JPH06239674A - Porous ceramic film, gas-separation membrane using the film and their production - Google Patents

Porous ceramic film, gas-separation membrane using the film and their production

Info

Publication number
JPH06239674A
JPH06239674A JP5019193A JP5019193A JPH06239674A JP H06239674 A JPH06239674 A JP H06239674A JP 5019193 A JP5019193 A JP 5019193A JP 5019193 A JP5019193 A JP 5019193A JP H06239674 A JPH06239674 A JP H06239674A
Authority
JP
Japan
Prior art keywords
film
base material
porous ceramic
porous
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5019193A
Other languages
Japanese (ja)
Inventor
Chihiro Kawai
千尋 河合
Akira Yamakawa
晃 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5019193A priority Critical patent/JPH06239674A/en
Publication of JPH06239674A publication Critical patent/JPH06239674A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4582Porous coatings, e.g. coating containing porous fillers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • C04B41/5338Etching
    • C04B41/5353Wet etching, e.g. with etchants dissolved in organic solvents

Abstract

PURPOSE:To obtain a porous ceramic membrane useful as a gas separation membrane having small pressure drop and low clogging tendency and to provide a process for easily producing the porous ceramic membrane with a simple method in a short time. CONSTITUTION:A multiple oxide film such as SiO2-B2O3 is formed on a substrate composed of a sintered porous ceramic material by a CVD method using an alkoxide of Si, etc., an alkoxide of B, etc., and oxygen gas as raw materials at 400-1200 deg.C and the multiple oxide film is etched taking advantage of the difference of acid resistance or alkali resistance to exclusively remove a specific oxide such as B2O3 and obtain the objective membrane. The small pore left after the removal of the specific oxide such as B2O3 is almost straightly extended from the surface bonding with the substrate to the other membrane surface and has a pore diameter of nanometer order. The membrane is essentially composed of oxide of Si, Zr, Ti, Hf, Pb or Al.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ナノメーターサイズの
細孔を有する多孔質セラミックス膜、この多孔質セラミ
ックス膜を用いたガス分離膜、及びその製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a porous ceramic membrane having nanometer-sized pores, a gas separation membrane using the porous ceramic membrane, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、地球温暖化現象が問題となるにつ
れ、その元凶とされるCO2ガスの排出規制が厳しくな
り、火力発電所等では燃焼後の排ガスからCO2を分離
する技術が必要となってきている。このようなガス分離
には、特定のガス分子のみを通過させるために、ナノメ
ーターサイズの孔径の細孔を有する多孔質膜が必要とさ
れている。
2. Description of the Related Art In recent years, as the global warming phenomenon has become a problem, the emission control of CO 2 gas, which is the main cause of the global warming phenomenon, has become stricter, and a technology for separating CO 2 from exhaust gas after combustion is required in a thermal power plant or the like. Is becoming. For such gas separation, a porous membrane having pores of nanometer size is required to allow only specific gas molecules to pass through.

【0003】ナノメーターサイズの孔径の細孔を有する
多孔質材料としては、多孔質ガラスが良く知られてい
る。多孔質ガラスは、分相法又はゾルゲル法によって合
成されている。即ち、分相法では、ホウケイ酸ソーダガ
ラスを熱処理によりSiO2に富む相とNa2O・B23
に富む相に分相させた後、酸又はアルカリ水溶液で処理
してNa2O・B23に富む相を溶出することにより、多
孔質の石英ガラスが得られる。又、ゾルゲル法によって
も、Si等の各種金属のアルコキシドの溶液を加水分解
してゾル状態とし、これを基板等に塗布して乾燥ゲル化
することで、多孔質ガラスを合成することが出来る。
Porous glass is well known as a porous material having pores of nanometer size. Porous glass is synthesized by a phase separation method or a sol-gel method. That is, in the phase separation method, the sodium borosilicate glass is heat treated to form a SiO 2 -rich phase and Na 2 O.B 2 O 3
After separating into a phase rich in Na 2 O and treating with an acid or alkali aqueous solution to elute the phase rich in Na 2 O.B 2 O 3 , porous quartz glass is obtained. Further, also by the sol-gel method, a porous glass can be synthesized by hydrolyzing a solution of an alkoxide of various metals such as Si into a sol state, applying this on a substrate or the like, and drying and gelling.

【0004】しかし、このようにして合成された多孔質
ガラスでは、その細孔をナノメーターサイズにすること
が出来るものの、図2に示すごとく、ガラス骨格2中に
存在する細孔1が方向性に乏しいため、ガス分離膜とし
て用いた場合にはガス通過時の圧力損失が大きくなり、
分離処理量が小さいという問題があった。又、細孔1の
方向性が乏しいので、被分離ガス中に少量の浮遊微粒子
が存在すると目詰まりが生じ、フィルター機能を十分に
発揮できないという欠点があった。
However, although the pores of the porous glass synthesized in this manner can be made to have a size of nanometer, the pores 1 existing in the glass skeleton 2 are directional as shown in FIG. When used as a gas separation membrane, the pressure loss when passing through the gas increases,
There is a problem that the amount of separation processing is small. Further, since the pores 1 have a poor directionality, if a small amount of suspended fine particles are present in the gas to be separated, clogging occurs and the filter function cannot be sufficiently exhibited.

【0005】更に、多孔質ガラスをガス分離に用いるた
めには薄膜化する必要があるが、分相法では薄膜化が困
難であるため、この点からもガス通過時の圧力損失が一
層大きくなる欠点がある。一方、ゾルゲル法では膜厚の
均一化が難しいため、ガス分離膜とした場合に圧力損失
値の制御が極めて困難である。しかも、分相法では分相
させるために長時間の加熱を行い、ゾルゲル法ではゾル
調整後の乾燥工程に長時間を要するため、製造が容易で
はなく、ガス分離膜としてのコストが高くなる欠点があ
った。
Further, in order to use the porous glass for gas separation, it is necessary to make it into a thin film, but it is difficult to make it into a thin film by the phase separation method. From this point as well, the pressure loss during gas passage is further increased. There are drawbacks. On the other hand, since it is difficult to make the film thickness uniform in the sol-gel method, it is extremely difficult to control the pressure loss value when using a gas separation membrane. Moreover, in the phase separation method, heating is performed for a long time for phase separation, and in the sol-gel method, it takes a long time for the drying step after the sol adjustment, so that the production is not easy and the cost of the gas separation membrane is high. was there.

【0006】その外にも、ナノメーターサイズの孔径の
細孔を有する多孔質材料の製造方法として、陽極酸化法
やトラックエッチング法が知られている。陽極酸化法は
アルミニウムを陽極酸化することにより多孔質アルミナ
とする方法であり、トラックエッチング法はマイカに放
射線を当て、放射線の軌跡をエッチングすることにより
多孔質化する方法である。これらの方法により得られる
細孔は、膜厚方向にほぼ直線状に伸びた形状を持つとさ
れている。
In addition to the above, an anodizing method and a track etching method are known as a method for producing a porous material having pores of nanometer size. The anodizing method is a method of anodizing aluminum to form porous alumina, and the track etching method is a method of irradiating mica with radiation and etching the trajectory of the radiation to make it porous. The pores obtained by these methods are said to have a shape that extends substantially linearly in the film thickness direction.

【0007】しかしながら、陽極酸化法の場合には、膜
の材質がアルミナに限定され、他のセラミックスに応用
できない欠点がある。又、陽極板の一部として残るアル
ミニウムを除去しなければ、ガス分離等の多孔質膜とし
て使用できない。トラックエッチング法は放射線を用い
るため、設備の面でも大量処理の点でも現実的ではな
く、材質もマイカに限定されるため汎用性のある方法と
は言い難い。
However, in the case of the anodic oxidation method, the material of the film is limited to alumina, and there is a drawback that it cannot be applied to other ceramics. Further, unless aluminum remaining as a part of the anode plate is removed, it cannot be used as a porous membrane for gas separation or the like. Since the track etching method uses radiation, it is not practical in terms of equipment and mass processing, and the material is limited to mica, so it cannot be said to be a versatile method.

【0008】[0008]

【発明が解決しようとする課題】本発明は、かかる従来
の事情に鑑み、圧力損失が小さく且つ目詰まりが少ない
ガス分離膜として有用な多孔質セラミックス膜を提供す
ること、及びかかる多孔質セラミックス膜を短時間で簡
単且つ容易に製造する方法を提供することを目的とす
る。
In view of the above conventional circumstances, the present invention provides a porous ceramic membrane useful as a gas separation membrane having a small pressure loss and less clogging, and such a porous ceramic membrane. It is an object of the present invention to provide a method for easily and easily producing lactic acid in a short time.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する多孔質セラミックス膜は、連通気
孔を有する多孔質セラミックス焼結体からなる基材上に
接合され、本質的にSi、Zr、Ti、Hf、Pb及び
Alからなる群から選ばれた少なくとも1種の元素の酸
化物からなり、前記基材との接合面から他方の膜表面ま
でほぼ直線状に連通したナノメーターサイズの孔径の細
孔を有することを特徴とする。
In order to achieve the above object, the porous ceramics film provided by the present invention is bonded onto a substrate made of a porous ceramics sintered body having continuous air holes, and is essentially Si. Of at least one element selected from the group consisting of Al, Zr, Ti, Hf, Pb, and Al, and having a nanometer size that communicates in a substantially linear manner from the bonding surface with the base material to the other film surface. It is characterized in that it has pores having a pore size of.

【0010】又、かかる多孔質セラミックス膜は、S
i、Zr、Ti、Hf、Pb及びAlからなる群から選
ばれた少なくとも1種の元素のアルコキシドと、B、ア
ルカリ金属及びアルカリ土類金属からなる群から選ばれ
た少なくとも1種の元素のアルコキシドと、酸素ガスと
を原料ガスとして用いるCVD法により、連通気孔を有
する多孔質セラミックス焼結体からなる基材上に400
〜1200℃の温度で両群の元素の複合酸化物膜を形成
し、この複合酸化物膜を酸又はアルカリ水溶液でエッチ
ング処理することにより前記B、アルカリ金属又はアル
カリ土類金属の酸化物のみを除去する方法により製造す
ることが出来る。
Further, such a porous ceramic film is S
Alkoxide of at least one element selected from the group consisting of i, Zr, Ti, Hf, Pb and Al, and alkoxide of at least one element selected from the group consisting of B, alkali metal and alkaline earth metal. And a oxygen gas as raw material gases by a CVD method on a substrate made of a porous ceramics sintered body having continuous ventilation holes.
By forming a composite oxide film of both groups of elements at a temperature of up to 1200 ° C. and subjecting the composite oxide film to an etching treatment with an acid or alkaline aqueous solution, only the oxide of B, the alkali metal or the alkaline earth metal is removed. It can be manufactured by the method of removing.

【0011】尚、基材となる多孔質セラミックス焼結体
は既に公知であり、濾過材、担体、センサー等として利
用されている。本来、セラミックス焼結体は粉末を焼結
したものであるから数μm程度の孔径の気孔が多数存在
するが、この孔径を圧粉体の充填率や焼結条件等により
制御して気孔を積極的に形成させたものが多孔質セラミ
ックス焼結体である。ただし、本発明ではガス分離を目
的とするので、多孔質セラミックス焼結体のうち連通気
孔のものを使用する。
The porous ceramics sintered body as the base material is already known and is used as a filter, a carrier, a sensor and the like. Originally, since the ceramics sintered body is obtained by sintering powder, there are a large number of pores having a diameter of about several μm. However, the pore diameter is controlled by the filling rate of the green compact, the sintering conditions, etc. The porous ceramics sintered body is formed as a result. However, since the purpose of the present invention is gas separation, a porous ceramic sintered body having a continuous ventilation hole is used.

【0012】[0012]

【作用】圧力損失の小さいガス分離膜を得るには、膜中
に存在する細孔に方向性を持たせる必要がある。本発明
者らは、この様な方向性を持った細孔を形成する方法を
研究した結果、2種以上の金属アルコキシドを原料ガス
としたCVD法(化学気相合成法)により基材上に複合
酸化物膜を形成し、複合酸化物膜中の各酸化物の耐酸性
又は耐アルカリ性の差を利用して特定酸化物のみをエッ
チング除去することによって、残った酸化物からなる膜
中に方向性を持った細孔を形成し得ることを見いだし、
本発明に至ったものである。
In order to obtain a gas separation membrane with a small pressure loss, it is necessary to make the pores present in the membrane directional. As a result of researching a method for forming pores having such a directionality, the present inventors have found that a CVD method (chemical vapor deposition method) using two or more kinds of metal alkoxide as a source gas is used to form a substrate. By forming a complex oxide film and etching away only a specific oxide by utilizing the difference in acid resistance or alkali resistance of each oxide in the complex oxide film, it is possible to direct the film into the film made of the remaining oxide. Found that it is possible to form fine pores with
The present invention has been achieved.

【0013】尚、CVD法そのものは公知であり、金属
アルコキシドを用いたCVD法による酸化物膜の形成も
半導体素子製造過程におけるSiO2等の絶縁膜の形成
等に使用されている。しかし、半導体分野における酸化
膜はSiO2等の単一酸化物が多く、BやP等の元素を
微量にドーピングする場合もあるが、これは膜表面の平
滑性や膜強度を改善するために過ぎない。これに対して
本発明方法は、CVD法により2種類の酸化物が互いに
多量に複合したマクロな複合組織を形成し、その複合酸
化物のうちの特定酸化物のみをエッチング除去するもの
である。
The CVD method itself is known, and the formation of an oxide film by the CVD method using a metal alkoxide is also used for the formation of an insulating film such as SiO 2 in the semiconductor element manufacturing process. However, oxide films in the field of semiconductors are often single oxides such as SiO 2 and may be doped with a small amount of elements such as B and P in order to improve the smoothness of the film surface and the film strength. Not too much. On the other hand, the method of the present invention forms a macroscopic composite structure in which a large amount of two kinds of oxides are combined with each other by the CVD method, and only the specific oxide of the composite oxides is removed by etching.

【0014】即ち、本発明の2種以上の金属アルコキシ
ドを原料ガスとしたCVD法によれば、基材上に形成さ
れる複合酸化物中の各酸化物相が、ナノメーターのオー
ダーで微細に混合された疑似分相状態になる。しかも、
複合酸化物膜を形成するための基材の温度を400℃以
上にすることによって、各酸化物相を膜厚方向に伸長し
た柱状組織とすることが出来るので、その中の特定酸化
物のみをエッチング除去した跡に膜厚方向に直線状に伸
びた方向性を有する細孔が得られる。ただし、基材の温
度が1200℃を越えると、成膜されずに粉末状物質が
生成するようになるので、1200℃以下の温度とする
ことが好ましい。
That is, according to the CVD method of the present invention using two or more kinds of metal alkoxides as a source gas, each oxide phase in the complex oxide formed on the substrate is finely divided into the order of nanometers. It becomes a mixed pseudo-phase separation state. Moreover,
By setting the temperature of the base material for forming the composite oxide film to 400 ° C. or higher, each oxide phase can have a columnar structure elongated in the film thickness direction. Pores having a directivity extending linearly in the film thickness direction are obtained after the etching removal. However, when the temperature of the base material exceeds 1200 ° C., a powdery substance is generated without being formed into a film, so it is preferable to set the temperature to 1200 ° C. or lower.

【0015】本発明方法によれば、除去されるべき特定
酸化物が方向性を持ち、且つナノメーターのオーダーで
複合酸化物中に微細に混合された疑似分相状態で存在す
るので、これが除去されて形成される細孔の孔径をナノ
メーター(nm=10-9m)のオーダーに制御できるう
え、殆ど全ての細孔に方向性を持たせることが可能であ
る。従って、本発明の多孔質セラミックス膜は、基材と
の接合面から他方の膜表面までほぼ直線状に連通したナ
ノメーターサイズの孔径の細孔を有し、従ってガス分離
膜として使用した時に圧力損失を小さくすることが出来
る。
According to the method of the present invention, the specific oxide to be removed is directional and exists in the finely mixed pseudo-phase-separated state in the composite oxide on the order of nanometer. It is possible to control the pore size of the formed pores to the order of nanometers (nm = 10 −9 m) and to give directionality to almost all the pores. Therefore, the porous ceramics membrane of the present invention has pores of nanometer size pores which are communicated almost linearly from the bonding surface with the base material to the surface of the other membrane, and therefore the pressure when used as a gas separation membrane is high. Loss can be reduced.

【0016】基材とする公知の多孔質セラミックス焼結
体の気孔は、本発明の多孔質セラミックス膜に比べて遥
かに大きいので、基材による圧力損失は殆ど無視するこ
とが出来る。しかも、CVD法で形成された多孔質セラ
ミックス膜は基材に接合しているので、機械的強度に優
れている。又、CVD法により基材の形状に沿って均一
な膜厚の複合酸化物膜を成膜できるので、得られる多孔
質セラミックス膜は膜厚が均一であるうえ、形状的にも
平板状のものに限られず、基材の形状を選ぶだけで曲面
状や円筒状等の各種の任意の形状の多孔質セラミックス
膜を得ることが可能である。
Since the pores of the known porous ceramics sintered body as the base material are much larger than those of the porous ceramics film of the present invention, the pressure loss due to the base material can be almost ignored. Moreover, since the porous ceramic film formed by the CVD method is bonded to the base material, it has excellent mechanical strength. Further, since the composite oxide film having a uniform film thickness can be formed along the shape of the substrate by the CVD method, the obtained porous ceramic film has a uniform film thickness and a flat plate shape. However, it is possible to obtain a porous ceramics film having various shapes such as a curved surface and a cylindrical shape by simply selecting the shape of the base material.

【0017】複合酸化物膜から特定の酸化物のみをエッ
チング除去するためには、複合酸化物を構成する2種以
上の酸化物の耐酸性又は耐アルカリ性の差が大きいほど
好ましい。この様な組み合わせとして、耐酸性又は耐ア
ルカリ性に優れた酸化物であるSiO2、ZrO2、Ti
2、HfO2、PbO2又はAl23と、耐酸化物又は
耐アルカリ性に劣る酸化物であるB23や、Li、N
a、K等のアルカリ金属及びMg、Ca、Sr、Ba等
のアルカリ土類金属の酸化物がある。特に、耐酸性及び
耐アルカリ性共に優れているSiO2は、エッチング処
理後に残って多孔質セラミックス膜を構成する成分とし
て好ましい。
In order to remove only a specific oxide from the composite oxide film by etching, it is preferable that the difference in acid resistance or alkali resistance between two or more kinds of oxides constituting the composite oxide is large. As such a combination, SiO 2 , ZrO 2 and Ti which are oxides excellent in acid resistance or alkali resistance are used.
O 2 , HfO 2 , PbO 2 or Al 2 O 3 and B 2 O 3 which is an oxide having poor oxide resistance or alkali resistance, Li, N
There are oxides of alkali metals such as a and K and alkaline earth metals such as Mg, Ca, Sr, and Ba. In particular, SiO 2 which is excellent in both acid resistance and alkali resistance is preferable as a component which remains after the etching treatment and constitutes the porous ceramic film.

【0018】従って、本発明におけるCVD法の原料ガ
スとしては、耐酸性又は耐アルカリ性に優れた酸化物の
原料となるSi、Zr、Ti、Hf、Pb及びAlから
なる群から選ばれた少なくとも1種の元素のアルコキシ
ドと、耐酸性又は耐アルカリ性に劣る酸化物の原料とな
るB、アルカリ金属及びアルカリ土類金属からなる群か
ら選ばれた少なくとも1種の元素のアルコキシドとの、
2種類の金属アルコキシドが必要である。又、緻密で且
つ基材との密着性に優れた多孔質セラミックス膜を得る
ために、2種類の金属アルコキシドと共に酸素ガスを用
いることが必要である。
Therefore, the raw material gas for the CVD method in the present invention is at least one selected from the group consisting of Si, Zr, Ti, Hf, Pb and Al, which are raw materials of oxides having excellent acid resistance or alkali resistance. An alkoxide of one element and an alkoxide of at least one element selected from the group consisting of B, an alkali metal and an alkaline earth metal, which are raw materials of an oxide having poor acid resistance or alkali resistance,
Two types of metal alkoxides are required. In addition, it is necessary to use oxygen gas together with two kinds of metal alkoxides in order to obtain a porous ceramic film that is dense and has excellent adhesion to a substrate.

【0019】これらの原料ガスはAr、He、N2等の
不活性ガスのキャリアガスによって搬送されるが、原料
ガスのうち2種類の金属アルコキシドの流量割合は疑似
分相状態になったそれぞれの酸化物の柱状組織の微細
さ、従って最終的に得られる細孔の孔径を決める上で重
要である。即ち、B、アルカリ金属又はアルカリ土類金
属のアルコキシドの割合を少なくするほど、耐酸性又は
耐アルカリ性に劣る酸化物の柱状組織が微細になり且つ
得られる細孔の孔径も小さくなるが、上記アルコキシド
の割合が少なすぎると基材との接合面から他方の膜表面
まで膜厚方向に連通した細孔が得られなくなるので注意
を要する。
These raw material gases are carried by a carrier gas of an inert gas such as Ar, He, N 2, etc., but the flow rate ratios of the two kinds of metal alkoxides among the raw material gases are in the pseudo-phase-separated state. It is important in determining the fineness of the columnar structure of the oxide and thus the pore size of the finally obtained pores. That is, the smaller the proportion of B, the alkali metal or alkaline earth metal alkoxide, the finer the columnar structure of the oxide having poor acid resistance or alkali resistance, and the smaller the pore size of the obtained pores. If the ratio is too small, it will not be possible to obtain pores communicating in the film thickness direction from the surface to be joined with the base material to the surface of the other film, so care must be taken.

【0020】又、2種類の金属アルコキシドの割合を一
定に保持すれば、耐酸性又は耐アルカリ性に優れるもの
と劣るものの2種類の酸化物の組成がほぼ一定になるの
で、得られる細孔の孔径と気孔率がほぼ一定になる。一
方、この割合を途中で変化させれば、即ち少なくとも片
方の金属アルコキシドのガス流量を段階的又は連続的に
増加又は減少させたり、両方のアルコキシドのうち片方
の流量を段階的又は連続的に増加させ且つ他方の流量を
段階的又は連続的に減少させれば、2種類の酸化物の組
成が段階的又は連続的に変化するので、得られる膜の気
孔率及び細孔の孔径を基材との接合面から他方の膜表面
まで膜厚方向に沿って段階的に又は連続的に変えること
が可能である。
If the ratios of the two kinds of metal alkoxides are kept constant, the compositions of the two kinds of oxides, which are excellent in acid resistance or alkali resistance and inferior in acid resistance, become almost constant. And the porosity becomes almost constant. On the other hand, if this ratio is changed on the way, that is, the gas flow rate of at least one metal alkoxide is increased or decreased stepwise or continuously, or the flow rate of one of both alkoxides is increased stepwise or continuously. And the other flow rate is decreased stepwise or continuously, the composition of the two kinds of oxides changes stepwise or continuously, so that the porosity and pore size of the obtained film are different from those of the base material. It is possible to change stepwise or continuously along the film thickness direction from the bonding surface of No. 1 to the other film surface.

【0021】例えば、所定の成膜時間が経過する毎に、
Siのアルコキシドの流量を段階的に増加させ且つBの
アルコキシドの流量を段階的に減少させると、図1に示
すように、膜表面側(図面の上側)になるほどB23
少なくなるようにSiO2とB23の組成が段階的に変
化した柱状組織のSiO2−B23複合酸化膜が形成さ
れる。従って、この複合酸化膜を例えばHCl水溶液で
エッチングすると、酸に弱いB23が溶解除去されて、
その部分に孔径が段階的に変化した細孔が形成され、従
って残ったSiO2からなる多孔質セラミックス膜の気
孔率も当然に段階的に変化したものとなる。
For example, every time a predetermined film forming time elapses,
When the flow rate of the Si alkoxide is increased stepwise and the flow rate of the B alkoxide is decreased stepwise, B 2 O 3 becomes smaller toward the film surface side (upper side of the drawing), as shown in FIG. A SiO 2 —B 2 O 3 composite oxide film having a columnar structure in which the composition of SiO 2 and B 2 O 3 is changed stepwise is formed. Therefore, when this composite oxide film is etched with, for example, an aqueous HCl solution, B 2 O 3 which is weak against acid is dissolved and removed,
Pores whose pore diameters change stepwise are formed in that portion, so that the porosity of the remaining porous ceramic film made of SiO 2 naturally changes stepwise.

【0022】この様な気孔率及び孔径が膜厚方向に傾斜
した多孔質セラミックス膜は、被分離ガスの成分に合わ
せて分離機能を分担化することが出来る。例えば、火力
発電所の排気ガス中には浮遊微粒子が数多く存在してお
り、これがフィルターの目詰まりを生じさせるため、従
来は微粒子を分離するフィルターを特別に設置する必要
があった。ところが、気孔率及び孔径が膜厚方向に傾斜
した多孔質セラミックス膜を使用すれば、細孔の孔径が
大きな部分でまず微粒子を除去し、その後に孔径の小さ
な部分でCO2を分離することができる。
The porous ceramic film having the porosity and the pore diameter inclined in the film thickness direction can share the separating function according to the components of the gas to be separated. For example, a large number of suspended particulates are present in the exhaust gas of a thermal power plant, and this causes clogging of the filter. Therefore, conventionally, it was necessary to specially install a filter for separating particulates. However, if a porous ceramic film having a porosity and a pore diameter inclined in the film thickness direction is used, fine particles are first removed in a portion having a large pore diameter, and then CO 2 is separated in a portion having a small pore diameter. it can.

【0023】[0023]

【実施例】実施例1 気孔率が40%及び気孔径が約1μmの市販の多孔質ア
ルミナ焼結体を基材とし、この基材上にCVD法により
以下の条件でSiO2−B23系複合酸化物膜を膜厚約
100μmとなるように成膜した。
Example 1 A commercially available porous alumina sintered body having a porosity of 40% and a pore diameter of about 1 μm was used as a base material, and SiO 2 —B 2 O was formed on this base material by the CVD method under the following conditions. A 3 type composite oxide film was formed to have a film thickness of about 100 μm.

【0024】 ガス流量:Si(OC25)4 0.15 l/min B(OCH3)3 0.16 l/min O2 1.00 l/min He 2.50 l/min 温 度:900℃ 圧 力:90TorrGas flow rate: Si (OC 2 H 5 ) 4 0.15 l / min B (OCH 3 ) 3 0.16 l / min O 2 1.00 l / min He 2.50 l / min Temperature: 900 ℃ Pressure: 90Torr

【0025】得られたSiO2−B23系複合酸化物膜
の組成はB/(B+Si)比で約45モル%であり、膜全
体でほぼ一定であった。この複合酸化物膜を5%HCl
水溶液に浸漬して75℃で約30分間のエッチング処理
を行い、B23相を溶解させて除去することにより、実
質的にSiO2からなり、気孔率が約40%で孔径が約
10nmの細孔を有する多孔質セラミックス膜が得られ
た。
The composition of the obtained SiO 2 —B 2 O 3 based composite oxide film was about 45 mol% in terms of B / (B + Si) ratio, which was almost constant throughout the film. This composite oxide film is treated with 5% HCl
It is immersed in an aqueous solution and subjected to an etching treatment at 75 ° C. for about 30 minutes to dissolve and remove the B 2 O 3 phase, so that the B 2 O 3 phase is substantially composed of SiO 2 and has a porosity of about 40% and a pore diameter of about 10 nm. A porous ceramics membrane having the fine pores of was obtained.

【0026】この基材上に形成された多孔質セラミック
ス膜をフィルターとして、図3に示す装置に多孔質セラ
ミックス膜3を上流側に向けて組み込み、10kg/c
2の圧縮空気5を10l/minの流速でフィルター
上流側に導入し、多孔質セラミックス膜3と基材4を通
して大気に解放したフィルター下流側に流しながら、フ
ィルター上流側の圧力を圧力計6で測定した。
Using the porous ceramics film formed on this base material as a filter, the porous ceramics film 3 was installed in the device shown in FIG.
While introducing compressed air 5 of m 2 at a flow rate of 10 l / min to the upstream side of the filter and flowing it through the porous ceramics membrane 3 and the base material 4 to the downstream side of the filter released to the atmosphere, the pressure on the upstream side of the filter is measured by a pressure gauge 6 It was measured at.

【0027】比較のために、分相法で製造した気孔率が
約40%で孔径が約10nmの通常の多孔質ガラス(厚
さ約100μm)を、図3の装置にフィルターとして同
様に組み込み、同じ条件でフィルター上流側の圧力を測
定した。その結果、多孔質ガラスを用いた場合の上流側
圧力は4.3kg/cm2であったのに対し、本発明の多
孔質セラミックス膜を用いた場合には上流側圧力を2.
2kg/cm2まで低下させることができ、圧力損失が
極めて小さいことがわかる。
For comparison, an ordinary porous glass (thickness: about 100 μm) having a porosity of about 40% and a pore size of about 10 nm, which was produced by the phase separation method, was similarly incorporated as a filter in the apparatus of FIG. The pressure on the upstream side of the filter was measured under the same conditions. As a result, the upstream pressure was 4.3 kg / cm 2 when the porous glass was used, while the upstream pressure was 2. 5 when the porous ceramic membrane of the present invention was used.
It can be seen that the pressure loss can be reduced to 2 kg / cm 2 , and the pressure loss is extremely small.

【0028】実施例2 気孔率が40%及び気孔径が約1μmの多孔質アルミナ
焼結体からなり、内径が約10mmで肉厚1mmの一端
を閉塞した有底円筒状の基材を用い、この基材の外側に
CVD法により以下の条件でSiO2−TiO2−Na2
O系複合酸化物膜を膜厚約100μmとなるように成膜
した。
Example 2 A cylindrical base material having a bottom and comprising a porous alumina sintered body having a porosity of 40% and a pore diameter of about 1 μm and having an inner diameter of about 10 mm and a wall thickness of 1 mm closed at one end, SiO 2 —TiO 2 —Na 2 was formed on the outside of this base material by the CVD method under the following conditions.
An O-based composite oxide film was formed to have a film thickness of about 100 μm.

【0029】 ガス流量:Si(OC25)4 0.15 l/min Ti(OCH3)3 0.12 l/min Na(OC25) 0.07 l/min O2 0.50 l/min Ar 1.20 l/min 温 度:800℃ 圧 力:100TorrGas flow rate: Si (OC 2 H 5 ) 4 0.15 l / min Ti (OCH 3 ) 3 0.12 l / min Na (OC 2 H 5 ) 0.07 l / min O 2 0.50 l / min Ar 1.20 l / min Temperature: 800 ° C Pressure: 100 Torr

【0030】得られたSiO2−TiO2−Na2O系複
合酸化物膜の組成は原子比でSi:Ti:Na=36:
22:42であり、膜全体でほぼ一定であった。この複
合酸化物膜を5%HCl水溶液に浸漬して75℃で約1
0分間のエッチング処理を行い、Na2O相を溶解させ
て除去することにより、実質的にSiO2−TiO2から
なり、気孔率が約46%で孔径が約6nmの細孔を有す
る多孔質セラミックス膜が得られた。
The composition of the obtained SiO 2 —TiO 2 —Na 2 O-based composite oxide film was Si: Ti: Na = 36: in atomic ratio.
It was 22:42, and was almost constant throughout the film. This composite oxide film is dipped in a 5% HCl aqueous solution, and the temperature is about 1 at 75 ° C.
By performing an etching treatment for 0 minutes to dissolve and remove the Na 2 O phase, the porous material substantially consists of SiO 2 —TiO 2 and has a porosity of about 46% and a pore size of about 6 nm. A ceramic film was obtained.

【0031】この基材上に形成された多孔質セラミック
ス膜を有底円筒状のガス分離フィルターとして、図4に
示す装置に多孔質セラミックス膜3を上流側に向けて組
み込み、H2:N2を1:1に混合した被分離ガス7をフ
ィルター上流側に導入し、フィルター下流側の真空ポン
プ8により3kg/cm2の圧力と1.0l/minの流
速で多孔質セラミックス膜3と基材4を通して吸引しな
がら、5分後におけるフィルター上流側の圧力を圧力計
6で測定し、ガス分析装置9によりフィルターを通過し
たガスの組成を測定した。
[0031] bottomed cylindrical gas separating filter formed porous ceramic film on the substrate, toward the porous ceramic film 3 on the upstream side in the apparatus shown in FIG. 4 embedded, H 2: N 2 1: 1 mixed gas to be separated is introduced to the upstream side of the filter, and a vacuum pump 8 on the downstream side of the filter is used to apply a pressure of 3 kg / cm 2 and a flow rate of 1.0 l / min to the porous ceramic membrane 3 and the substrate. While suctioning through 4, the pressure on the upstream side of the filter after 5 minutes was measured by the pressure gauge 6, and the composition of the gas passing through the filter was measured by the gas analyzer 9.

【0032】比較のために、通常の分相法で製造した気
孔率が約45%で孔径が約6nmの多孔質ガラス(厚さ
約100μm)からなる上記と同様の有底円筒状のフィ
ルターを用意して図4の装置に同様に組み込み、上記と
同じ条件でフィルター上流側の圧力とフィルターを透過
したガスの組成を測定した。これらの測定結果を表1に
示す。
For comparison, a cylindrical bottomed filter similar to the above, which is made of a porous glass (thickness: about 100 μm) having a porosity of about 45% and a pore diameter of about 6 nm, manufactured by a normal phase separation method is used. It was prepared and assembled in the same manner as in the apparatus of FIG. 4, and the pressure on the upstream side of the filter and the composition of the gas passing through the filter were measured under the same conditions as above. The results of these measurements are shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】表1の結果から、本発明の多孔質セラミッ
クス膜はガス分離膜として多孔質ガラス膜と同等のガス
分離能を有すると同時に、従来の多孔質ガラス膜に比べ
て圧力損失を遥かに小さくできることが判る。
From the results shown in Table 1, the porous ceramic membrane of the present invention has a gas separation ability equivalent to that of the porous glass membrane as a gas separation membrane, and at the same time, the pressure loss is far higher than that of the conventional porous glass membrane. You can see that it can be made smaller.

【0035】実施例3 実施例2と同じ多孔質アルミナ製の有底円筒状の基材を
用い、この基材の外側にCVD法により以下の条件でZ
rO2−TiO2−CaO系複合酸化物膜を膜厚約100
μmとなるように成膜した。
[0035]Example 3  The bottomed cylindrical base material made of the same porous alumina as in Example 2 was used.
Z is used on the outside of this substrate by the CVD method under the following conditions.
rO2-TiO2-CaO-based complex oxide film with a thickness of about 100
The film was formed to have a thickness of μm.

【0036】 ガス流量:Zr(OC25)4 0.15 l/min(一定に
保持) Ti(OCH3)3 0.05→0.15 l/min(0.00
1 l/minの割合で連続的に増加) Ca(OC25) 0.30→0.10 l/min(0.00
2 l/minの割合で連続的に減少) O2 1.20 l/min Ar 1.20 l/min 温 度:800℃ 圧 力:100Torr
Gas flow rate: Zr (OC 2 H 5 ) 4 0.15 l / min (maintained constant) Ti (OCH 3 ) 3 0.05 → 0.15 l / min (0.00
Continuous increase at a rate of 1 l / min) Ca (OC 2 H 5 ) 0.30 → 0.10 l / min (0.00
O 2 1.20 l / min Ar 1.20 l / min Temperature: 800 ° C Pressure: 100 Torr

【0037】得られたZrO2−TiO2−CaO系複合
酸化物膜の組成は、基材との接合面から他方の膜表面に
向かってCaO相が連続的に減少した傾斜組成であっ
た。この複合酸化物膜を5%NaOH水溶液に浸漬して
80℃で約20分間のエッチング処理を行い、CaO相
を溶解させて除去することにより、実質的にZrO2
TiO2からなり、気孔率が約38%の多孔質セラミッ
クス膜が得られた。尚、この多孔質セラミックス膜の細
孔は、基材との接合面側で孔径が約0.5μmと大き
く、他方の膜表面に向かうに従って徐々に孔径が小さく
なり、他方の膜表面での孔径は約8nmとなっていた。
The composition of the obtained ZrO 2 —TiO 2 —CaO type composite oxide film was a graded composition in which the CaO phase continuously decreased from the bonding surface with the base material toward the other film surface. This composite oxide film was immersed in a 5% NaOH aqueous solution and subjected to etching treatment at 80 ° C. for about 20 minutes to dissolve and remove the CaO phase, thereby substantially removing ZrO 2 −.
A porous ceramic film made of TiO 2 and having a porosity of about 38% was obtained. The pores of this porous ceramics film have a large pore size of about 0.5 μm on the side of the joint surface with the base material, and gradually decrease toward the other film surface. Was about 8 nm.

【0038】この基材上に形成された多孔質セラミック
ス膜を有底円筒状のガス分離フィルターとして、実施例
2と同様に図4に示す装置に多孔質セラミックス膜3を
上流側に向けて組み込み、平均粒径0.1μmのZrO2
微粒子を1%含みH2:N2を1:1に混合した被分離ガ
ス7をフィルター上流側に導入し、フィルター下流側の
真空ポンプ8により3kg/cm2の圧力と10l/m
inの流速で吸引しながら、ガス透過時のフィルター上
流側の圧力とフィルターを通過したガスの組成の経時変
化を測定した。
The porous ceramic membrane formed on this substrate was used as a bottomed cylindrical gas separation filter, and the porous ceramic membrane 3 was incorporated into the apparatus shown in FIG. , ZrO 2 with an average particle size of 0.1 μm
A gas to be separated 7 containing 1% of fine particles and mixed with H 2 : N 2 at a ratio of 1: 1 was introduced to the upstream side of the filter, and a vacuum pump 8 on the downstream side of the filter introduced a pressure of 3 kg / cm 2 and 10 l / m 2.
While aspirating at a flow rate of in, the time-dependent change in the pressure on the upstream side of the filter during gas permeation and the composition of the gas passing through the filter were measured.

【0039】比較のために、分相法で製造した気孔率が
約45%で孔径が約8nmの通常の多孔質ガラス(厚さ
約100μm)からなり、上記と同様の有底円筒状のフ
ィルターを用意して図4の装置に同様に組み込み、上記
と同じ条件でフィルター上流側の圧力とフィルターを通
過したガスの組成の経時変化を測定した。これらの測定
結果を表2に示す。
For the purpose of comparison, a filter having a bottomed cylindrical shape similar to that described above, which is made of ordinary porous glass (thickness: about 100 μm) having a porosity of about 45% and a pore diameter of about 8 nm, is manufactured by the phase separation method. Was prepared and similarly incorporated in the apparatus of FIG. 4, and the change with time of the pressure on the upstream side of the filter and the composition of the gas passing through the filter were measured under the same conditions as above. The results of these measurements are shown in Table 2.

【0040】[0040]

【表2】 経過時間 フィルター上流 透過ガスの組成試 料 (min) 圧力 (kg/cm2) (H2:N2のvol比) 本発明品 5 1.0 92:8 〃 10 1.2 92:8 〃 15 1.3 93:7 〃 20 1.5 95:5 比 較 品 5 1.0 91:9 〃 10 1.2 91:9 〃 15 2.3 92:8 〃 20 2.9(殆ど透過せず)92:8TABLE 2 Composition specimen elapsed time filter upstream transmission gas (min) Pressure (kg / cm 2) (H 2: vol ratio of N 2) Invention Product 5 1.0 92: 8 〃 10 1.2 92 : 8 〃 15 1.3 93: 7 〃 20 1.5 1.5 95: 5 Comparative product 5 1.0 91: 9 〃 10 1.2 91: 9 〃 15 2.3 92: 8 〃 20 2.9 ( Almost no transmission) 92: 8

【0041】表2の結果から判るように、従来の多孔質
ガラスからなるフィルターではガス中の微粒子により目
詰まりが発生し、20分経過後には殆どガスが透過しな
くなったのに対し、本発明の孔径が傾斜した細孔を有す
る多孔質セラミックス膜を用いたフィルターでは目詰ま
りが発生せず、良好な透過状態を維持できる。
As can be seen from the results in Table 2, in the conventional filter made of porous glass, the clogging was caused by the fine particles in the gas, and almost no gas permeated after 20 minutes. The filter using the porous ceramic membrane having the pores with the inclined pore diameter does not cause clogging and can maintain a good permeation state.

【0042】[0042]

【発明の効果】本発明によれば、CVD法で基材上に形
成した複合酸化物中の特定酸化物を耐酸又は耐アルカリ
性の差によりエッツチング除去する方法を用いて、従来
の多孔質ガラス等に比べて短時間で簡単且つ容易に、膜
厚方向に沿いほぼ直線状に連通したナノメーターサイズ
の孔径の細孔を有する多孔質セラミックス膜、特に細孔
の孔径及び気孔率を変化させた多孔質セラミックス膜
を、多孔質セラミックス焼結体の基材上に接合した形で
製造することが出来る。
According to the present invention, a conventional porous glass or the like is used by a method of etching and removing a specific oxide in a complex oxide formed on a substrate by a CVD method due to a difference in acid resistance or alkali resistance. A porous ceramic membrane having pores with nanometer-sized pores that communicate with each other in a straight line along the film thickness direction in a short time, easily and easily, in particular, a porous ceramic in which the pore diameter and porosity are changed. The fine ceramic film can be manufactured in a form of being bonded onto the base material of the porous ceramic sintered body.

【0043】この多孔質セラミックス焼結体基材上の多
孔質セラミックス膜は、膜厚が均一で、膜厚方向に沿い
ほぼ直線状に連通したナノメーターサイズの孔径の細孔
を有するので、ガス透過時の圧力損失が極めて小さいガ
ス分離膜として有用である。しかも、細孔の孔径及び気
孔率を変化させた多孔質セラミックス膜では、圧力損失
が小さいうえに、浮遊微粒子による目詰まりが少ないと
いう利点を有する。
The porous ceramics film on the porous ceramics sintered body substrate has a uniform film thickness and has pores with a nanometer-sized pore diameter which are communicated in a substantially straight line along the film thickness direction. It is useful as a gas separation membrane with extremely small pressure loss during permeation. In addition, the porous ceramic film having the changed pore diameter and porosity has advantages that the pressure loss is small and the clogging due to the suspended fine particles is small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるCVD法により形成した複合酸
化物膜を説明するための模式的な断面図である。
FIG. 1 is a schematic cross-sectional view for explaining a complex oxide film formed by a CVD method according to the present invention.

【図2】従来の分相法により製造した多孔質ガラスの断
面図である。
FIG. 2 is a cross-sectional view of a porous glass manufactured by a conventional phase separation method.

【図3】実施例で用いたガス分離装置の概略断面図であ
る。
FIG. 3 is a schematic cross-sectional view of a gas separation device used in an example.

【図4】実施例で用いた別のガス分離装置の概略断面図
である。
FIG. 4 is a schematic cross-sectional view of another gas separation device used in the examples.

【符号の説明】[Explanation of symbols]

1 細孔 2 ガラス骨格 3 多孔質セラミックス膜 4 基材 5 圧縮空気 6 圧力計 7 被分離ガス 8 真空ポンプ 9 ガス分析装置 1 Pore 2 Glass skeleton 3 Porous ceramics film 4 Substrate 5 Compressed air 6 Pressure gauge 7 Gas to be separated 8 Vacuum pump 9 Gas analyzer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 連通気孔を有する多孔質セラミックス焼
結体からなる基材上に接合され、本質的にSi、Zr、
Ti、Hf、Pb及びAlからなる群から選ばれた少な
くとも1種の元素の酸化物からなり、前記基材との接合
面から他方の膜表面までほぼ直線状に連通したナノメー
ターサイズの孔径の細孔を有することを特徴とする多孔
質セラミックス膜。
1. A base material made of a porous ceramics sintered body having continuous air holes, which is essentially bonded to Si, Zr,
A nanometer-sized pore having a pore size of at least one element selected from the group consisting of Ti, Hf, Pb, and Al, which communicates in a substantially linear manner from the bonding surface with the base material to the other film surface. A porous ceramic film having pores.
【請求項2】 膜の気孔率及び細孔の孔径が、基材との
接合面から他方の膜表面まで膜厚方向に沿って段階的に
又は連続的に変化していることを特徴とする、請求項1
記載の多孔質セラミックス膜。
2. The porosity of the membrane and the pore diameter of the pores are changed stepwise or continuously along the film thickness direction from the bonding surface with the base material to the surface of the other film. , Claim 1
The porous ceramic film described.
【請求項3】 Si、Zr、Ti、Hf、Pb及びAl
からなる群から選ばれた少なくとも1種の元素のアルコ
キシドと、B、アルカリ金属及びアルカリ土類金属から
なる群から選ばれた少なくとも1種の元素のアルコキシ
ドと、酸素ガスとを原料ガスとして用いるCVD法によ
り、連通気孔を有する多孔質セラミックス焼結体からな
る基材上に400〜1200℃の温度で両群の元素の複
合酸化物膜を形成し、この複合酸化物膜を酸又はアルカ
リ水溶液でエッチング処理することにより前記B、アル
カリ金属又はアルカリ土類金属の酸化物のみを除去する
ことを特徴とする多孔質セラミックス膜の製造方法。
3. Si, Zr, Ti, Hf, Pb and Al
CVD using at least one alkoxide of an element selected from the group consisting of B, an alkoxide of at least one element selected from the group consisting of B, an alkali metal and an alkaline earth metal, and oxygen gas as source gases By the method, a composite oxide film of both groups of elements is formed at a temperature of 400 to 1200 ° C. on a base material made of a porous ceramics sintered body having continuous pores, and the composite oxide film is treated with an acid or alkali aqueous solution. A method for producing a porous ceramic film, characterized in that only the oxide of B, the alkali metal or the alkaline earth metal is removed by an etching treatment.
【請求項4】 Si、Zr、Ti、Hf、Pb及びAl
からなる群から選ばれた少なくとも1種の元素のアルコ
キシドのガス流量、又はB、アルカリ金属及びアルカリ
土類金属からなる群から選ばれた少なくとも1種の元素
のアルコキシドのガス流量を段階的又は連続的に増加又
は減少させるか、若しくは両方のアルコキシドのガス流
量のうち片方を段階的又は連続的に増加させ且つ他方を
段階的又は連続的に減少させて、両群の元素の複合酸化
物膜を形成することを特徴とする、請求項3記載の多孔
質セラミックス膜の製造方法。
4. Si, Zr, Ti, Hf, Pb and Al
The gas flow rate of the alkoxide of at least one element selected from the group consisting of or the gas flow rate of the alkoxide of at least one element selected from the group consisting of B, an alkali metal and an alkaline earth metal is stepwise or continuous. Of the gas flow rate of both alkoxides is increased stepwise or continuously and the other is decreased stepwise or continuously to form a composite oxide film of both groups of elements. The method for producing a porous ceramic film according to claim 3, wherein the porous ceramic film is formed.
【請求項5】 連通気孔を有する多孔質セラミックス焼
結体からなる基材と、基材上に接合された多孔質セラミ
ックス膜とからなり、多孔質セラミックス膜が本質的に
Si、Zr、Ti、Hf、Pb及びAlからなる群から
選ばれた少なくとも1種の元素の酸化物からなり、且つ
前記基材との接合面から他方の膜表面までほぼ直線状に
連通したナノメーターサイズの孔径の細孔を有すること
を特徴とするガス分離膜。
5. A base material made of a porous ceramics sintered body having continuous air holes, and a porous ceramics film bonded on the base material, wherein the porous ceramics film is essentially Si, Zr, Ti, A nanometer-sized fine pore made of an oxide of at least one element selected from the group consisting of Hf, Pb, and Al, which communicates almost linearly from the bonding surface with the base material to the other film surface. A gas separation membrane having pores.
【請求項6】 多孔質セラミックス膜の気孔率及び細孔
の孔径が、基材との接合面から他方の膜表面まで膜厚方
向に沿って段階的に又は連続的に変化していることを特
徴とする、請求項5記載のガス分離膜。
6. The porosity and pore size of the porous ceramics film are changed stepwise or continuously along the film thickness direction from the bonding surface with the base material to the surface of the other film. The gas separation membrane according to claim 5, which is characterized.
JP5019193A 1993-02-16 1993-02-16 Porous ceramic film, gas-separation membrane using the film and their production Pending JPH06239674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5019193A JPH06239674A (en) 1993-02-16 1993-02-16 Porous ceramic film, gas-separation membrane using the film and their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5019193A JPH06239674A (en) 1993-02-16 1993-02-16 Porous ceramic film, gas-separation membrane using the film and their production

Publications (1)

Publication Number Publication Date
JPH06239674A true JPH06239674A (en) 1994-08-30

Family

ID=12852274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5019193A Pending JPH06239674A (en) 1993-02-16 1993-02-16 Porous ceramic film, gas-separation membrane using the film and their production

Country Status (1)

Country Link
JP (1) JPH06239674A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061752A (en) * 2005-08-31 2007-03-15 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Method for producing chemical substance identification membrane
JP2008105935A (en) * 2006-09-29 2008-05-08 Dainippon Printing Co Ltd Method for producing metal oxide film, and layered product
WO2010062683A3 (en) * 2008-10-30 2010-09-16 Zeomatrix Structure for molecular separations
US8426333B2 (en) 2007-10-30 2013-04-23 Cerahelix, Inc. Structure for molecular separations

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061752A (en) * 2005-08-31 2007-03-15 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Method for producing chemical substance identification membrane
JP2008105935A (en) * 2006-09-29 2008-05-08 Dainippon Printing Co Ltd Method for producing metal oxide film, and layered product
US8426333B2 (en) 2007-10-30 2013-04-23 Cerahelix, Inc. Structure for molecular separations
US8431508B2 (en) 2007-10-30 2013-04-30 Cerahelix, Inc. Inorganic structure for molecular separations
US8431509B2 (en) 2007-10-30 2013-04-30 Cerahelix, Inc. Structure for molecular separations
WO2010062683A3 (en) * 2008-10-30 2010-09-16 Zeomatrix Structure for molecular separations

Similar Documents

Publication Publication Date Title
US4689150A (en) Separation membrane and process for manufacturing the same
JP5302957B2 (en) Method for forming inorganic porous coating on porous support using specific pore forming agent
US7896949B2 (en) Membranes for separation of carbon dioxide
KR100966249B1 (en) Hydrogen filtering membrane having pipe-shaped structure and manufacturing method thereof
JP2018521833A (en) Carbon-containing membranes for water and gas separation
JP2008246304A (en) Ceramic porous membrane, its manufacturing method, and manufacturing method of ceramic filter
JP4534565B2 (en) Method for producing ceramic porous
JP3971546B2 (en) Porous ceramic laminate and method for producing the same
Yazawa et al. Preparation of water and alkali durable porous glass membrane coated on porous alumina tubing by sol-gel method
JP2002066280A (en) Gas separation filter and method for manufacturing the same
JPH06239674A (en) Porous ceramic film, gas-separation membrane using the film and their production
JP2008514387A (en) Gas separation system and method of manufacturing the system
JP3297542B2 (en) Laminated inorganic separator
JPH0717780A (en) Production of porous ceramic film
JP2001276586A (en) Gas separation membrane and its production method
US5914086A (en) Method of manufacturing structured mouldings
JP2009011895A (en) Porous glass-made filter and its manufacturing method
JP2000189772A (en) Separation filter of hydrogen gas and its production
JP3364189B2 (en) Fabrication method of porous membrane using ultrafine particles
RU2579713C2 (en) Method of producing of filtration material
JP3589559B2 (en) Ceramic porous film, ceramic porous body using the same, and methods for producing them
JP2003220319A (en) Separation membrane module and manufacturing method thereof
Benito et al. Preparation of multilayer ceramic systems for deposition of mesoporous membranes
KR960010369B1 (en) Manufacturing method of composite ceramic separation membrane
EP4140561A1 (en) Porous ceramic laminate and method for manufacturing same