxide as substrate, producing method thereof and its use as catalyst
KR20050023333A (en) Composition based on zirconium oxide and oxides of cerium, lanthanum and of another rare earth, a method for preparing same and use thereof as catalyst
KR20050109571A (en) Composition based on cerium and zirconium oxides having a specific surface which is stable between 900 ℃ and 1000 ℃, method for the production and use thereof as a catalyst
KR100996042B1 (en) Gas processing method for catalytically oxidizing carbon monoxide and hydrocarbons using a composition based on a metal and a silica-containing zirconia
KR20140023965A (en) Composition based on oxides of zirconium, of cerium, of at least one rare earth other than cerium and of silicon, preparation processes and use in catalysis
US6764672B2 (en) Thermally stable alumina particulates
US5508016A (en) Process for production of transition alumina
JPH0624860A (en) Production of aluminous porous body
JP2010201398A (en) Catalyst and method for producing the same
JP2009056456A (en) Method for manufacturing catalytic carrier
JPH06218282A (en) Heat resistant catalyst carrier and production thereof
US10843930B1 (en) Systems and methods for synthesis of ZSM-22 zeolite
JPH0632673A (en) Alumina-based porous body
CN115193460B (en) CeO 2 Application of coated silicon carbide supported metal element catalyst in methane-carbon dioxide reforming process
JPH06262073A (en) Alumina catalyst carrier
CN114426299A (en) Preparation method of macroporous alumina material