JP2008246304A - Ceramic porous membrane, its manufacturing method, and manufacturing method of ceramic filter - Google Patents

Ceramic porous membrane, its manufacturing method, and manufacturing method of ceramic filter Download PDF

Info

Publication number
JP2008246304A
JP2008246304A JP2007088362A JP2007088362A JP2008246304A JP 2008246304 A JP2008246304 A JP 2008246304A JP 2007088362 A JP2007088362 A JP 2007088362A JP 2007088362 A JP2007088362 A JP 2007088362A JP 2008246304 A JP2008246304 A JP 2008246304A
Authority
JP
Japan
Prior art keywords
ceramic
sol
membrane
cell
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007088362A
Other languages
Japanese (ja)
Other versions
JP5048371B2 (en
Inventor
Hiroshi Tanaka
啓 田中
Manabu Isomura
学 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2007088362A priority Critical patent/JP5048371B2/en
Publication of JP2008246304A publication Critical patent/JP2008246304A/en
Application granted granted Critical
Publication of JP5048371B2 publication Critical patent/JP5048371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic porous membrane with little defects, a thin membrane thickness and uniform fine pore diameters, its manufacturing method, and a manufacturing method of a ceramic filter containing the ceramic porous membrane. <P>SOLUTION: A UF membrane 14 with a smaller average diameter than a porous base material 11 is formed on the base material 11, ceramic sol coat liquid obtained by diluting ceramic sol raw liquid with isopropyl alcohol is coated on the UF membrane 14, the ceramic sol coat liquid is dried by blowing air, and fired to form the ceramic porous membrane 1 with a smaller average diameter than the UF membrane 14. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、セラミック多孔質膜、その製造方法及びセラミックフィルタの製造方法に係り、更に詳しくは、欠陥が少なく、膜厚が薄く均一なセラミック多孔質膜、その製造方法及びそのセラミック多孔質膜を含むセラミックフィルタの製造方法に関する。   The present invention relates to a ceramic porous membrane, a method for producing the same, and a method for producing a ceramic filter. More specifically, the ceramic porous membrane having few defects and a thin and uniform film thickness, a method for producing the ceramic porous membrane, and the ceramic porous membrane are provided. The present invention relates to a method for manufacturing a ceramic filter.

従来から、多孔質基材上にセラミック多孔質膜を成膜する方法は種々のものが知られている。例えば、ホットコート法が知られている(非特許文献1を参照)。これは、加熱したチューブ基材の外表面に、セラミックゾルを含む布を用いチューブ基材に擦りつけて塗布することにより多孔質膜を成膜する方法である。   Conventionally, various methods for forming a ceramic porous film on a porous substrate are known. For example, a hot coat method is known (see Non-Patent Document 1). This is a method of forming a porous film on the outer surface of a heated tube base material by rubbing and applying the cloth containing the ceramic sol to the tube base material.

チューブ形状や円筒レンコン状のモノリス形状多孔質基材の内表面にろ過成膜により多孔質膜を形成する方法も公知であり(特許文献1〜2を参照)、多孔質基材のゾル液が接触する内表面側より外表面側を低圧に保持することにより多孔質基材の内表面に成膜するものである。   A method of forming a porous film by filtration film formation on the inner surface of a monolithic porous base material having a tube shape or a cylindrical lotus shape is also known (see Patent Documents 1 and 2). A film is formed on the inner surface of the porous substrate by keeping the outer surface side lower than the contacting inner surface side at a low pressure.

特開平3−267129号公報JP-A-3-267129 特開昭61−238315号公報JP-A 61-238315 Journal of Membrane Science149(1988)127−135Journal of Membrane Science 149 (1988) 127-135

しかしながら、既存の限外濾過フィルタの作製方法はチューブ状の基材に適応できるが、セル数が多く膜面積が大きいレンコン状のモノリス形状多孔質基材に適応して平均細孔径が3nm以下のフィルタを作製しようとすると、5nm以上の大きな細孔あるいはクラック等の欠陥が発生し、所望の阻止特性が得られなかった。   However, although the existing ultrafiltration filter manufacturing method can be applied to a tube-shaped substrate, the average pore diameter is 3 nm or less in conformity with a lotus-like monolithic porous substrate having a large number of cells and a large membrane area. When an attempt was made to produce a filter, defects such as large pores of 5 nm or more or cracks were generated, and desired blocking characteristics could not be obtained.

本発明の課題は、欠陥が少なく、膜厚が薄く均一で細孔径が小さいセラミック多孔質膜、その製造方法及びそのセラミック多孔質膜を含むセラミックフィルタの製造方法を提供することにある。特に、大きさが数nm以下、また分子量が4000以下の物質を阻止するのに適し、例えば、有機溶媒中の分子量が数千程度の物質の除去にも適用することができ、有機膜では耐蝕性という意味で使用困難な環境でも使用可能なセラミックフィルタの製造方法を提供する。電子分野などにおいて、例えば、半導体、液晶ガラス、フォトマスク等の製造工程で用いられる有機物質(例えば、大きささが数nm以下で、分子量が5000以下であるレジストなど)とそれを剥離、洗浄するための各種溶剤(極めて高価であるために再利用が求められている)との加熱処理なしでの分離に適応可能であるセラミックフィルタを提供する。また、本発明の製造方法にて膜を積層することによりアルコールや酢酸等からの脱水にも適応可能である。   An object of the present invention is to provide a ceramic porous membrane with few defects, a thin film thickness, a uniform and small pore diameter, a method for producing the same, and a method for producing a ceramic filter including the ceramic porous membrane. In particular, it is suitable for blocking substances having a size of several nm or less and a molecular weight of 4000 or less. For example, it can be applied to the removal of substances having a molecular weight of about several thousand in an organic solvent. Provided is a method for manufacturing a ceramic filter that can be used even in an environment that is difficult to use in terms of performance. In the electronic field, for example, an organic substance (for example, a resist having a size of several nm or less and a molecular weight of 5,000 or less) used in a manufacturing process of a semiconductor, liquid crystal glass, photomask, and the like is peeled off and washed. Therefore, the present invention provides a ceramic filter that is adaptable to separation without heat treatment with various solvents (required to be reused because of its extremely high cost). In addition, it is possible to adapt to dehydration from alcohol, acetic acid and the like by laminating films by the production method of the present invention.

本発明者らは、セラミックゾル原液を作製した後に、希釈用の溶媒としてイソプロピルアルコールまたはイソプロピルアルコールの水溶液とセラミックゾル原液とを混合して得たセラミックゾルコート液をセルの内側表面に付着させ、前記セルの内側表面上に沿うように接触させつつ送風することによりセラミックゾルを乾燥させ、その後焼成することによってセラミック多孔質膜を形成することにより、上記課題を解決することができることを見出した。すなわち、本発明によれば、以下のセラミック多孔質膜、その製造方法、及びセラミック多孔質膜を含むセラミックフィルタの製造方法が提供される。   The inventors prepared a ceramic sol stock solution, and then attached a ceramic sol coating solution obtained by mixing isopropyl alcohol or an aqueous solution of isopropyl alcohol and a ceramic sol stock solution as a solvent for dilution to the inner surface of the cell, It has been found that the above-mentioned problems can be solved by forming the ceramic porous film by drying the ceramic sol by blowing while making contact with the inner surface of the cell and then firing. That is, according to the present invention, the following ceramic porous membrane, a manufacturing method thereof, and a manufacturing method of a ceramic filter including the ceramic porous membrane are provided.

[1] 隔壁により仕切られ軸方向に貫通する複数のセルを有する多孔質基材の前記セルの内側表面上に形成され、平均細孔径が3nm以下であり、かつ5nm以上の粗大細孔含有率が20%以下であるセラミック多孔質膜。 [1] The content of coarse pores formed on the inner surface of the cell of the porous substrate having a plurality of cells that are partitioned by the partition walls and penetrate in the axial direction, and having an average pore diameter of 3 nm or less and 5 nm or more A porous ceramic membrane having a content of 20% or less.

[2] セラミックゾル原液を作製した後に、希釈用の溶媒としてイソプロピルアルコール、またはイソプロピルアルコールの水溶液を前記セラミックゾル原液に混合してセラミックゾルコート液を作製し、多孔質基材のセルの内側表面上に、前記セラミックゾルコート液を付着させ、前記セルの内側表面上に沿うように接触させつつ送風することによりセラミックゾルを乾燥させ、その後焼成することにより、前記セラミックゾルによるセラミック多孔質膜を前記多孔質基材の前記セルの内側表面上に形成するセラミック多孔質膜の製造方法。 [2] After preparing the ceramic sol stock solution, isopropyl alcohol or an aqueous solution of isopropyl alcohol as a solvent for dilution is mixed with the ceramic sol stock solution to prepare a ceramic sol coating solution, and the inner surface of the porous substrate cell The ceramic sol coating liquid is attached on the ceramic sol by drying the ceramic sol by blowing while contacting the inner surface of the cell, and then firing the ceramic sol, thereby forming a ceramic porous film by the ceramic sol. A method for producing a ceramic porous film formed on an inner surface of the cell of the porous substrate.

[3] 前記セラミックゾルコート液のイソプロピルアルコール濃度が70wt%以上である前記[2]に記載のセラミック多孔質膜の製造方法。 [3] The method for producing a ceramic porous membrane according to [2], wherein the ceramic sol coating solution has an isopropyl alcohol concentration of 70 wt% or more.

[4] 前記セラミックゾルの乾燥時の風速が1〜300m/sで、温度が10〜60℃である前記[2]または[3]に記載のセラミック多孔質膜の製造方法。 [4] The method for producing a ceramic porous membrane according to the above [2] or [3], wherein the ceramic sol is dried at a wind speed of 1 to 300 m / s and a temperature of 10 to 60 ° C.

[5] セラミックゾル原液を作製した後に、希釈用の溶媒としてイソプロピルアルコール、またはイソプロピルアルコールの水溶液を前記セラミックゾル原液に混合してセラミックゾルコート液を作製し、セラミック基材のセルの内側表面上に、前記セラミックゾルコート液を付着させ、前記セルの内側表面上に沿うように接触させつつ送風することによりセラミックゾルを乾燥させ、その後焼成することにより、前記セラミックゾルによるセラミック多孔質膜を前記セラミック基材の前記セルの内側表面上に形成するセラミックフィルタの製造方法。 [5] After preparing the ceramic sol stock solution, isopropyl alcohol or an aqueous solution of isopropyl alcohol as a solvent for dilution is mixed with the ceramic sol stock solution to prepare a ceramic sol coating solution, on the inner surface of the ceramic substrate cell. The ceramic sol coating solution is attached to the ceramic sol by drying the ceramic sol by blowing while contacting the inner surface of the cell while being in contact with the inner surface of the cell. A method for producing a ceramic filter formed on the inner surface of the cell of a ceramic substrate.

[6] 前記セラミックゾルコート液のイソプロピルアルコール濃度が70wt%以上である前記[5]に記載のセラミックフィルタの製造方法。 [6] The method for producing a ceramic filter according to [5], wherein the ceramic sol coating liquid has an isopropyl alcohol concentration of 70 wt% or more.

[7] 前記セラミックゾルの乾燥時の風速が1〜300m/sで、温度が10〜60℃である前記[5]または[6]に記載のセラミックフィルタの製造方法。 [7] The method for producing a ceramic filter according to [5] or [6], wherein the ceramic sol has a wind speed of 1 to 300 m / s and a temperature of 10 to 60 ° C. when dried.

本発明のセラミック多孔質膜の製造方法及びセラミックフィルタの製造方法によれば、溶媒としてイソプロピルアルコールを用いたセラミックゾルを基材の表面上に付着させ、そのセラミックゾルを送風によって乾燥させ、その後焼成することにより、セラミックゾルによるセラミック多孔質膜を密に形成することができる。このように、送風によって乾燥すると、セラミック多孔質膜が密になるため、平均細孔径が小さく、高分離能を有するセラミック多孔質膜及びセラミックフィルタを製造することができる。本発明の製造方法は、特に、大きさが数nm以下、また分子量が4000以下の物質を阻止するのに適し、例えば、有機溶媒中の分子量が数千程度の物質の除去にも適用することができ、有機膜では耐蝕性という意味で使用困難な環境でも使用可能なセラミックフィルタの製造方法を提供する。本発明のセラミックフィルタは電子分野などにおいて、例えば、半導体、液晶ガラス、フォトマスク等の製造工程で用いられる有機物質(例えば、大きささが数nm以下で、分子量が5000以下であるレジストなど)とそれを剥離、洗浄するための各種溶剤(極めて高価であるために再利用が求められている)との加熱処理なしでの分離に適応可能である。また、本発明の製造方法にて膜を積層することによりアルコールや酢酸等からの脱水にも適応可能である。また、本発明の製造方法にて膜を積層することによりアルコールや酢酸等からの脱水にも適応可能である。   According to the method for producing a ceramic porous membrane and the method for producing a ceramic filter of the present invention, a ceramic sol using isopropyl alcohol as a solvent is adhered onto the surface of a substrate, the ceramic sol is dried by blowing, and then fired. By doing so, the ceramic porous membrane by ceramic sol can be formed densely. Thus, when dried by blowing, the ceramic porous membrane becomes dense, so that a ceramic porous membrane and a ceramic filter having a small average pore diameter and high separation ability can be produced. The production method of the present invention is particularly suitable for blocking substances having a size of several nm or less and a molecular weight of 4000 or less. For example, the production method of the present invention is also applicable to the removal of substances having a molecular weight of about several thousand in an organic solvent. The present invention provides a method for manufacturing a ceramic filter that can be used even in an environment where an organic film is difficult to use in terms of corrosion resistance. The ceramic filter of the present invention is used in the electronic field and the like, for example, with an organic substance (for example, a resist having a size of several nm or less and a molecular weight of 5,000 or less) used in a manufacturing process of a semiconductor, a liquid crystal glass, a photomask, It can be applied to separation without heat treatment with various solvents for peeling and cleaning it (required to be reused because it is very expensive). In addition, it is possible to adapt to dehydration from alcohol, acetic acid and the like by laminating films by the production method of the present invention. In addition, it is possible to adapt to dehydration from alcohol, acetic acid and the like by laminating films by the production method of the present invention.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

図1に本発明の製造方法によって形成されるセラミック多孔質膜1を示す。精密濾過膜(MF膜)11上に細孔径が5〜10nmの限外濾過膜であるUF膜14が形成され、そのUF膜14上に細孔径が0.5〜10nmのセラミック多孔質膜1が形成されている。UF膜14としては、例えば、チタニアを採用することができる。セラミック多孔質膜1は、セラミックゾルを1回から複数回積層した単層、または多層構造とされたナノ濾過膜であり、例えば、チタニアを採用することができる。   FIG. 1 shows a ceramic porous membrane 1 formed by the production method of the present invention. A UF membrane 14, which is an ultrafiltration membrane having a pore size of 5 to 10 nm, is formed on a microfiltration membrane (MF membrane) 11, and the ceramic porous membrane 1 having a pore size of 0.5 to 10 nm is formed on the UF membrane 14. Is formed. As the UF film 14, for example, titania can be adopted. The ceramic porous membrane 1 is a nanofiltration membrane having a single layer or a multilayer structure in which a ceramic sol is laminated one to several times. For example, titania can be adopted.

以上のように、UF膜14上にセラミック多孔質膜1を形成した場合、UF膜14の膜表面が平滑で欠陥も少ないため、セラミック多孔質膜1が薄く、欠陥無く成膜することが可能となる。即ち高分離能、高透過速度、低コストのセラミック多孔質膜1が作製可能となる。   As described above, when the ceramic porous membrane 1 is formed on the UF membrane 14, the surface of the UF membrane 14 is smooth and has few defects. Therefore, the ceramic porous membrane 1 is thin and can be formed without defects. It becomes. That is, the ceramic porous membrane 1 having high resolution, high permeation speed, and low cost can be produced.

一方、UF膜14を形成せずに精密濾過膜(MF膜)上にセラミック多孔質膜1を形成した場合、MF膜の表面の凸凹のため、表面を全てセラミック多孔質膜1で被覆するためにはセラミック層が厚膜となってしまい、低透過速度となる。またMF膜の表面が凸凹であるため、セラミック多孔質膜1が不均質となりクラック等の欠陥が発生しやすい。すなわち低分離性能となる。さらにクラックを発生させないためには一度に薄くしか成膜できず、工程数が増え高コストの原因となる。したがってUF膜14を形成し、UF膜14の表面を基材の表面としてセラミック多孔質膜1を形成することが望ましい。   On the other hand, when the ceramic porous membrane 1 is formed on the microfiltration membrane (MF membrane) without forming the UF membrane 14, because the surface of the MF membrane is uneven, the entire surface is covered with the ceramic porous membrane 1. In this case, the ceramic layer becomes thick and has a low permeation rate. In addition, since the surface of the MF film is uneven, the ceramic porous film 1 becomes inhomogeneous and defects such as cracks are likely to occur. That is, low separation performance is achieved. Furthermore, in order not to generate cracks, only a thin film can be formed at one time, which increases the number of processes and causes high costs. Therefore, it is desirable to form the ceramic porous membrane 1 by forming the UF membrane 14 and using the surface of the UF membrane 14 as the surface of the substrate.

UF膜14をセラミック多孔質膜1形成の基材として、UF膜14上にセラミック多孔質膜1を形成すると、欠陥の少ないセラミック多孔質膜1、すなわち高分離能のセラミック多孔質膜1を形成できる。基材の最表面層は、成膜する下地層でありUF膜14である。さらに、送風乾燥を行うことにより、密なセラミック多孔質膜1が形成できる。   When the ceramic porous membrane 1 is formed on the UF membrane 14 using the UF membrane 14 as a base material for forming the ceramic porous membrane 1, the ceramic porous membrane 1 with few defects, that is, the ceramic porous membrane 1 with high resolution is formed. it can. The outermost surface layer of the substrate is a base layer on which a film is formed, and is a UF film 14. Furthermore, the dense ceramic porous membrane 1 can be formed by performing air drying.

次に図2を用いて、本発明の製造方法によってセラミック多孔質膜1が形成されるセラミックフィルタ10の一実施形態を説明する。本発明のセラミックフィルタ10は、隔壁22により画成され軸方向の流体通路を形成する複数のセル23を有するモノリス形状を成している。本実施形態では、セル23は円形断面を有し、その内壁面に、図1に示されたようなセラミック多孔質膜1が形成されている。セル23は、六角断面や四角形断面を有するように形成してもよい。このような構造によれば、例えば、混合体を入口側端面25からセル23に導入すると、その混合体を構成する一方が、セル23内壁に形成されたチタニア膜1において分離され、多孔質の隔壁22を透過してセラミックフィルタ10の最外壁から排出されるため、混合体を分離することができる。つまり、セラミックフィルタ10に形成されたセラミック多孔質膜1は、分離膜として利用することができる。   Next, an embodiment of the ceramic filter 10 in which the ceramic porous membrane 1 is formed by the manufacturing method of the present invention will be described with reference to FIG. The ceramic filter 10 of the present invention has a monolith shape having a plurality of cells 23 defined by a partition wall 22 and forming an axial fluid passage. In the present embodiment, the cell 23 has a circular cross section, and the ceramic porous membrane 1 as shown in FIG. 1 is formed on the inner wall surface thereof. The cell 23 may be formed to have a hexagonal cross section or a square cross section. According to such a structure, for example, when the mixture is introduced from the inlet side end face 25 to the cell 23, one of the mixture is separated in the titania film 1 formed on the inner wall of the cell 23, and is porous. Since it passes through the partition wall 22 and is discharged from the outermost wall of the ceramic filter 10, the mixture can be separated. That is, the ceramic porous membrane 1 formed on the ceramic filter 10 can be used as a separation membrane.

基材本体である多孔質基材11は、押し出し成形等により多孔質材料からなる円柱形状のモノリス型フィルターエレメントとして形成されており、多孔質材料としては、耐食性と温度変化によるろ過部の細孔径の変化が少ない点や充分な強度が得られる点から、例えば、アルミナを用いることができるが、アルミナ以外にコーディエライト、ムライト、炭化珪素等のセラミックス材料を使用することもできる。セラミック多孔質膜1を成膜する面(最表面層)は、細孔径が好ましくは5〜20nm、より好ましくは、5〜10nmの多数の細孔を有する多孔質体で形成されるとよく、最表面層は、基材本体であってもよいが、図1の実施形態においては、UF膜14が上記範囲の最表面層を形成している。   The porous substrate 11 which is a substrate body is formed as a cylindrical monolith type filter element made of a porous material by extrusion molding or the like. As the porous material, the pore diameter of the filtration part due to corrosion resistance and temperature change is used. For example, alumina can be used from the viewpoint that the change in the thickness is small and sufficient strength is obtained. In addition to alumina, ceramic materials such as cordierite, mullite, and silicon carbide can also be used. The surface (outermost surface layer) on which the ceramic porous membrane 1 is formed is preferably a porous body having a large number of pores having a pore diameter of preferably 5 to 20 nm, more preferably 5 to 10 nm. The outermost surface layer may be a substrate body, but in the embodiment of FIG. 1, the UF membrane 14 forms the outermost surface layer in the above range.

本発明のセラミック多孔質膜1は、多孔質基材11の内周面(内壁面)に対して成膜するため、長さが50cm以上である比較的長尺のレンコン状の形状の多孔質基材を好適に用いることができる。   Since the ceramic porous membrane 1 of the present invention is formed on the inner peripheral surface (inner wall surface) of the porous base material 11, it is a relatively long lotus-like porous material having a length of 50 cm or more. A substrate can be suitably used.

次に、セラミック多孔質膜1の製造方法について図3を用いて、セラミック多孔質膜1として、チタニア膜を形成する場合を例として説明する。まず、セラミック多孔質膜1を形成するためのセラミックコート液(以下、コート液ともいう)を用意する。コート液は、セラミックゾル原液(以下、ゾル原液ともいう)をイソプロピルアルコールまたはその水溶液で希釈して得る。ゾル原液は金属アルコキシド(例えばチタンテトライソプロポキシド)と硝酸、または塩酸の混合液を2〜10℃に保持しながら水と混合し、さらに保持温度を10〜40℃にし、予め硝酸と混合しておいたイソプロピルアルコールと混合して得られる。なお、ゾル原液は、0.23wt%〜1.2wt%、好ましくは、0.3wt%〜0.5wt%のチタニア(TiO)を含むゾル液である。そして、得られたゾル原液をイソプロピルアルコール(IPA)で希釈し、希釈後のコート液中のIPA濃度が70wt%以上、好ましくは95wt%以上、さらに好ましくは99wt%となるように調整し、コート液を得る。希釈後のチタニア濃度は0.02〜0.2wt%が特に好ましい。濃度が0.02wt%以下の場合、膜が薄膜化しすぎるために目的の膜厚を得るまでの成膜回数が増え生産性が悪くなり、さらに下地の影響を受けやすくなるために不均質となりクラック等の欠陥が発生しやすくなる。濃度が0.2wt%以上の場合、一度の成膜で得られる膜厚が大きくなり、クラックが発生しやすくなる。さらに、イソプロピルアルコールは水に比べて、乾燥速度が大きく、表面張力が小さいので、密で欠陥の少ない膜を得るのに非常に有効である。また、ここではセラミックゾルの成分としてチタニアを用いているが、チタニアの変わりにシリカ、ジルコニアの成分のゾルを用いることもできる。 Next, the manufacturing method of the ceramic porous membrane 1 will be described with reference to FIG. 3 as an example in which a titania membrane is formed as the ceramic porous membrane 1. First, a ceramic coating solution (hereinafter also referred to as a coating solution) for forming the ceramic porous membrane 1 is prepared. The coating liquid is obtained by diluting a ceramic sol stock solution (hereinafter also referred to as a sol stock solution) with isopropyl alcohol or an aqueous solution thereof. The sol stock solution is mixed with water while maintaining a mixed solution of metal alkoxide (for example, titanium tetraisopropoxide) and nitric acid or hydrochloric acid at 2 to 10 ° C., and further maintained at a holding temperature of 10 to 40 ° C. and previously mixed with nitric acid. It is obtained by mixing with isopropyl alcohol. The sol stock solution is a sol solution containing 0.23 wt% to 1.2 wt%, preferably 0.3 wt% to 0.5 wt% of titania (TiO 2 ). Then, the obtained sol stock solution is diluted with isopropyl alcohol (IPA), and adjusted so that the IPA concentration in the diluted coating solution is 70 wt% or more, preferably 95 wt% or more, more preferably 99 wt%, Obtain a liquid. The titania concentration after dilution is particularly preferably 0.02 to 0.2 wt%. If the concentration is 0.02 wt% or less, the film becomes too thin and the number of film formations until the target film thickness is obtained increases, resulting in poor productivity. Such defects are likely to occur. When the concentration is 0.2 wt% or more, the film thickness obtained by a single film formation becomes large and cracks are likely to occur. Furthermore, since isopropyl alcohol has a higher drying rate and lower surface tension than water, it is very effective in obtaining a dense film with few defects. Here, titania is used as a component of the ceramic sol, but a sol of silica or zirconia can be used instead of titania.

本発明におけるコート液の作製方法は、セラミックゾル原液を先に作製し、それをIPAで希釈するという2段プロセスであり、このようにゾル原液を作製後IPAで希釈することにより、細孔径の小さい、具体的には、大きさが数nm以下、また分子量が4000以下の物質を阻止するのに適したセラミック多孔質膜を作製することが可能となる。これに対し、セラミックゾル原液作製時に希釈溶媒としてあらかじめIPAを混合して所望の濃度のコート液を得る1段プロセスでは、凝集したゾル粒子が多くなり、粗大細孔の数が増えてしまうので好ましくない。   The method for preparing the coating solution in the present invention is a two-stage process in which a ceramic sol stock solution is first prepared and diluted with IPA. Thus, by preparing the sol stock solution and diluting with IPA, the pore size can be reduced. It is possible to produce a ceramic porous membrane that is small, specifically, suitable for blocking substances having a size of several nm or less and a molecular weight of 4000 or less. On the other hand, in a one-stage process in which IPA is mixed in advance as a diluting solvent when preparing a ceramic sol stock solution to obtain a coating solution having a desired concentration, agglomerated sol particles increase and the number of coarse pores increases. Absent.

次にセラミックゾルコート液をディップ法、濾過成膜法、または基材上部より滴下してセルの内側表面上を流動させる方法などにより多孔質基材11のセル23の表面上に付着させる。   Next, the ceramic sol coating solution is deposited on the surface of the cell 23 of the porous substrate 11 by a dipping method, a filtration film formation method, or a method of dropping the ceramic sol coating solution from the upper part of the substrate and flowing it on the inner surface of the cell.

次に、図3及び図5に示すように、例えば、ドライヤ等によりセル内に風を膜表面上に沿うように接触させつつ送って乾燥させる。風の温度は、好ましくは、10〜60℃程度、より好ましくは、20〜40℃の室温である。10℃よりも低い温度の風を通過させると、セル表面に付着したチタニアゾルの乾燥が進展しないため、密な膜が得られず細孔径が大きい膜となってしまう。また、60℃よりも高い温度で温風を通過させると膜面にクラックが発生しやすく好ましくない。乾燥のための風がセル内を通過する速度は、1〜300m/秒、より好ましくは、50〜200m/秒で行うとよい。風がセル内を通過する速度が1m/秒以下だと密な膜が得られず細孔径が大きくなり、また、風がセル内を通過する速度が300m/秒以上だと膜面にクラックが発生しやすく、好ましくない。送風乾燥は、0.5〜15時間程度行うとよい。   Next, as shown in FIG. 3 and FIG. 5, for example, a dryer or the like is sent into the cell so as to be in contact with the surface of the membrane and dried. The temperature of the wind is preferably about 10-60 ° C, more preferably 20-40 ° C. When air having a temperature lower than 10 ° C. is passed, drying of the titania sol adhering to the cell surface does not progress, so that a dense film cannot be obtained, resulting in a film having a large pore diameter. Moreover, if warm air is passed at a temperature higher than 60 ° C., cracks are likely to occur on the film surface, which is not preferable. The speed at which the wind for drying passes through the cell is 1 to 300 m / second, more preferably 50 to 200 m / second. If the velocity of the wind passing through the cell is 1 m / sec or less, a dense film cannot be obtained and the pore diameter becomes large, and if the velocity of the wind passing through the cell is 300 m / sec or more, cracks are generated on the membrane surface. It is easy to generate and is not preferable. The air drying is preferably performed for about 0.5 to 15 hours.

以上のような条件で、セル内に風を膜表面上に沿うように接触させつつ送ることにより、セル内側から、つまり膜の表面側から溶媒が蒸発する。このような送風を行うことにより乾燥させると、UF膜14へチタニア膜1が密に膜化する構造とすることができる。また、送風乾燥は均一乾燥が困難なモノリス形状には非常に有効である。膜表面から溶媒が乾燥することが膜の緻密化に重要と考えられるため、外周面をマスクすることにより、チタニアゾルの含まれる溶媒の基材側からの蒸発を防止するとより良好な膜を形成することができる。   Under the above conditions, the solvent evaporates from the inside of the cell, that is, from the surface side of the film, by sending the wind in the cell so as to be in contact with the surface of the film. When dried by performing such blowing, the titania film 1 can be densely formed on the UF film 14. Also, blow drying is very effective for a monolith shape where uniform drying is difficult. Since it is thought that drying of the solvent from the film surface is important for densification of the film, it is possible to form a better film by masking the outer peripheral surface to prevent evaporation of the solvent containing the titania sol from the substrate side. be able to.

その後、100℃/hrにて昇温し、400〜500℃で1時間保持した後、100℃/hrで降温する。なお、基材が大きい場合、昇降温の速度はさらに小さくてもよい。以上のコート液(チタニアゾル液)の流し込み、乾燥、昇温、降温の操作を1回〜5回繰り返す。   Thereafter, the temperature is raised at 100 ° C./hr, held at 400 to 500 ° C. for 1 hour, and then lowered at 100 ° C./hr. In addition, when a base material is large, the speed of temperature raising / lowering may be further smaller. The above-described coating liquid (titania sol liquid) pouring, drying, temperature raising, and temperature lowering operations are repeated 1 to 5 times.

以上の工程により、UF膜14を基材とし、そのUF膜14の表面上にセラミック多孔質膜であるチタニア膜1が形成される。   Through the above steps, the titania film 1 which is a ceramic porous film is formed on the surface of the UF film 14 using the UF film 14 as a base material.

これに対し、図4(a)に示すMF膜11上に直接セラミック多孔質膜1を形成する場合は、図4(b)に示すように、セラミック多孔質膜1aを形成しても、表面を全て覆うことができず、凹凸によってセラミック多孔質膜1にクラックが発生しやすくなる。図4(c)〜図4(e)に示すように、セラミック多孔質膜1b,1c,1dを重ねて厚膜とすることにより、セラミック多孔質膜1を平坦にすることができるが、この場合、低透過速度となり、工程数も増加するための高コストとなる。   On the other hand, when the ceramic porous membrane 1 is directly formed on the MF membrane 11 shown in FIG. 4A, as shown in FIG. 4B, even if the ceramic porous membrane 1a is formed, the surface Cannot be covered completely, and cracks are likely to occur in the ceramic porous membrane 1 due to the unevenness. As shown in FIGS. 4C to 4E, the ceramic porous film 1 can be flattened by stacking the ceramic porous films 1b, 1c, and 1d to form a thick film. In this case, the transmission rate is low, and the number of processes is increased, resulting in high cost.

また、送風乾燥を行うことにより、セラミック多孔質膜1がUF膜14上に密な構造で形成され、高分離能を有する膜を得ることができる。   Further, by performing blow drying, the ceramic porous membrane 1 is formed on the UF membrane 14 with a dense structure, and a membrane having high separation ability can be obtained.

以上のようにして得られた、内壁面にナノレベルの薄膜状のセラミック多孔質膜1が形成されたセラミックフィルタ10は、混合液体等を分離するフィルタとして好適に用いることができる。   The ceramic filter 10 with the nano-level thin film porous ceramic membrane 1 formed on the inner wall surface obtained as described above can be suitably used as a filter for separating a mixed liquid or the like.

以下、本発明の製造方法を実施例により更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。まず、本実施例で使用した多孔質基材、セラミックゾル液及び、成膜方法等について説明する。   EXAMPLES Hereinafter, although the manufacturing method of this invention is demonstrated in detail by an Example, this invention is not limited by these Examples. First, the porous substrate, ceramic sol solution, film forming method, and the like used in this example will be described.

(実施例1〜12)
(1)多孔質基材
平均細孔径が5〜10nmのUF膜が形成されているモノリス形状(外径30mm,セル内径3mm×37セル,長さ65〜1000mm)を基材とした。尚、基材両端部はガラスにてシールした。
(Examples 1-12)
(1) Porous base material A monolith shape (outer diameter 30 mm, cell inner diameter 3 mm × 37 cells, length 65 to 1000 mm) on which a UF membrane having an average pore diameter of 5 to 10 nm was formed was used as a base material. The both ends of the substrate were sealed with glass.

(2)セラミックゾルコート液(セラミックゾルコートスラリー)
セラミックゾルコートスラリーは、ゾル原液をアルコールまたは水で希釈して得た。ゾル原液は金属アルコキシド(チタンテトライソプロポキシド)と硝酸、または塩酸の混合液を5℃に保持しながら水と混合し、さらに保持温度を25℃(液調整温度)にし、予め硝酸と混合しておいたイソプロピルアルコール、または水と混合し製造した。そして、得たゾル原液をイソプロピルアルコール(IPA)または水で希釈し、チタニア換算で0.1wt%となるように調整し、セラミックゾルコート液(セラミックゾルコートスラリー)を得た。
(2) Ceramic sol coating liquid (ceramic sol coating slurry)
The ceramic sol coat slurry was obtained by diluting the sol stock solution with alcohol or water. The sol stock solution was mixed with water while maintaining a mixed solution of metal alkoxide (titanium tetraisopropoxide) and nitric acid or hydrochloric acid at 5 ° C, and the holding temperature was 25 ° C (liquid adjustment temperature), and mixed with nitric acid in advance. Prepared by mixing with isopropyl alcohol or water. The obtained sol stock solution was diluted with isopropyl alcohol (IPA) or water and adjusted to 0.1 wt% in terms of titania to obtain a ceramic sol coating solution (ceramic sol coating slurry).

(3)成膜(ディップ)
多孔質基材を成膜チャンバー内にセットした。次に、基材下部よりチタニアゾル液を1.0l/minの送液速度で送液ポンプによって供給し、基材上部から余剰なゾル液が出たら、送液を止め、排液弁を開け、径内のチタニアゾル液を排出させた。その後、成膜チャンバーから基材を取り出し、手で基材を振るように動かし、余剰なゾル液を除去した。
(3) Film formation (dip)
The porous substrate was set in the film forming chamber. Next, the titania sol liquid is supplied from the lower part of the base material by a liquid feed pump at a liquid feed speed of 1.0 l / min. When excess sol liquid comes out from the upper part of the base material, the liquid feeding is stopped and the drainage valve is opened. The titania sol solution within the diameter was discharged. Then, the base material was taken out from the film forming chamber and moved so as to shake the base material by hand to remove excess sol solution.

(4)乾燥(送風)
チタニアゾルを流し込んだ多孔質基材11のセル23内を表1の風速と温度の風が通過するように送風機などを用いて10時間乾燥させた。
(4) Drying (air blowing)
The porous substrate 11 into which the titania sol was poured was dried for 10 hours by using a blower or the like so that the wind velocity and temperature in Table 1 passed through the cell 23.

(5)焼成
電気炉で100℃/hrにて昇温し、400〜500℃で1時間保持した後、100℃/hrで降温した。尚、上記(3)〜(5)の操作を2回繰り返して実施例の試料を得た。
(5) Firing The temperature was raised at 100 ° C./hr in an electric furnace, held at 400 to 500 ° C. for 1 hour, and then lowered at 100 ° C./hr. In addition, the operation | movement of said (3)-(5) was repeated twice, and the sample of the Example was obtained.

表1に実施例及び比較例の成膜条件及び乾燥条件と、形成されたチタニア膜の平均細孔径及び分画分子量(フィルタが90%阻止できる分子の大きさを分子量で表したもの)を示す。成膜条件は、チタニアゾル液の作製方法、チタニアゾル液の希釈溶媒種類、コート液中のIPA濃度を変化させた。実施例1を基準として各条件を変化させた。   Table 1 shows the film forming conditions and drying conditions of Examples and Comparative Examples, and the average pore diameter and fractional molecular weight of the formed titania film (the molecular weight indicating the molecular size that the filter can block by 90%). . The film forming conditions were such that the titania sol liquid preparation method, the type of dilute solvent of the titania sol liquid, and the IPA concentration in the coating liquid were changed. Each condition was changed on the basis of Example 1.

Figure 2008246304
Figure 2008246304

表1に示した平均細孔径は、セラミックフィルタにヘキサンと窒素を同時に流し、ヘキサンの分圧を変化させて、そのときの窒素透過流量を測定し、測定したヘキサン分圧の値をケルビンの凝縮式に当てはめて得た細孔径分布から求めた(Journal of Membrane Science186(2001)257−265を参照)。ヘキサン分圧0の時の窒素透過流量を1としてその値が半分となる細孔径を平均細孔径とした。粗大細孔径含有率は5nmの細孔径のヘキサン分圧0の時の窒素透過流量を1としたときの窒素透過流量割合で表した(図6参照)。   The average pore size shown in Table 1 is that hexane and nitrogen are simultaneously flowed through the ceramic filter, the partial pressure of hexane is changed, the nitrogen permeation flow rate is measured, and the measured hexane partial pressure value is condensed by Kelvin. It calculated | required from the pore size distribution obtained by applying to a formula (refer Journal of Membrane Science 186 (2001) 257-265). When the hexane partial pressure was 0, the nitrogen permeation flow rate was 1, and the pore diameter at which the value was halved was defined as the average pore diameter. The coarse pore diameter content was expressed as a nitrogen permeation flow rate ratio when the nitrogen permeation flow rate was 1 when the hexane partial pressure was 0 with a pore size of 5 nm (see FIG. 6).

図6に実施例1及び比較例1の細孔径に対する相対窒素透過流量を示す。実施例1では、平均細孔径が比較例1に対して小さくなるとともに、粗大細孔径含有率も大幅に低下した。これは、細孔径の平均が小さくなったのみならず、大きな細孔径のものが大幅に減少したことを示している。   FIG. 6 shows the relative nitrogen permeation flow rate with respect to the pore diameters of Example 1 and Comparative Example 1. In Example 1, the average pore diameter was smaller than that of Comparative Example 1, and the coarse pore diameter content was significantly reduced. This indicates that not only the average pore diameter was reduced, but also that having a large pore diameter was greatly reduced.

表1に示した分画分子量はセラミックフィルタにPEG(ポリエチレングリコール)の水溶液を循環濾過させて、その阻止率(供給液とろ過液中のPEG濃度比で評価)から求めた。   The molecular weight cut-off shown in Table 1 was obtained from the blocking rate (evaluated by the ratio of PEG concentration in the supply liquid and the filtrate) by circulating and filtering an aqueous solution of PEG (polyethylene glycol) through a ceramic filter.

(実施例1)
実施例1は平均細孔径が1.1nm、粗大細孔含有率が1%と小さく、その結果、分画分子量も1000と小さい値となった。
Example 1
In Example 1, the average pore diameter was as small as 1.1 nm and the coarse pore content was as small as 1%. As a result, the fractional molecular weight was as small as 1000.

(製造プロセス:実施例1、比較例1)
コート液の製造プロセスの検討を行った。コート液の製造を1段階(比較例1)にすると2段階のもの(実施例1)に比べて平均細孔径と欠陥量が大きくなり、分画分子量も大きくなった。
(Manufacturing process: Example 1, Comparative Example 1)
The manufacturing process of the coating liquid was examined. When the production of the coating liquid was carried out in one stage (Comparative Example 1), the average pore diameter and the amount of defects were increased and the fractional molecular weight was also larger than that in the two stages (Example 1).

(希釈溶媒の種類:実施例1、比較例2)
希釈溶媒の種類の検討を行った。希釈溶媒を水にすると(比較例2)、IPA希釈(実施例1)に比べて、平均細孔径、粗大細孔含有率、分画分子量、全ての値が大きくなった。
(Dilution solvent type: Example 1, Comparative example 2)
The type of dilution solvent was examined. When the diluent solvent was water (Comparative Example 2), the average pore diameter, coarse pore content, fractional molecular weight, and all the values were larger than those of IPA dilution (Example 1).

(IPAの濃度:実施例1〜4、比較例3)
コート液中のIPA濃度の検討を行った。IPA濃度が大きくなるにつれて平均細孔径、粗大細孔含有率、分画分子量、全ての値が小さくなった。IPA濃度が70wt%以上では分画分子量が4000以下になり、さらに95wt%以上(実施例1,2)では分画分子量が2000以下になった。
(IPA concentration: Examples 1 to 4, Comparative Example 3)
The IPA concentration in the coating solution was examined. As the IPA concentration increased, the average pore diameter, coarse pore content, fractional molecular weight, and all values decreased. When the IPA concentration was 70 wt% or more, the molecular weight cut-off was 4000 or less, and when it was 95 wt% or more (Examples 1 and 2), the molecular weight cut-off was 2000 or less.

(風速:実施例1,5〜8、比較例4,5)
乾燥時の風速の検討をおこなった。風速が1〜300m/sの間では平均細孔径が3nm以下、粗大細孔含有率が20%以下となり分画分子量が4000以下となった。さらに、風速が50〜200m/sの間(実施例5,6)では平均細孔径が1.5nm以下、粗大細孔含有率が10%以下となり、分画分子量も1500以下となった。また、風速が0(自然乾燥)、400m/sの場合は平均細孔径、粗大細孔含有率が大きくなり分画分子量もそれぞれが9000、7000と大きい値となった。
(Wind speed: Examples 1, 5-8, Comparative Examples 4 and 5)
The wind speed at the time of drying was examined. When the wind speed was 1 to 300 m / s, the average pore diameter was 3 nm or less, the coarse pore content was 20% or less, and the molecular weight cut-off was 4000 or less. Furthermore, when the wind speed was 50 to 200 m / s (Examples 5 and 6), the average pore diameter was 1.5 nm or less, the coarse pore content was 10% or less, and the molecular weight cut-off was 1500 or less. When the wind speed was 0 (natural drying) and 400 m / s, the average pore diameter and coarse pore content increased, and the fractional molecular weights were also large values of 9000 and 7000, respectively.

(乾燥時の温度:実施例1,9−12、比較例6,7)
乾燥時の温度の検討を行った。10〜60℃の間では平均細孔径が3nm以下、粗大細孔含有率が20%以下となり、分画分子量が4000以下になった。さらに、温度が20〜40℃の場合(実施例9,10)は平均細孔径が1.5nm以下、粗大細孔含有率が10%以下となり、分画分子量が1000以下になり、より阻止率の高い膜になった。また、温度が5、70℃の場合は平均細孔径、粗大細孔含有率が大きくなり分画分子量もそれぞれが8000、9000と大きい値となった。
(Temperature during drying: Examples 1, 9-12, Comparative Examples 6 and 7)
The temperature at the time of drying was examined. Between 10 and 60 ° C., the average pore diameter was 3 nm or less, the coarse pore content was 20% or less, and the molecular weight cut-off was 4000 or less. Further, when the temperature is 20 to 40 ° C. (Examples 9 and 10), the average pore diameter is 1.5 nm or less, the coarse pore content is 10% or less, the fractional molecular weight is 1000 or less, and the blocking rate is higher. It became a high film. Further, when the temperature was 5 and 70 ° C., the average pore diameter and the coarse pore content were increased, and the fractional molecular weights were also large values of 8000 and 9000, respectively.

希釈溶媒にIPAを用いた方が、水を用いた場合よりも小さい分子量のPEGを阻止することができる。   The use of IPA as the diluent solvent can block PEG having a smaller molecular weight than when water is used.

(評価)
表1に示すように、表面の細孔径が5〜10nmの範囲の多孔質基材に、イソプロピルアルコール等のアルコールを溶媒としたセラミックゾルを付着させ、送風乾燥を行うことにより、膜を形成する過程で起こる加水分解・脱水縮合反応が抑制され、結果として粒子の成長が抑制され、細孔径(粒子間隔)が小さくなる。つまり本発明のセラミック多孔質膜の製造方法によれば、セラミックゾルを基材の表面上に付着させ、そのセラミックゾルを送風によって膜表面から選択的に乾燥させ、その後焼成することにより、セラミック多孔質膜を密に形成することができる。このように、送風によって乾燥すると、セラミック多孔質膜が密になるため、平均細孔径が小さく、高分離能を有するセラミック多孔質膜を製造することができる。
(Evaluation)
As shown in Table 1, a ceramic sol using an alcohol such as isopropyl alcohol as a solvent is attached to a porous substrate having a surface pore diameter in the range of 5 to 10 nm, and blown and dried to form a film. Hydrolysis / dehydration condensation reaction that occurs in the process is suppressed, and as a result, the growth of particles is suppressed and the pore diameter (particle interval) is reduced. That is, according to the method for producing a ceramic porous membrane of the present invention, the ceramic sol is adhered to the surface of the base material, the ceramic sol is selectively dried from the membrane surface by blowing air, and then fired, whereby the ceramic porous A dense membrane can be formed. Thus, since the ceramic porous membrane becomes dense when dried by blowing, a ceramic porous membrane having a small average pore diameter and high separation ability can be produced.

以上のように、所望の多孔質膜(平均細孔径が3nm以下、好ましくは1.5nm以下、粗大細孔含有率が20%以下、好ましくは10%以下、分画分子量が4000以下、好ましくは3000以下)を得るためには、IPA濃度を70wt%以上、好ましくは95wt%以上、風速を1〜300m/s、好ましくは50〜200m/s、風の温度を10〜60℃、好ましくは20〜40℃とするとよい。   As described above, the desired porous membrane (average pore diameter is 3 nm or less, preferably 1.5 nm or less, coarse pore content is 20% or less, preferably 10% or less, and the molecular weight cut-off is 4000 or less, preferably 3000) or less), the IPA concentration is 70 wt% or more, preferably 95 wt% or more, the wind speed is 1 to 300 m / s, preferably 50 to 200 m / s, and the wind temperature is 10 to 60 ° C., preferably 20 It is good to set it to -40 degreeC.

特に、希釈溶媒の95wt%以上がイソプロピルアルコールであるセラミックゾルを使用すると良好なセラミック多孔質膜を形成することができる。セラミックゾル液の溶媒としてイソプロピルアルコールを用いることにより、濡れ性が向上し、その結果、より均一でより薄い膜が形成され、膜剥がれなどの欠陥の少ない膜ができる。送風乾燥には常温で溶媒の蒸発速度を増大させる効果がある。   In particular, when a ceramic sol in which 95 wt% or more of the diluting solvent is isopropyl alcohol is used, a good ceramic porous film can be formed. By using isopropyl alcohol as the solvent of the ceramic sol solution, the wettability is improved. As a result, a more uniform and thinner film is formed, and a film with less defects such as film peeling can be formed. Blow drying has the effect of increasing the evaporation rate of the solvent at room temperature.

本発明によれば、少ない成膜回数で、粗大細孔や欠陥が少なく、膜厚が薄く均一な膜を得ることができるため、このようなセラミック多孔質膜が形成されたセラミックフィルタは、フィルタとして好適に用いることができる。また、内壁面にナノレベルの薄膜状のセラミック多孔質膜が形成されたセラミックフィルタは、酸性あるいはアルカリ性溶液、あるいは有機溶媒中での分離除去等、有機のフィルタが使用できない箇所にも用いることができる。   According to the present invention, it is possible to obtain a thin and uniform film with few coarse pores and defects with a small number of film formations. Therefore, the ceramic filter formed with such a ceramic porous film is a filter. Can be suitably used. Ceramic filters with a nano-level thin film porous ceramic membrane formed on the inner wall surface can also be used in places where organic filters cannot be used, such as separation and removal in acidic or alkaline solutions or organic solvents. it can.

本発明の一実施形態であるセラミックフィルタの断面図である。It is sectional drawing of the ceramic filter which is one Embodiment of this invention. 本発明の一実施形態であるセラミックフィルタを示す斜視図である。It is a perspective view which shows the ceramic filter which is one Embodiment of this invention. 本発明のセラミックフィルタのチタニア膜の製造方法の一例を概略的に示す概略図である。It is the schematic which shows roughly an example of the manufacturing method of the titania film | membrane of the ceramic filter of this invention. UF膜が形成されない場合のチタニア膜を説明する図である。It is a figure explaining a titania film in case a UF film is not formed. 送風乾燥により膜面から溶媒が蒸発しているのを表した図である。It is a figure showing that the solvent has evaporated from the film | membrane surface by ventilation drying. 実施例1と比較例2の細孔径分布を示した図である。FIG. 4 is a diagram showing pore size distributions of Example 1 and Comparative Example 2.

符号の説明Explanation of symbols

1:セラミック多孔質膜(チタニア膜)、10:セラミックフィルタ、11:多孔質基材、14:UF膜、22:隔壁、23:セル、25:入口側端面、41:マスキングテープ。 1: Ceramic porous membrane (titania membrane), 10: Ceramic filter, 11: Porous substrate, 14: UF membrane, 22: Partition wall, 23: Cell, 25: End side end surface, 41: Masking tape.

Claims (7)

隔壁により仕切られ軸方向に貫通する複数のセルを有する多孔質基材の前記セルの内側表面上に形成され、平均細孔径が3nm以下であり、かつ5nm以上の粗大細孔含有率が20%以下であるセラミック多孔質膜。   A porous substrate having a plurality of cells that are partitioned by partition walls and penetrates in the axial direction is formed on the inner surface of the cell, the average pore diameter is 3 nm or less, and the coarse pore content ratio of 5 nm or more is 20%. A ceramic porous membrane that is: セラミックゾル原液を作製した後に、希釈用の溶媒としてイソプロピルアルコール、またはイソプロピルアルコールの水溶液を前記セラミックゾル原液に混合してセラミックゾルコート液を作製し、多孔質基材のセルの内側表面上に、前記セラミックゾルコート液を付着させ、前記セルの内側表面上に沿うように接触させつつ送風することによりセラミックゾルを乾燥させ、その後焼成することにより、前記セラミックゾルによるセラミック多孔質膜を前記多孔質基材の前記セルの内側表面上に形成するセラミック多孔質膜の製造方法。   After preparing the ceramic sol stock solution, isopropyl alcohol as a solvent for dilution, or an aqueous solution of isopropyl alcohol is mixed with the ceramic sol stock solution to prepare a ceramic sol coating solution, on the inner surface of the porous substrate cell, The ceramic sol coating liquid is adhered, and the ceramic sol is dried by blowing while contacting along the inner surface of the cell, and then fired, whereby the ceramic porous film made of the ceramic sol is porous. A method for producing a ceramic porous membrane formed on the inner surface of the cell of a substrate. 前記セラミックゾルコート液のイソプロピルアルコール濃度が70wt%以上である請求項2に記載のセラミック多孔質膜の製造方法。   The method for producing a ceramic porous film according to claim 2, wherein the ceramic sol coating solution has an isopropyl alcohol concentration of 70 wt% or more. 前記セラミックゾルの乾燥時の風速が1〜300m/sで、温度が10〜60℃である請求項2または3に記載のセラミック多孔質膜の製造方法。   The method for producing a ceramic porous membrane according to claim 2 or 3, wherein the ceramic sol has a wind speed during drying of 1 to 300 m / s and a temperature of 10 to 60 ° C. セラミックゾル原液を作製した後に、希釈用の溶媒としてイソプロピルアルコール、またはイソプロピルアルコールの水溶液を前記セラミックゾル原液に混合してセラミックゾルコート液を作製し、セラミック基材のセルの内側表面上に、前記セラミックゾルコート液を付着させ、前記セルの内側表面上に沿うように接触させつつ送風することによりセラミックゾルを乾燥させ、その後焼成することにより、前記セラミックゾルによるセラミック多孔質膜を前記セラミック基材の前記セルの内側表面上に形成するセラミックフィルタの製造方法。   After preparing the ceramic sol stock solution, isopropyl alcohol as a solvent for dilution, or an aqueous solution of isopropyl alcohol is mixed with the ceramic sol stock solution to prepare a ceramic sol coating solution, and on the inner surface of the ceramic substrate cell, The ceramic sol coating liquid is attached, and the ceramic sol is dried by blowing while contacting the inner surface of the cell, and then fired, whereby the ceramic porous film made of the ceramic sol is formed into the ceramic substrate. A method for producing a ceramic filter formed on the inner surface of the cell. 前記セラミックゾルコート液のイソプロピルアルコール濃度が70wt%以上である請求項5に記載のセラミックフィルタの製造方法。   The method for producing a ceramic filter according to claim 5, wherein an isopropyl alcohol concentration of the ceramic sol coating liquid is 70 wt% or more. 前記セラミックゾルの乾燥時の風速が1〜300m/sで、温度が10〜60℃である請求項5または6に記載のセラミックフィルタの製造方法。   The method for producing a ceramic filter according to claim 5 or 6, wherein the ceramic sol has a wind speed of 1 to 300 m / s during drying and a temperature of 10 to 60 ° C.
JP2007088362A 2007-03-29 2007-03-29 Method for producing ceramic porous membrane and method for producing ceramic filter Active JP5048371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007088362A JP5048371B2 (en) 2007-03-29 2007-03-29 Method for producing ceramic porous membrane and method for producing ceramic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007088362A JP5048371B2 (en) 2007-03-29 2007-03-29 Method for producing ceramic porous membrane and method for producing ceramic filter

Publications (2)

Publication Number Publication Date
JP2008246304A true JP2008246304A (en) 2008-10-16
JP5048371B2 JP5048371B2 (en) 2012-10-17

Family

ID=39971895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007088362A Active JP5048371B2 (en) 2007-03-29 2007-03-29 Method for producing ceramic porous membrane and method for producing ceramic filter

Country Status (1)

Country Link
JP (1) JP5048371B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009004988A1 (en) * 2007-07-03 2010-08-26 東亞合成株式会社 Resist stripper continuous use system by nanofiltration
JP2010214328A (en) * 2009-03-18 2010-09-30 Ngk Insulators Ltd Method for manufacturing nano filtration membrane
JP2010214329A (en) * 2009-03-18 2010-09-30 Ngk Insulators Ltd Ceramic porous membrane and method of manufacturing the same
JP2011092875A (en) * 2009-10-30 2011-05-12 Ngk Insulators Ltd Method for manufacturing nanofiltration membrane
JP2011092876A (en) * 2009-10-30 2011-05-12 Ngk Insulators Ltd Method for manufacturing nanofiltration membrane
EP2409756A1 (en) 2010-07-22 2012-01-25 NGK Insulators, Ltd. Silica membrane and method for manufacturing the same
JP2014208334A (en) * 2013-03-29 2014-11-06 日本碍子株式会社 Method of manufacturing separation membrane
US9403130B2 (en) 2010-03-24 2016-08-02 Ngk Insulators, Ltd. Method of manufacturing silica membrane
DE112017001639T5 (en) 2016-03-31 2018-12-20 Ngk Insulators, Ltd. Monolithic base and manufacturing method therefor
DE112017001721T5 (en) 2016-03-31 2018-12-20 Ngk Insulators, Ltd. Monolithic separation membrane structure
DE112017005622T5 (en) 2016-11-08 2019-07-25 Ngk Insulators, Ltd. Process for drying a separation membrane and process for producing a separation membrane structure
CN113797765A (en) * 2020-06-12 2021-12-17 三达膜科技(厦门)有限公司 Preparation method of zirconia ceramic ultrafiltration membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899027A (en) * 1994-09-30 1996-04-16 Kyocera Corp Ceramic structure for gas separation and manufacture of the same
JPH10249175A (en) * 1997-03-12 1998-09-22 Kyocera Corp Porous separation membrane and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899027A (en) * 1994-09-30 1996-04-16 Kyocera Corp Ceramic structure for gas separation and manufacture of the same
JPH10249175A (en) * 1997-03-12 1998-09-22 Kyocera Corp Porous separation membrane and production thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009004988A1 (en) * 2007-07-03 2010-08-26 東亞合成株式会社 Resist stripper continuous use system by nanofiltration
JP2010214328A (en) * 2009-03-18 2010-09-30 Ngk Insulators Ltd Method for manufacturing nano filtration membrane
JP2010214329A (en) * 2009-03-18 2010-09-30 Ngk Insulators Ltd Ceramic porous membrane and method of manufacturing the same
JP2011092875A (en) * 2009-10-30 2011-05-12 Ngk Insulators Ltd Method for manufacturing nanofiltration membrane
JP2011092876A (en) * 2009-10-30 2011-05-12 Ngk Insulators Ltd Method for manufacturing nanofiltration membrane
US9403130B2 (en) 2010-03-24 2016-08-02 Ngk Insulators, Ltd. Method of manufacturing silica membrane
EP2409756A1 (en) 2010-07-22 2012-01-25 NGK Insulators, Ltd. Silica membrane and method for manufacturing the same
US9108166B2 (en) 2010-07-22 2015-08-18 Ngk Insulators, Ltd. Silica membrane and method for manufacturing the same
JP2014208334A (en) * 2013-03-29 2014-11-06 日本碍子株式会社 Method of manufacturing separation membrane
DE112017001639T5 (en) 2016-03-31 2018-12-20 Ngk Insulators, Ltd. Monolithic base and manufacturing method therefor
DE112017001721T5 (en) 2016-03-31 2018-12-20 Ngk Insulators, Ltd. Monolithic separation membrane structure
DE112017005622T5 (en) 2016-11-08 2019-07-25 Ngk Insulators, Ltd. Process for drying a separation membrane and process for producing a separation membrane structure
CN113797765A (en) * 2020-06-12 2021-12-17 三达膜科技(厦门)有限公司 Preparation method of zirconia ceramic ultrafiltration membrane

Also Published As

Publication number Publication date
JP5048371B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5048371B2 (en) Method for producing ceramic porous membrane and method for producing ceramic filter
JP5426367B2 (en) Ceramic porous membrane and ceramic filter
US8596465B2 (en) Ceramic filter
JP5302957B2 (en) Method for forming inorganic porous coating on porous support using specific pore forming agent
US20080096751A1 (en) Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
JP5469453B2 (en) Ceramic filter and method for regenerating the same
US8481110B2 (en) Methods of making inorganic membranes
JP5269583B2 (en) Method for producing ceramic porous membrane
JP2010528835A5 (en)
JPH03143535A (en) Asymmetric ceramic film and production thereof
US20150157962A1 (en) Porous inorganic membranes and method of manufacture
WO2013042262A1 (en) Method for producing carbon film
JP2009241054A (en) Method for manufacturing of ceramic filter
JP4960286B2 (en) Method for producing nanofiltration membrane
JP5033670B2 (en) Manufacturing method of ceramic filter
JP2004168615A (en) Porous silica membrane and method for manufacturing the same
JP5897334B2 (en) Method for producing silica film
JP6767995B2 (en) Separation membrane repair method and separation membrane structure manufacturing method
JP3364189B2 (en) Fabrication method of porous membrane using ultrafine particles
JP4960287B2 (en) Method for producing nanofiltration membrane
JP2009255031A (en) Treatment method of ceramic porous film
JP2011201753A (en) Method for producing carbon film
JP2009226339A (en) Ceramic filter and its manufacturing method
JP2011092876A (en) Method for manufacturing nanofiltration membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5048371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150