JPH0621378B2 - Carbon fiber manufacturing method - Google Patents

Carbon fiber manufacturing method

Info

Publication number
JPH0621378B2
JPH0621378B2 JP60271314A JP27131485A JPH0621378B2 JP H0621378 B2 JPH0621378 B2 JP H0621378B2 JP 60271314 A JP60271314 A JP 60271314A JP 27131485 A JP27131485 A JP 27131485A JP H0621378 B2 JPH0621378 B2 JP H0621378B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fine particles
compound
transition metal
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60271314A
Other languages
Japanese (ja)
Other versions
JPS62133119A (en
Inventor
信吾 森本
浩一郎 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP60271314A priority Critical patent/JPH0621378B2/en
Publication of JPS62133119A publication Critical patent/JPS62133119A/en
Publication of JPH0621378B2 publication Critical patent/JPH0621378B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は有機炭素化合物の熱分解による、いわゆる気相
法炭素繊維の製造法に関し、特に微細な炭素繊維(ウィ
スカーを含む総称)を連続的に得るに適した製造法に関
する。
TECHNICAL FIELD The present invention relates to a method for producing a so-called vapor grown carbon fiber by pyrolyzing an organic carbon compound, and particularly, a fine carbon fiber (a generic term including whiskers) is continuously obtained. To a manufacturing method suitable for.

従来の技術 気相法炭素繊維はベンゼン等の有機炭素化合物を1000℃
程度で熱分解して製造されるものであるが、その生成に
はFe,Co,Ni等の遷移金属の微粒子が必要とされている。
Conventional technology Vapor grown carbon fiber contains organic carbon compounds such as benzene at 1000 ° C.
Although it is produced by thermal decomposition to some extent, fine particles of transition metals such as Fe, Co and Ni are required for its production.

この微粒子を存在させる方法として炭素繊維生成帯域に
基板を置き、この上に散布しておく方法、微粒子を前記
帯域に浮遊させる方法がある(特公昭58-22571,特開昭
58-180615,同60-54998)。前者は比較的長い繊維を
得ることができるが、連続的な製法に適さないこと、基
板上に生成させるため生産性が低いなどの欠点がある。
後者は微粒子を浮遊させたまま繊維を生成させるので空
間を広く利用できること、繊維を連続的に採取できるの
で生産性がよいが、短時間の生成であるので極めて短か
い炭素繊維しか出来ないのが特徴である。しかし樹脂1
の複合材等を考えた場合、短遷移でも十分使用可能であ
る。
As a method of allowing the fine particles to exist, there is a method of placing a substrate in the carbon fiber forming zone and spraying it on the substrate, and a method of floating the fine particles in the zone (Japanese Patent Publication No. 58-22571, JP-A-58-22571)
58-180615, 60-54998). The former can obtain relatively long fibers, but has the drawbacks that it is not suitable for a continuous production method and that productivity is low because it is produced on a substrate.
The latter produces fibers while suspending the fine particles, so that the space can be widely used, and since the fibers can be continuously sampled, the productivity is good, but since it is produced in a short time, only extremely short carbon fibers can be produced. It is a feature. But resin 1
Considering the composite material of 1), it can be sufficiently used even in a short transition.

発明が解決しようとする問題点 本発明は遷移金属の微粒子を浮遊させたまま炭素遷移を
生成させるのに好適な方法である。勿論、微粒子を基板
上に沈降させ、そこで遷移を生成させることも不可能で
はない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention is a suitable method for producing carbon transition while suspending fine particles of a transition metal. Of course, it is not impossible to settle the fine particles on the substrate and generate the transition there.

従来の微粒子を浮遊させる方法に有機遷移金属化合物を
用いる方法があるが、高価であること、この化合物から
生成した遷移金属の微粒子の大きさが遷移の生成に必ら
ずしも適合しないためか有機遷移金属化合物の使用量に
対して遷移の生成量が十分でない。
There is a method of using an organic transition metal compound as a conventional method for suspending fine particles, but it is expensive, or is it because the size of the fine particles of the transition metal produced from this compound does not necessarily match the generation of transitions? The amount of transition produced is not sufficient with respect to the amount of the organic transition metal compound used.

遷移金属の微粒子を予じめつくっておき、これを炭素繊
維生成帯域に散布する方法もあるが、微粒子の大きさは
30〜200Å位が好ましいとされており、このような超微
粒子は凝集し易いため、散布方法では効率が悪い。その
他金属にアークをとばして金属を蒸発させる方法もある
が、粒度の巾が大きく前記の粒度のものを収率よく蒸発
させるには条件制御がむずかしい。
There is also a method of preparing fine particles of transition metal in advance and spraying them in the carbon fiber production zone.
It is said that about 30 to 200Å is preferable, and since such ultrafine particles easily aggregate, the spraying method is inefficient. There is also a method of evaporating the metal by skipping the arc on the metal, but it is difficult to control the conditions in order to vaporize the metal having a large particle size with a high yield.

本発明の目的は安価な原料を用いて遷移金属の微粒子の
大きさを炭素繊維の生成に適したものとし、それによっ
て繊維の生成効率を高めることにある。
An object of the present invention is to make the size of fine particles of a transition metal suitable for carbon fiber production by using an inexpensive raw material, and thereby to enhance the fiber production efficiency.

問題点を解決するための手段 鉄等をアークや他の加熱によって蒸発させ、それによっ
て生成する超微粒子を捕集して粒径を電子顕微鏡で観察
したところ、30〜500Åの広い範囲に分布していること
がわかった。
Means for solving the problem Evaporating iron etc. by arc or other heating, collecting the ultrafine particles generated by it and observing the particle size with an electron microscope, it was found that it was distributed in a wide range of 30 ~ 500 Å I found out.

ところが蒸発を例えば100Torr程度の減圧下で行なうと
微粒子の粒径が100〜150Åと比較的均一であること、そ
してその粒径は蒸発の条件、特に圧力に依存することが
わかった。この蒸発によって生じた微粒子はキャリアガ
スによってある程度の速度で流せば凝集せずに搬送でき
るので、減圧容器内で微粒子を生成させ、これを炭素繊
維生成帯域に送り込むことによって炭素繊維の収量を増
すことができる。
However, it was found that when the evaporation was performed under a reduced pressure of, for example, about 100 Torr, the particle size of the fine particles was relatively uniform at 100 to 150Å, and the particle size depended on the evaporation condition, particularly the pressure. The fine particles generated by this evaporation can be transported without agglomeration if they are flowed at a certain speed by a carrier gas.Therefore, it is possible to increase the yield of carbon fibers by generating fine particles in a decompression container and sending them to the carbon fiber production zone. You can

本発明において用いられる有機炭素化合物,熱分解の条
件、キャリアガス等は従来公知のものと同様である。そ
の望ましい態様を示せば有機炭素化合物はベンゼン,ト
ルエン等芳香族化合物が望ましい。炭素繊維の生成帯域
の温度は1000〜1300℃,キャリアガスとしてはH2,Ar等
であるが、微粒子が化合物である場合はこれを還元して
金属にするため、H2ガスを存在させる必要がある。キャ
リアガス中の炭化水素の濃度は容積で5〜50%が適す
る。炭素繊維の生成帯域の圧力は常温でよい。
The organic carbon compound, thermal decomposition conditions, carrier gas and the like used in the present invention are the same as those conventionally known. If the desirable mode is shown, the organic carbon compound is preferably an aromatic compound such as benzene and toluene. The temperature of the carbon fiber generation zone is 1000 to 1300 ° C, and the carrier gas is H 2 , Ar, etc., but if the fine particles are compounds, it is necessary to make H 2 gas present in order to reduce them into metal. There is. The suitable concentration of hydrocarbon in the carrier gas is 5 to 50% by volume. The pressure in the carbon fiber production zone may be room temperature.

繊維金属はFe,Co,Ni等であり、その無機化合物としては
硫化物、酸化物,塩化物,硫酸塩等を挙げることができ
る。繊維金属の無機化合物が選ばれる理由はある程度高
温で蒸発させることが必要であるからであり、有機遷移
金属化合物の場合は減圧下での蒸発で金属の粒径制御が
むずかしい。
The fiber metal is Fe, Co, Ni and the like, and examples of the inorganic compound thereof include sulfide, oxide, chloride and sulfate. The reason why the inorganic compound of the fiber metal is selected is that it is necessary to evaporate at a high temperature to some extent, and in the case of the organic transition metal compound, it is difficult to control the particle size of the metal by evaporation under reduced pressure.

遷移金属又はその化合物は減圧下で蒸発させるが、その
減圧度は微粒子の粒度の巾を狭くし、かつその粒径を30
〜200Åに納めるためには20〜200Torrが好ましい。こ
の蒸発は通常キャリアガスの存在下で行なうが、この場
合前記20〜200Torrはキャリアガスを含めた全圧であ
る。従って蒸発量を定める例えば温度はキャリアガスの
分圧及び前記全圧を考慮して定める。例えばFeSの場合
でキャリアガスにArを使用し、全圧100Torrの場合、FeS
の温度を1400℃にすれば、平衡関係からはFeSの分圧は
約0.01Torrになる。
The transition metal or its compound is evaporated under reduced pressure, but the degree of reduced pressure narrows the width of the fine particles and reduces the particle size to 30%.
20 to 200 Torr is preferable to store in ~ 200Å. This evaporation is usually carried out in the presence of a carrier gas. In this case, 20 to 200 Torr is the total pressure including the carrier gas. Therefore, for example, the temperature for determining the evaporation amount is determined in consideration of the partial pressure of the carrier gas and the total pressure. For example, in the case of FeS, Ar is used as the carrier gas, and when the total pressure is 100 Torr, FeS
If the temperature of is set to 1400 ° C, the partial pressure of FeS becomes about 0.01 Torr from the equilibrium relation.

全圧中の金属又はその化合物の分圧は0.01〜0.0
5(全圧を1とする)が適当である。
The partial pressure of the metal or its compound in the total pressure is 0.01 to 0.0
5 (total pressure is 1) is suitable.

遷移金属化合物を蒸発させて炭素繊維生成帯域に送り込
むときはこれを金属に還元する必要があり、そのために
該帯状に水素ガスを送り込むことが必要である。このこ
とは本発明において遷移金属の化合物は炭素繊維の生成
温度で水素により還元されるものである。
When the transition metal compound is vaporized and sent to the carbon fiber production zone, it is necessary to reduce it to a metal, and therefore it is necessary to feed hydrogen gas to the zone. This means that in the present invention, the transition metal compound is reduced by hydrogen at the carbon fiber formation temperature.

次に本発明方法の実施に用いられる装置の1例を示しな
がら本発明方法を具体的に説明する。
Next, the method of the present invention will be specifically described with reference to an example of an apparatus used for carrying out the method of the present invention.

第1図はその装置の概略断面図である。図において1は
炭素繊維生成管(アルミナ磁製管)でその周囲にヒータ
ー2を巻き、管内温度を例えば1100℃に保つ。管1の1
端からベンゼン7をガスにしてパイプ3より送り込む。
その場合ベンゼンを入れた容器5にパイプ6より水素ガ
スを送ってバブリングさせ、同時にベンゼンをヒーター
8により加温して蒸発量を調整しながら行なう。また管
1の同じ1端よりFeの蒸気を送り込む。それには減圧装
置10の中にFe12を入れた黒鉛ルツボ11を置き、そ
の上に黒鉛電極13を配し、電極13と黒鉛ルツボの間
を電源14で連続し、電極13とルツボ又はその中のFe
との間でアークをとばし、Feを加熱蒸発させる。その際
減圧装置10は減圧にしながらH2又はArガスをパイプ1
5より送り込まれる。蒸発したFeはH2又はArガスと共
にダイヤフラムポンプ9によりパイプ4を通して生成管
1に送り込まれる。
FIG. 1 is a schematic sectional view of the device. In the figure, reference numeral 1 denotes a carbon fiber production tube (alumina porcelain tube) around which a heater 2 is wound to keep the temperature inside the tube at 1100 ° C., for example. Tube 1 of 1
Benzene 7 is turned into gas from the end and fed through pipe 3.
In this case, hydrogen gas is sent through a pipe 6 to a container 5 containing benzene to cause bubbling, and at the same time, benzene is heated by a heater 8 to adjust the evaporation amount. Further, Fe vapor is fed from the same one end of the tube 1. A graphite crucible 11 containing Fe12 is placed in the decompression device 10, a graphite electrode 13 is arranged on the graphite crucible 11, and a power source 14 continuously connects between the electrode 13 and the graphite crucible. Fe
The arc is blown between and to heat and evaporate Fe. At that time, the decompression device 10 depressurizes the pipe 1 with H 2 or Ar gas.
Sent from 5. The evaporated Fe is sent to the production pipe 1 through the pipe 4 by the diaphragm pump 9 together with H 2 or Ar gas.

Fe等の加熱は図ではアーク加熱であるが、その他ルツボ
にコイルを巻き高周波電源に接続し、Fe等を加熱するこ
ともできる。
The heating of Fe and the like is arc heating in the figure, but it is also possible to heat the Fe and the like by winding a coil around the crucible and connecting it to a high frequency power source.

このようにして蒸発した金属はキャリアガスと共にダイ
ヤフラムポンプによって炭素繊維生成管に送り込まれる
が、蒸発金属の濃度は薄いのでポンプ等途中経路での凝
縮は殆んど問題にならない。蒸発した金属は生成管に送
り込まれる途中あるいは生成管内で凝縮し、微粒子にな
ると考えられる。
The metal evaporated in this way is sent to the carbon fiber production tube together with the carrier gas by the diaphragm pump, but since the concentration of the evaporated metal is low, the condensation in the intermediate path of the pump or the like is hardly a problem. It is considered that the evaporated metal is condensed into particles while being fed into the production tube or in the production tube.

この微粒子が浮遊している帯域で有機炭素化合物が分解
し、そこで炭素繊維が生成する。この繊維は微細なので
大部分はガスの流れと共に移動し、第1図の捕集器18
で捕集される。16はそのためのフィルター、17は吸
引ポンプである。
The organic carbon compound is decomposed in the zone where the fine particles are suspended, and carbon fibers are generated there. Since the fibers are fine, most of them move with the flow of gas, and the collector 18 of FIG.
Captured in. Reference numeral 16 is a filter therefor, and 17 is a suction pump.

この方法で得られる炭素繊維は代表的には直径0.05〜1.
0μm、長さ10〜100μmで分枝のある小枝状である。
Carbon fibers obtained by this method typically have a diameter of 0.05 to 1.
It is a branch-like twig with a length of 0 μm and a length of 10 to 100 μm.

実施例 第1図に示す装置を用い、減圧装置10内の黒鉛ルツボ
11にFeを入れ、黒鉛電極13との間に交流電源14か
ら電圧50Vをかけてアークを発生させ、Feを溶解し、
蒸発させた。減圧装置内はH2ガスを15より300ml/分
ずつ送り、同時にダイヤフラムポンプ9で吸引して内圧
を約100Torrにした。このときはFe蒸気の分圧は0.04Tor
r程度と思われる。
Example Using the apparatus shown in FIG. 1, Fe was put in the graphite crucible 11 in the depressurization apparatus 10, and an arc was generated between the graphite electrode 13 and the graphite electrode 13 by applying a voltage of 50 V from the AC power source 14 to dissolve Fe,
Evaporated. H 2 gas was fed from the 15 to the depressurizing device at a rate of 300 ml / min at a time, and at the same time, the diaphragm pump 9 sucked it to bring the internal pressure to about 100 Torr. At this time, the partial pressure of Fe vapor is 0.04 Tor
It seems to be about r.

また一方ベンゼンの収納容器5を約30℃に温め、そこ
に水素ガスをパイプ6から300ml/分で送入した。ベン
ゼンの蒸発量は約50ml/分である。以上から生成管1内
に送り込まれるC6H6/H2(容積)は約0.08である。
On the other hand, the benzene storage container 5 was warmed to about 30 ° C., and hydrogen gas was introduced into the storage container 5 through the pipe 6 at 300 ml / min. The evaporation amount of benzene is about 50 ml / min. From the above, the C 6 H 6 / H 2 (volume) fed into the production tube 1 is about 0.08.

炭素繊維生成管1(加熱部の長さ600mm,直径50mm)
は内部で約1100℃に保たれている。これらの条件で30
分実験した結果小枝状になった炭素繊維の集合物4.2
gが得られた。これを顕微鏡で観察すると殆んどの繊維
は直径が0.1〜0.5μm,長さ10〜50μmであった。ベンゼ
ンに対する繊維の収率は約70%である。
Carbon fiber tube 1 (600mm length of heating part, 50mm diameter)
Is kept at about 1100 ° C internally. 30 under these conditions
As a result of a minute experiment, an aggregate of carbon fibers in the form of twigs 4.2
g was obtained. When observed under a microscope, most of the fibers had a diameter of 0.1 to 0.5 μm and a length of 10 to 50 μm. The fiber yield relative to benzene is about 70%.

発明の効果 本発明は蒸発によって遷移金属の微粒をつくるという簡
単な操作でよく、それで高収率で炭素繊維が得られる。
EFFECTS OF THE INVENTION The present invention requires a simple operation of forming fine particles of a transition metal by evaporation, so that a carbon fiber can be obtained in a high yield.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施に用いられる装置の1例を示す概
略断面図である。 1……炭素繊維生成管、7……ベンゼン、9……ダイヤ
フラムポンプ、10……減圧装置、12……Fe、13…
…電極、16……フィルター、18……捕集器。
FIG. 1 is a schematic sectional view showing an example of an apparatus used for carrying out the present invention. 1 ... Carbon fiber production tube, 7 ... Benzene, 9 ... Diaphragm pump, 10 ... Pressure reducing device, 12 ... Fe, 13 ...
… Electrodes, 16… Filters, 18… Collectors.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】有機炭素化合物の熱分解により炭素繊維を
製造する方法において、遷移金属又はその無機化合物を
減圧下で蒸発させ、その蒸気を炭素繊維の生成帯域に送
入することを特徴とする炭素繊維の製造法。
1. A method for producing a carbon fiber by thermal decomposition of an organic carbon compound, characterized in that a transition metal or an inorganic compound thereof is evaporated under reduced pressure and the vapor is fed into a production zone of the carbon fiber. Carbon fiber manufacturing method.
【請求項2】遷移金属の無機化合物がFeSである特許請
求の範囲第1項記載の炭素繊維の製造法。
2. The method for producing a carbon fiber according to claim 1, wherein the inorganic compound of the transition metal is FeS.
JP60271314A 1985-12-04 1985-12-04 Carbon fiber manufacturing method Expired - Lifetime JPH0621378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60271314A JPH0621378B2 (en) 1985-12-04 1985-12-04 Carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60271314A JPH0621378B2 (en) 1985-12-04 1985-12-04 Carbon fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPS62133119A JPS62133119A (en) 1987-06-16
JPH0621378B2 true JPH0621378B2 (en) 1994-03-23

Family

ID=17498322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60271314A Expired - Lifetime JPH0621378B2 (en) 1985-12-04 1985-12-04 Carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JPH0621378B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229818A (en) * 1988-03-04 1989-09-13 Mitsui Eng & Shipbuild Co Ltd Production of carbon fiber
JPH02127523A (en) * 1988-11-08 1990-05-16 Mitsui Eng & Shipbuild Co Ltd Carbon fiber of vapor growth
JP2845675B2 (en) * 1992-06-30 1999-01-13 日本電気株式会社 Method for producing carbon nanotube
JP2522469B2 (en) * 1993-02-01 1996-08-07 日本電気株式会社 Carbon nanotube refining method

Also Published As

Publication number Publication date
JPS62133119A (en) 1987-06-16

Similar Documents

Publication Publication Date Title
US5304366A (en) Process and apparatus for producing and separating fullerenes
US7033650B2 (en) Method of producing a nanotube layer on a substrate
US5424054A (en) Carbon fibers and method for their production
US20030111334A1 (en) Process for preparing carbon nanotubes
US20040065170A1 (en) Method for producing nano-structured materials
JP2526782B2 (en) Carbon fiber and its manufacturing method
US20110006254A1 (en) Process to make electrochemically active/inactive nanocomposite material
JP2541434B2 (en) Carbon nano tube manufacturing method
US20040265211A1 (en) Hot wire production of single-wall carbon nanotubes
JP2546511B2 (en) Method for synthesizing fullerene and carbon nanotube
JPH06279015A (en) Production of ultrafine silicon particle
JPH0931757A (en) Manufacturing of graphite fiber
JPH0621378B2 (en) Carbon fiber manufacturing method
JP3463091B2 (en) Method for producing carbon nanotube
JPH01306510A (en) Improvement for manufacturing super fine particle powder
JPH0121980Y2 (en)
JPH0891816A (en) Purifying method of carbon single tube
JP3008433B2 (en) Ultrafine particle manufacturing method
JPH0324607Y2 (en)
JP2827586B2 (en) Method for producing tin dioxide whiskers
JPH0621377B2 (en) Production method of vapor grown carbon fiber
JPH10292126A (en) Production of carbon black
JP4657474B2 (en) Raw material for carbon cluster production
WO2004035463A2 (en) Continuous production and separation of carbon-based materials
JPH0438801B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term