JPH06205977A - Production of photocatalystic composition and photocatalystic composition - Google Patents

Production of photocatalystic composition and photocatalystic composition

Info

Publication number
JPH06205977A
JPH06205977A JP5240383A JP24038393A JPH06205977A JP H06205977 A JPH06205977 A JP H06205977A JP 5240383 A JP5240383 A JP 5240383A JP 24038393 A JP24038393 A JP 24038393A JP H06205977 A JPH06205977 A JP H06205977A
Authority
JP
Japan
Prior art keywords
copper
tio
sol
composition
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5240383A
Other languages
Japanese (ja)
Inventor
Toshiya Watabe
俊也 渡部
Eiichi Kojima
栄一 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP5240383A priority Critical patent/JPH06205977A/en
Publication of JPH06205977A publication Critical patent/JPH06205977A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a photocatalystic composition having high deodorization ability and capable of repeatedly using it for a long term. CONSTITUTION:A copper compound such as copper acetate, copper carbonate and copper sulfate is added into an anatase type TiO2 sol by 0.8wt.% based on TiO2 to dissolve or disperse. The photocatalystic composition is obtained by spray-coating a 10cmX10cm alumina substrate with the solution and heat treating. The malodor removing ratio R30(AL) by the photocatalystic composition at the time of light irradiation is measured and calculated and the result is shown in the figure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タイル、ガラス(鏡)
他衛生陶器製品の脱臭、殺菌、汚れ分解機能を有し、同
時に太陽光等の光エネルギーの有効利用を図ることの可
能な光触媒組成物及びその製造方法に関する。
FIELD OF THE INVENTION The present invention relates to tiles and glass (mirrors).
The present invention relates to a photocatalyst composition having a function of deodorizing, sterilizing, and decomposing soil of other sanitary ware, and at the same time capable of effectively utilizing light energy such as sunlight, and a method for producing the same.

【0002】[0002]

【従来の技術】TiO2の活性を向上させる添加物として
は、例えば日本化学会誌,1984,(2),p.246〜252に開示さ
れているようにPt等の貴金属が知られているが、脱臭
等に関する機能については記載がない。またTiO2への
金属銅又は銅化合物の添加については、例えば日本化学
会誌,1988,(8),p.1232〜1234に開示されているが、この
添加されたCu2+が電子受容体として働くために活性を
示すものである。即ち従来の技術では、銅化合物が酸化
剤として働き、悪臭化合物等の有機物が酸化分解される
に伴って銅化合物自身は還元され消費される。従って長
期的な効力を有する光触媒組成物を得ることは困難であ
った。
As an additive for improving the activity of TiO 2 , a noble metal such as Pt is known as disclosed in, for example, Journal of Japan Chemical Society, 1984, (2), pp.246-252. There is no description about functions related to deodorization, etc. Further, the addition of metallic copper or a copper compound to TiO 2 is disclosed in, for example, the journal of the Chemical Society of Japan, 1988, (8), p.1232-1234, since the added Cu 2+ acts as an electron acceptor. Shows activity. That is, in the conventional technique, the copper compound acts as an oxidant, and the copper compound itself is reduced and consumed as the organic substances such as the malodorous compound are oxidatively decomposed. Therefore, it has been difficult to obtain a photocatalyst composition having long-term efficacy.

【0003】紫外線の照射を受けて脱臭反応を進行させ
る光触媒としてアナターゼ型のTiO2が知られている。
そして、光触媒微粒子をバインダに混練した原料を居住
空間の壁面を構成する部材の表面に塗布した後に焼成す
ることで、居住空間の壁面に脱臭壁機能をもたせるよう
にした提案を本出願人は先に行なっている。
Anatase-type TiO 2 is known as a photocatalyst that advances the deodorizing reaction upon irradiation with ultraviolet rays.
Then, the present applicant has previously proposed a proposal in which the raw material obtained by kneading the photocatalyst fine particles with a binder is applied to the surface of the member forming the wall surface of the living space and then fired so that the wall surface of the living space has a deodorizing wall function. I am doing this.

【0004】[0004]

【発明が解決しようとする課題】上記のように長期的な
効力を有する光触媒組成物を得ることは困難であり、ま
た従来脱臭能力が最も高いとされる微粒子状のアナター
ゼ型TiO2であっても、悪臭除去率R30(脱臭開後30
分の残存ガス濃度。詳細は後述)は90%程度と不十分
である。更にこの微粒子状のTiO2を用いて、緻密で密
着性の高いコーティングを基材に設けることは困難であ
る。
As described above, it is difficult to obtain a photocatalyst composition having a long-term efficacy, and fine particles of anatase-type TiO 2 which are conventionally considered to have the highest deodorizing ability are used. Odor removal rate R30 (30 after deodorization
Minute residual gas concentration. Details will be described later), which is insufficient at about 90%. Further, it is difficult to form a dense and highly adherent coating on a substrate by using this fine particle TiO 2 .

【0005】[0005]

【課題を解決するための手段】上記課題を解決すべく本
願の第1発明は、TiO2ゾルを基板材料に塗布して薄膜
を形成し、この薄膜に触媒機能を有する金属塩の水溶液
又は金属の微粉末の懸濁液を塗布若しくは含浸せしめ、
次いでルチル型TiO2への相転移点以下の温度、即ち8
00℃以下好ましくは400℃以下の温度で熱処理して
アナターゼ型TiO2薄膜に前記金属を固定化した。これ
により従来最も活性の高いとされているP−25(日本
エアロジル社製微粉末TiO2)を上回る脱臭、殺菌、汚
れ分解機能を有し且つ緻密で密着性の高い光触媒組成物
が得られる。
In order to solve the above problems, the first invention of the present application is to apply a TiO 2 sol to a substrate material to form a thin film, and to form an aqueous solution of a metal salt or a metal having a catalytic function on the thin film. Apply or impregnate the suspension of fine powder of
Then, the temperature below the phase transition point to rutile-type TiO 2 , that is, 8
The metal was immobilized on the anatase type TiO 2 thin film by heat treatment at a temperature of 00 ° C. or lower, preferably 400 ° C. or lower. Thus conventional most active and has been being P-25 deodorization exceeding (Nippon Aerosil Co. powder TiO 2), sterilization, high photocatalytic composition of and dense adhesion has a stain degradation function is obtained.

【0006】上記のTiO2ゾルとは、例えば硝酸、塩酸
等の酸性水溶液又はアンモニア等の塩基性水溶液中に、
平均粒径0.01〜0.05μm程度のアナターゼ型TiO2がゾ
ル状態で数%〜数十%存在しているものである。触媒機
能を有する金属としてはCu、Ag、Fe、Pd、Pt等が
挙げられ、塩としては硝酸塩、硫酸塩、酢酸塩等でよ
い。
The above-mentioned TiO 2 sol means, for example, an acidic aqueous solution of nitric acid, hydrochloric acid or the like, or a basic aqueous solution of ammonia or the like,
Anatase-type TiO 2 having an average particle size of 0.01 to 0.05 μm is present in a sol state in an amount of several% to several tens%. Examples of the metal having a catalytic function include Cu, Ag, Fe, Pd and Pt, and the salt may be nitrate, sulfate, acetate and the like.

【0007】本願の第1発明に係る金属は触媒として機
能する。従って、従来技術の銅化合物が酸化剤として働
き、悪臭化合物が酸化分解されるに伴って銅化合物自身
が還元され消費されるいわゆる酸化還元反応で活性が向
上するものとは異なる。従って長期的且つ繰返し使用可
能な効力を有する光触媒組成物を得ることができる。
The metal according to the first invention of the present application functions as a catalyst. Therefore, the activity is improved by the so-called redox reaction in which the copper compound of the prior art acts as an oxidizing agent and the copper compound itself is reduced and consumed as the malodorous compound is oxidatively decomposed. Therefore, it is possible to obtain a photocatalyst composition having a long-term and reusable effect.

【0008】本願の第1発明に係る光触媒組成物の製造
方法は次の通りである。即ち、まず上記のTiO2ゾルを
基板にコーティングして薄膜を形成し、これに触媒機能
を有する金属の塩の水溶液を更にコーティングする。基
板へのコーティングはどのような方法でもよいが、Ti
2ゾルは流動性が非常に良くTiO2微粒子のように沈
降することがないためスプレー法が便利である。コーテ
ィングされる基材としては、タイル、ガラス(鏡)、金
属他の衛生陶器製品であるが、その他多孔質セラミクス
等であっても良い。コーティング後の熱処理温度はルチ
ル型TiO2への相転移点以下の温度、好ましくは400
℃以下である。
The method for producing the photocatalyst composition according to the first invention of the present application is as follows. That is, first, the above-mentioned TiO 2 sol is coated on a substrate to form a thin film, which is further coated with an aqueous solution of a metal salt having a catalytic function. Any method may be used for coating the substrate, but Ti
The spray method is convenient because the O 2 sol has very good fluidity and does not settle like the TiO 2 particles. The base material to be coated is tile, glass (mirror), metal or other sanitary ware products, but may be other porous ceramics or the like. The heat treatment temperature after coating is a temperature below the phase transition point to rutile type TiO 2 , preferably 400.
It is below ℃.

【0009】尚、スプレーはTiO2ゾルが乾燥しないう
ちに金属塩溶液をスプレーしてもよく、また金属塩溶液
については専用のスプレーノズルを使用してノズル部分
の腐食に対する対処を容易にすることができる。
Incidentally, the spray may spray the metal salt solution before the TiO 2 sol has dried, and for the metal salt solution, a dedicated spray nozzle should be used to facilitate coping with the corrosion of the nozzle portion. You can

【0010】上記によって形成した光触媒組成物は、光
照射時の悪臭除去率を表すR30(AL)が95%以上、特に銅
塩化合物及び金属銅をTiO2に対して例えば0.8重量%
添加したものについてはR30(AL)が99%以上の高い活性
を示す。ここにおいてR30(AL)とは光照射時の触媒活性
値がALであるときの、脱臭開始から30分後の残存ガ
ス濃度を表す。この触媒活性を表す記号ALは、以下に
定義されるものである。
The photocatalyst composition formed as described above has an R30 (AL) representing a malodor removal rate at the time of light irradiation of 95% or more, and in particular, a copper salt compound and metallic copper are, for example, 0.8% by weight based on TiO 2 .
Regarding the added one, R30 (AL) shows a high activity of 99% or more. Here, R30 (AL) represents the residual gas concentration 30 minutes after the start of deodorization when the catalyst activity value under light irradiation is AL. The symbol AL representing this catalytic activity is defined below.

【0011】即ち、例えば悪臭ガスとしてメチルメルカ
プタンを用い、このガスの除去を光触媒の存在下に光照
射によって時刻t1からt2まで行ったとき、ガス濃度がx1
からx2まで減ったとすると、絶対分解量x(単位:μmo
l)は(数1)、分解所要時間t(単位:秒)は(数2)
であり、横軸にtをとり、縦軸にxを対数でプロットする
と、悪臭ガスの分解は直線的に進行する。これから分解
反応が1次で進行すると仮定して(数3)を定義し、こ
の式を変形して(数4)とする。また光を照射しない場
合にも触媒によってはガスを吸着する性質を示すため、
このときの触媒活性値を記号ADで表す。ADの算出法も
上記のALと同様である。更に上記で求めたAL、ADを
用いて前記の悪臭除去率R30を計算する。初期濃度から
30分(1800秒)経過後の残存ガス濃度ALを上記(数
4)から算出し(数5)へ代入する。光遮蔽時の悪臭除
去率R30(AD)も同様に(数6)から算出できる(10分
後の悪臭除去率であればはR10で表す)。純粋に光照射
が関与した悪臭除去率をR30#とするとこれは(数7)
で表すことができるが、本発明の目的が悪臭の高率な除
去にあるため、光の関与の有無に拘らず全体としての悪
臭除去率、即ちR30(AL)で評価するのが妥当であると考
える。
That is, for example, when methyl mercaptan is used as a malodorous gas and this gas is removed by light irradiation from the time t1 to t2 in the presence of a photocatalyst, the gas concentration is x1.
To x2, the absolute decomposition amount x (unit: μmo
l) is (Equation 1), disassembly required time t (unit: second) is (Equation 2)
When t is plotted on the horizontal axis and x is plotted on the vertical axis in a logarithm, the decomposition of the malodorous gas proceeds linearly. From this, it is assumed that the decomposition reaction progresses in the first order, and formula (3) is defined, and this formula is transformed into (formula 4). In addition, even when not illuminated with light, some catalysts have the property of adsorbing gas,
The catalytic activity value at this time is represented by the symbol AD. The calculation method of AD is the same as that of AL described above. Further, the malodor removal rate R30 is calculated by using AL and AD obtained above. The residual gas concentration AL after a lapse of 30 minutes (1800 seconds) from the initial concentration is calculated from the above (Equation 4) and substituted into (Equation 5). The offensive odor removal rate R30 (AD) at the time of light shielding can be similarly calculated from (Equation 6) (if the offensive odor removal rate after 10 minutes is represented by R10). R30 # is the odor removal rate that is purely related to light irradiation.
However, since the object of the present invention is to remove malodor at a high rate, it is appropriate to evaluate the overall malodor removal rate, that is, R30 (AL), regardless of the presence of light. I think.

【0012】[0012]

【数1】 [Equation 1]

【数2】 [Equation 2]

【数3】 [Equation 3]

【数4】 [Equation 4]

【数5】 [Equation 5]

【数6】 [Equation 6]

【数7】 [Equation 7]

【0013】また、本願の第2発明は、基板材料に塗布
する前にTiO2ゾル中に予め金属の塩または微粉末状に
した金属を添加したものを塗布して薄膜を形成し、10
0〜800℃の温度、好ましくは110〜400℃の温
度で熱処理し、アナターゼ型TiO2に前記金属を固定化
した。熱処理温度は、100℃未満では水分が飛びにく
く、また得られるコーティング被膜の基材に対する密着
性が低下する。一方、熱処理温度が800℃を越える
と、TiO2がルチルに変化して活性が急激に低下する。
According to the second invention of the present application, a thin film is formed by applying a salt of metal or a finely powdered metal added in advance to a TiO 2 sol before applying it to a substrate material.
Heat treatment was performed at a temperature of 0 to 800 ° C., preferably 110 to 400 ° C. to immobilize the metal on the anatase type TiO 2 . If the heat treatment temperature is less than 100 ° C., it is difficult for water to fly, and the adhesion of the obtained coating film to the substrate is lowered. On the other hand, when the heat treatment temperature exceeds 800 ° C., the TiO 2 changes to rutile and the activity sharply decreases.

【0014】上記のTiO2ゾルは、第1発明と同様に硝
酸、塩酸等の酸性水溶液又はアンモニア等の塩基性水溶
液中に、平均粒径0.01〜0.05μm程度のアナターゼ型Ti
2がゾル状態で数%〜数十%存在しているものであ
る。また上記の金属の塩としては銅化合物が挙げられ、
この銅化合物としては、酢酸塩、炭酸塩、硫酸塩、塩酸
塩等の銅塩化合物、あるいは銅酸化物等が挙げられる。
これら銅化合物又は金属銅(以後、これらをまとめて銅
化合物と称する)は、前記TiO2ゾル中への添加を容易
にするため、水溶性以外のものは微粉状とすることが好
ましい。銅化合物の添加量は、化合物によって活性のピ
ーク位置が異なるため一概には決められないが、TiO2
に対して0.05〜1.60重量%が好ましい。この添加量が0.
05重量%未満では少なすぎて充分な活性を発現すること
ができないことがあり、また1.60重量%を超えるとゾル
が不安定となったり、光透過率が低下してやはり十分な
活性を発現できないことがある。
Similar to the first invention, the above-mentioned TiO 2 sol is anatase-type Ti having an average particle diameter of 0.01 to 0.05 μm in an acidic aqueous solution such as nitric acid or hydrochloric acid or a basic aqueous solution such as ammonia.
O 2 is present in the sol state in the amount of several% to several tens%. Further, examples of the metal salts include copper compounds,
Examples of the copper compound include copper salt compounds such as acetates, carbonates, sulfates and hydrochlorides, and copper oxides.
In order to facilitate the addition of these copper compounds or metallic copper (hereinafter collectively referred to as copper compounds) to the TiO 2 sol, those other than water-soluble ones are preferably in fine powder form. The addition amount of the copper compound is can not decide unconditionally the peak position of the activity of the HIL, TiO 2
Is preferably 0.05 to 1.60% by weight. The amount added is 0.
If it is less than 05% by weight, it may be too small to exhibit sufficient activity, and if it exceeds 1.60% by weight, the sol may become unstable, or the light transmittance may be lowered, and sufficient activity may not be exhibited. Sometimes.

【0015】[0015]

【作用】タイル、ガラス(鏡)、他の衛生陶器製品表面
に光触媒組成物層を形成することによって、脱臭、殺
菌、汚れ分解等の機能を付与することができる。
By forming a photocatalyst composition layer on the surface of tiles, glass (mirrors) and other sanitary ware products, functions such as deodorization, sterilization and stain decomposition can be imparted.

【0016】[0016]

【実施例】以下、本発明に基づく実施例を説明する。 実施例1、 実施例として酢酸銅、炭酸銅、硫酸銅、塩化銅I、塩化
銅II、金属銅(平均粒径1μm及び200μmのも
の)、酸化銅I、酸化銅II、塩化鉄II、塩化鉄II
I、白金黒、塩化白金酸、パラジウム黒、塩化パラジウ
ム、塩化コバルト、塩化ニッケルを用いた。また、Ti
2ゾル(多木化学製アナターゼ型TiO2ゾル。0.3%ア
ンモニア水溶液、pH=10.7(25℃)、TiO2平均粒子径0.0
1μm、TiO2含有量6重量%)を10cm×10cmのアルミナ
基板上にスプレー法でそれぞれコーティングし、乾燥後
(膜厚:約1μm)に各化合物の水溶液(TiO2薄膜に
対して0.08重量%及び0.8重量%添加した金属塩)をス
プレー法で更にコーティングし、110℃で熱処理を行
った。
EXAMPLES Examples according to the present invention will be described below. Example 1, as an example, copper acetate, copper carbonate, copper sulfate, copper chloride I, copper chloride II, metallic copper (having an average particle size of 1 μm and 200 μm), copper oxide I, copper oxide II, iron chloride II, chloride Iron II
I, platinum black, chloroplatinic acid, palladium black, palladium chloride, cobalt chloride, and nickel chloride were used. Also, Ti
O 2 sol (Anatase type TiO 2 sol manufactured by Taki Kagaku. 0.3% aqueous ammonia solution, pH = 10.7 (25 ° C.), TiO 2 average particle size 0.0
1 μm, TiO 2 content 6% by weight) are respectively coated on a 10 cm × 10 cm alumina substrate by a spray method, and after drying (film thickness: about 1 μm), an aqueous solution of each compound (0.08% by weight with respect to the TiO 2 thin film) is applied. And 0.8% by weight of metal salt) were further coated by a spray method and heat-treated at 110 ° C.

【0017】上記によって得られた各光触媒組成物を、
メチルメルカプタン初期濃度が2ppmに調整された直径
26cm×高さ21cmの円筒形容器中に設置し、4WのB
LB蛍光灯を8cm離して光を照射した場合のR30(AL)、
及び光を遮蔽した場合のR30(AD)を測定した。この結果
を(表1)及び図1に示した(但し、図1には添加量0.
8重量%の場合のみを示した。また図中の銅化合物の棒
グラフは各銅化合物の平均的な数値である約99%を示
し、また鉄化合物についても2種の化合物の平均的な数
値である約60%を示しており、それぞれ目安的なもので
ある)。本発明に基づく化合物を添加した光触媒組成物
は高い悪臭除去率を示しており、とくに銅化合物及び金
属銅はR30(AL)が99.43〜99.80%と卓越している。
Each photocatalyst composition obtained as described above is
Installed in a cylindrical container with a diameter of 26 cm and a height of 21 cm in which the initial concentration of methyl mercaptan was adjusted to 2 ppm, and 4 W of B was used.
R30 (AL) when illuminating light with LB fluorescent lamp 8 cm away,
And R30 (AD) was measured when the light was shielded. The results are shown in (Table 1) and FIG. 1 (however, in FIG.
Only the case of 8% by weight is shown. In addition, the bar graph of copper compounds in the figure shows an average value of about 99% for each copper compound, and also for iron compounds, about 60% which is an average value of two kinds of compounds. It is a guideline). The photocatalyst composition to which the compound according to the present invention is added exhibits a high malodor removal rate, and in particular, the copper compound and metallic copper have an excellent R30 (AL) of 99.43 to 99.80%.

【0018】[0018]

【表1】 [Table 1]

【0019】比較例2 TiO2ゾルの代りに微粉末TiO2(日本エアロジル社
製:Pー25。最大粒径21nm、真比重3.8、見掛比重0.1
3g/cc、水に不溶)を用い、酢酸銅、炭酸銅、硫酸銅、
塩化銅I、塩化銅II、金属銅(平均粒径200μmの
もの)、酸化銅I、酸化銅II、塩化鉄II、塩化鉄I
II、白金黒、パラジウム黒、及び添加物を加えないも
のについて、実施例1と同様の方法でR30(AL)及びR30
(AD)を測定した。この結果を(表2)に示したが、銅化
合物については実施例1に比較していずれも悪臭除去率
が低い。即ち銅化合物の添加効果は、TiO2原料の種類
によって異なり、本発明に係る前記TiO2ゾルは特にこ
の効果の高い原料であることが分る。
Comparative Example 2 Instead of the TiO 2 sol, fine powder TiO 2 (manufactured by Nippon Aerosil Co., Ltd .: P-25, maximum particle size 21 nm, true specific gravity 3.8, apparent specific gravity 0.1)
3g / cc, insoluble in water), copper acetate, copper carbonate, copper sulfate,
Copper chloride I, copper chloride II, metallic copper (with an average particle size of 200 μm), copper oxide I, copper oxide II, iron chloride II, iron chloride I
II, platinum black, palladium black, and R30 (AL) and R30 in the same manner as in Example 1 except that no additives were added.
(AD) was measured. The results are shown in (Table 2). As for the copper compounds, the bad odor removal rate is lower than that of Example 1. That is, the effect of adding the copper compound varies depending on the kind of the TiO 2 raw material, and it is understood that the TiO 2 sol according to the present invention is a raw material having a particularly high effect.

【0020】[0020]

【表2】 [Table 2]

【0021】実施例2 実施例1と同じアナターゼ型TiO2ゾルを用い、熱処理
温度以外は実施例1と同じ条件でアルミナ基板上に形成
した光触媒組成物について、図2にR30(AL)−熱処理温
度線図を示した。図2において、各銅化合物の添加率は
酢酸銅0.79重量%(0.31mol%)、炭酸銅0.80重量%(0.53
mol%)、硫酸銅0.78重量%(0.25mol%)、塩化銅I0.87
重量%(0.71mol%)、塩化銅II0.78重量%(0.47mol%)
である。なおメチルメルカプタンの初期濃度は2ppmで
ある。同図で明らかなように、無添加のTiO2ゾルの場
合は、最適な熱処理温度が存在したが、銅化合物を添加
したものでは、化合物によって程度の大小はあるが、熱
処理温度が高くなるに連れて、活性が低下する傾向があ
る。
Example 2 A photocatalyst composition formed on an alumina substrate under the same conditions as in Example 1 except that the heat treatment temperature was the same as in Example 1 except that the anatase type TiO 2 sol was used, and R30 (AL) -heat treatment is shown in FIG. The temperature diagram is shown. In Fig. 2, the addition rate of each copper compound is 0.79% by weight of copper acetate (0.31 mol%) and 0.80% by weight of copper carbonate (0.53%).
mol%), copper sulfate 0.78% by weight (0.25 mol%), copper chloride I 0.87
Wt% (0.71 mol%), copper chloride II 0.78 wt% (0.47 mol%)
Is. The initial concentration of methyl mercaptan is 2 ppm. As is clear from the figure, the optimum heat treatment temperature existed in the case of the TiO 2 sol without addition, but the heat treatment temperature increased in the case of adding the copper compound, although the degree of heat treatment varied depending on the compound. As a result, the activity tends to decrease.

【0022】実施例3 銅化合物として硫酸銅を用い、悪臭の繰り返し除去実験
を行った。光触媒組成物は、硫酸銅0.3mg(1.21μmol)
を含有する実施例1と同じアナターゼ型TiO2ゾル39.0
mmg(488.24μmol)を10cm×10cmのアルミナ基板上にス
プレー法でコーティングし、110℃で熱処理したもの
を使用した(硫酸銅添加量はTiO2に対して約0.74重量
%)。メチルメルカプタンの初期濃度を約3ppmとして
実施例1と同じ紫外線を用い、照射後30分経過後の濃
度と比較し、これを3回繰り返した。この結果を(表
3)に示したが、メチルメルカプタンの分解量は1回目
5.23μmol、2回目5.03μmol、3回目5.25μmolであ
り、繰り返しによる触媒能力の低下は見られなかった。
また分解量の合計は15.51μmolとなるが、この量は硫酸
銅のモル数1.21μmolよりも多い。このことからメチル
メルカプタンの酸化に伴って硫酸銅が還元消費されるこ
とはなく、従って硫酸銅は触媒的に機能していることが
明らかである。
Example 3 Copper sulphate was used as the copper compound, and repeated tests for removing odors were conducted. The photocatalytic composition is copper sulfate 0.3 mg (1.21 μmol)
Containing the same anatase type TiO 2 sol 39.0 as in Example 1
mmg (488.24 μmol) was used by being spray-coated on a 10 cm × 10 cm alumina substrate and heat-treated at 110 ° C. (the amount of copper sulfate added is about 0.74% by weight with respect to TiO 2 ). The initial concentration of methyl mercaptan was set to about 3 ppm, the same ultraviolet rays as in Example 1 were used, and the concentration was compared with the concentration 30 minutes after irradiation, and this was repeated 3 times. The results are shown in (Table 3), and the decomposition amount of methyl mercaptan was the first
It was 5.23 μmol, 5.03 μmol for the second time, and 5.25 μmol for the third time, and no decrease in the catalytic ability due to repetition was observed.
The total amount of decomposition is 15.51 μmol, which is larger than the number of moles of copper sulfate, 1.21 μmol. From this, it is clear that copper sulfate is not reduced and consumed by the oxidation of methyl mercaptan, and therefore copper sulfate functions catalytically.

【0023】[0023]

【表3】 [Table 3]

【0024】実施例4 実施例2と同じ硫酸銅及びアナターゼ型TiO2ゾルを用
い、硫酸銅添加量を0.1、0.4、0.8、1.6、3.0、5.0重量
%と変え、またアルミナ基板上にコーティングした後の
熱処理温度を、110、300、500、600、70
0、900℃と変化させて光触媒組成物を形成し、それ
ぞれの形成条件における光照射時の悪臭除去率R30(AL)
(図4)、光遮蔽時の悪臭除去率R30(AD)(図5)及び
正味の光照射時悪臭除去率R30(AL)−R30(AD)(図6)
を測定・算出した。なおR30の測定・算出方法は実施例
2と同様であるが、メチルメルカプタンの初期濃度は3
ppmである。図4から明らかなように、熱処理温度90
0℃ではTiO2がルチル型となるため悪臭物質の分解効
果が殆どない。また図5で明らかなように、硫酸銅の添
加量を増すに連れて光の関与なしに悪臭除去率が上昇す
るが、この場合は添加された銅成分が、メチルメルカプ
タンを化学吸着する効果によるものと思われ、正味の分
解がおこっているのではないと考えられる。従って図6
から、光触媒として最も効果のある硫酸銅添加量は0.4
重量%前後であり、熱処理温度は110℃前後が好まし
いことが分る。
Example 4 Using the same copper sulfate and anatase type TiO 2 sol as in Example 2, the amount of copper sulfate added was changed to 0.1, 0.4, 0.8, 1.6, 3.0 and 5.0% by weight, and coating was performed on an alumina substrate. The subsequent heat treatment temperature is 110, 300, 500, 600, 70.
The photocatalyst composition was formed by changing the temperature from 0 to 900 ° C, and the malodor removal rate R30 (AL) at the time of light irradiation under each forming condition
(Fig. 4), Rodor removal rate R30 (AD) when light is shielded (Fig. 5) and Rodor removal rate R30 (AL) -R30 (AD) during net light irradiation (Fig. 6)
Was measured and calculated. The method for measuring and calculating R30 was the same as in Example 2, but the initial concentration of methyl mercaptan was 3
ppm. As is clear from FIG. 4, the heat treatment temperature 90
At 0 ° C, since TiO2 becomes a rutile type, there is almost no effect of decomposing odorous substances. Further, as is clear from FIG. 5, the malodor removal rate increases without the participation of light as the amount of copper sulfate added increases, but in this case, the added copper component depends on the effect of chemisorbing methyl mercaptan. Most likely, no net decomposition is believed to have occurred. Therefore, FIG.
Therefore, the most effective amount of copper sulfate added as a photocatalyst is 0.4
It is preferable that the heat treatment temperature is around 110 ° C. because the heat treatment temperature is around 10% by weight.

【0025】本発明に係る銅化合物が、光触媒活性を向
上する効果を有する原因については、現在研究中であり
詳細は不明である。しかし、銅化合物のTiO2ゾルに対
する添加効果は、実施例2に記載の通り、熱処理によっ
て低下する傾向があることから、TiO2粒子内に取り込
まれると効果が小さくなるものと考えられる。即ち銅が
TiO2粒子の表面に付着している時に初めて発揮される
効果であると考えられる。このため、極めて微細なTi
2ゾルに対しては、銅の表面付着がまんべんなく行わ
れるとき、効果が大きくなるものと推定される。前記P
−25に対する効果がTiO2ゾルに劣るのも、このよう
な表面付着状態の相違が原因であるものと考えられる。
The cause of the copper compound according to the present invention having the effect of improving the photocatalytic activity is currently under study and the details are unknown. However, since the effect of adding the copper compound to the TiO 2 sol tends to be lowered by the heat treatment as described in Example 2, it is considered that the effect is reduced when incorporated into the TiO 2 particles. That is, it is considered that the effect is exhibited only when copper is attached to the surface of TiO 2 particles. Therefore, extremely fine Ti
It is presumed that the effect becomes large for the O 2 sol when the copper is uniformly deposited on the surface. The P
The reason why the effect on −25 is inferior to that of TiO 2 sol is considered to be due to such a difference in the state of surface adhesion.

【0026】実施例5 TiO2ゾル中に予め金属またはその化合物を添加する以
外は実施例1と同様にした。得られた光触媒組成物の特
性は前記実施例1と同様優れた脱臭、殺菌、汚れ分解機
能を発揮した。尚この場合、ゾルに直接金属を添加する
ため、ゾルの安定性が問題になる。このゾルの安定性に
ついての試験結果を以下の(表4)に示す。評価は目視
で行い、以下のように判別した。 銅化合物を添加する前と全く変らない …………
◎ 僅かに流動性が低下する …………
○ 流動性が低下してスプレーコーティングができない……
△ 流動性なし …………
×
Example 5 The procedure of Example 1 was repeated except that the metal or its compound was added to the TiO 2 sol beforehand. The properties of the obtained photocatalyst composition exhibited the same excellent deodorizing, sterilizing and soil decomposing functions as in Example 1. In this case, since the metal is added directly to the sol, the stability of the sol becomes a problem. The test results for the stability of this sol are shown in (Table 4) below. The evaluation was performed visually and determined as follows. No change from before the addition of the copper compound …………
◎ Liquidity decreases slightly …………
○ Fluidity deteriorates and spray coating is not possible ...
△ No liquidity …………
×

【0027】[0027]

【表4】 [Table 4]

【0028】実施例6 実施例2と同じ硫酸銅及びアナターゼ型TiO2ゾルを用
い、硫酸銅の添加量を0.1、0.8、1.6、3.0、5.0、7.0重
量%と変えてゾルの安定性を調べた。この結果を(表
5)に示したが、アナターゼ型TiO2ゾルに対して1.60
重量%を超える硫酸銅を添加するとゾルが不安定とな
り、取り扱いが難しくなることが分る。
Example 6 Using the same copper sulfate and anatase type TiO 2 sol as in Example 2, the stability of the sol was examined by changing the amount of copper sulfate added to 0.1, 0.8, 1.6, 3.0, 5.0 and 7.0% by weight. It was The results are shown in (Table 5), which is 1.60 for the anatase-type TiO 2 sol.
It can be seen that the addition of copper sulfate in excess of wt% makes the sol unstable and difficult to handle.

【0029】[0029]

【表5】 [Table 5]

【0030】実施例7 実施例3と同じ硫酸銅及びアナターゼ型TiO2ゾルを用
い、硫酸銅の添加量を0.1、0.8、1.6、3.0、5.0重量%
と変えてゾルの透過率を測定した。この結果を図3に示
したが添加量0.8重量%を超えると透過率が低下する。
このためTiO2の光吸収量が減って脱臭力が低下する。
Example 7 Using the same copper sulfate and anatase type TiO 2 sol as in Example 3, the addition amount of copper sulfate was 0.1, 0.8, 1.6, 3.0 and 5.0% by weight.
And the transmittance of the sol was measured. The results are shown in FIG. 3, but when the addition amount exceeds 0.8% by weight, the transmittance decreases.
As a result, the amount of light absorbed by TiO 2 is reduced and the deodorizing power is reduced.

【0031】[0031]

【発明の効果】以上に説明した如く本発明によれば、添
加した金属が光触媒として作用するため、高い脱臭能力
を有し、しかも長期的且つ繰返し使用に耐え得る光触媒
組成物を形成することが可能である。またTiO2ゾルを
原料TiO2として用いているため、緻密で密着性の高い
コーティングを基材に設けることができる。
As described above, according to the present invention, since the added metal acts as a photocatalyst, a photocatalyst composition having a high deodorizing ability and capable of withstanding long-term and repeated use can be formed. It is possible. Further, since TiO 2 sol is used as the raw material TiO 2 , a dense and highly adherent coating can be provided on the substrate.

【0032】また、本願の第1発明によれば、TiO2
ル中に金属塩を添加しないので、TiO2ゾルの安定化が
図れ、添加量を任意に調整することができ、更にTiO2
薄膜の表面層だけ金属濃度を高くし、触媒効果を高める
ことができる。
Further, according to the first aspect of the present invention, since no addition of metal salt to TiO 2 sol, Hakare stabilization of the TiO 2 sol, the amount of can be arbitrarily adjusted added, further TiO 2
The catalytic effect can be enhanced by increasing the metal concentration only in the surface layer of the thin film.

【図面の簡単な説明】[Brief description of drawings]

【図1】各種金属化合物を添加したアナターゼ型TiO2
ゾルの悪臭除去率R30(AL)を示すグラフ
FIG. 1 Anatase-type TiO 2 containing various metal compounds
Graph showing odor removal rate R30 (AL) of sol

【図2】各種銅化合物を添加したアナターゼ型TiO2
ルの熱処理温度と悪臭除去率R30(AL)との関係を示すグ
ラフ
FIG. 2 is a graph showing the relationship between the heat treatment temperature of the anatase-type TiO 2 sol containing various copper compounds and the malodor removal rate R30 (AL).

【図3】アナターゼ型TiO2ゾルに対する硫酸銅の添加
量と透過率との関係を示すグラフ
FIG. 3 is a graph showing the relationship between the amount of copper sulfate added and the transmittance for anatase-type TiO 2 sol.

【図4】熱処理温度を変化したときの、アナターゼ型T
iO2ゾルに対する硫酸銅添加量と悪臭除去率R30(AL)と
の関係を示すグラフ
FIG. 4 shows anatase type T when the heat treatment temperature is changed.
A graph showing the relationship between the amount of copper sulfate added to the io 2 sol and the malodor removal rate R30 (AL)

【図5】熱処理温度を変化したときの、アナターゼ型T
iO2ゾルに対する硫酸銅添加量と悪臭除去率R30(AD)と
の関係を示すグラフ
FIG. 5: Anatase type T when heat treatment temperature is changed
A graph showing the relationship between the amount of copper sulfate added to the iO 2 sol and the malodor removal rate R30 (AD)

【図6】熱処理温度を変化したときの、アナターゼ型T
iO2ゾルに対する硫酸銅添加量と悪臭除去率R30(AL)−
R30(AD)との関係を示すグラフ
FIG. 6 shows anatase type T when the heat treatment temperature is changed.
copper sulfate amount for iO 2 sol and malodor removing index R30 (AL) -
Graph showing the relationship with R30 (AD)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 TiO2ゾルを基板材料に塗布して薄膜を
形成し、この薄膜に金属塩の水溶液または金属の微粉末
を懸濁させた水溶液を塗布若しくは含浸せしめ、次いで
ルチル型TiO2への相転移点以下の温度で熱処理してア
ナターゼ型TiO2薄膜に前記金属を固定化したことを特
徴とする光触媒組成物の製造方法。
1. A TiO 2 sol is applied to a substrate material to form a thin film, and this thin film is applied or impregnated with an aqueous solution of a metal salt or an aqueous solution in which fine metal powder is suspended, and then a rutile type TiO 2 is formed. The method for producing a photocatalyst composition, characterized in that the metal is immobilized on the anatase type TiO 2 thin film by heat treatment at a temperature not higher than the phase transition point.
【請求項2】 前記熱処理温度は400℃以下としたこ
とを特徴とする請求項1に記載の光触媒組成物の製造方
法。
2. The method for producing a photocatalyst composition according to claim 1, wherein the heat treatment temperature is 400 ° C. or lower.
【請求項3】 触媒量の金属又はその金属の塩を含むT
iO2ゾルを熱処理したアナターゼ型TiO2からなること
を特徴とする光触媒組成物。
3. A T containing a catalytic amount of a metal or a salt of the metal.
A photocatalytic composition comprising anatase-type TiO 2 obtained by heat-treating an io 2 sol.
【請求項4】 TiO2ゾル中へ触媒量の金属又はその金
属塩を添加して混合し、この混合物で基材を被覆し、更
にこれを100〜800℃で熱処理したことを特徴とす
るアナターゼ型TiO2からなる光触媒組成物の製造方
法。
4. Anatase characterized in that a catalytic amount of a metal or a metal salt thereof is added to and mixed with a TiO 2 sol, a substrate is coated with this mixture, and this is further heat-treated at 100 to 800 ° C. A method for producing a photocatalyst composition comprising type TiO 2 .
JP5240383A 1992-09-01 1993-09-01 Production of photocatalystic composition and photocatalystic composition Pending JPH06205977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5240383A JPH06205977A (en) 1992-09-01 1993-09-01 Production of photocatalystic composition and photocatalystic composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25536892 1992-09-01
JP4-255368 1992-09-01
JP5240383A JPH06205977A (en) 1992-09-01 1993-09-01 Production of photocatalystic composition and photocatalystic composition

Publications (1)

Publication Number Publication Date
JPH06205977A true JPH06205977A (en) 1994-07-26

Family

ID=26534707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5240383A Pending JPH06205977A (en) 1992-09-01 1993-09-01 Production of photocatalystic composition and photocatalystic composition

Country Status (1)

Country Link
JP (1) JPH06205977A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105178A (en) * 1994-08-10 1996-04-23 Teika Corp Tile having light catalytic function
JPH08131524A (en) * 1994-11-04 1996-05-28 Toto Ltd Multi-functional material having photocatalytic function and manufacture thereof
JPH08277147A (en) * 1995-03-31 1996-10-22 Nippon Muki Co Ltd Plate glass
JPH0978665A (en) * 1995-07-08 1997-03-25 Toto Ltd Toilet
JPH09111022A (en) * 1995-10-16 1997-04-28 Agency Of Ind Science & Technol Photocatalytic sheet and its production
EP0770579A1 (en) * 1995-10-26 1997-05-02 Asahi Glass Company Ltd. Modified titanium oxide sol, photocatalyst composition and photocatalyst composition-forming agent
JPH10167727A (en) * 1995-10-26 1998-06-23 Matsumoto Seiyaku Kogyo Kk Modified titanium oxide sol, photocatalyst composition and its forming agent
EP0846494A4 (en) * 1996-03-29 2000-01-19 Tao Inc Photocatalyst body and method of production thereof
JP2001062309A (en) * 1999-08-30 2001-03-13 Akira Fujishima Photocatalyst membrane excellent in soil resistance and building exterior material utilizing the same and building exterior
JP2001187346A (en) * 1999-10-21 2001-07-10 Kobe Steel Ltd Photocatalyst coated material and manufacturing method thereof, and contaminant-containing material cleaning method and contaminant-containing material cleaning device using photocatalyst coated material
JP2001276628A (en) * 2000-03-31 2001-10-09 Toshiba Corp Method of sticking photocatalyst onto structural material of nuclear reactor
KR100457769B1 (en) * 2000-09-14 2004-11-18 가부시키가이샤 후지키한 Metal oxide layer having oxygen deficit tilting structure
JP2006134027A (en) * 2004-11-05 2006-05-25 Kon Corporation:Kk Mouse pad
WO2007026387A2 (en) * 2005-09-01 2007-03-08 NM TECH LTD. - Nanomaterials and Microdevices Technology Photocatalytic filters that are coated with titanium dioxide suspensions and other substances and methods for obtaining such filters
JP2008524097A (en) * 2004-12-16 2008-07-10 エージーシー フラット グラス ユーロップ エスエー Antimicrobial substrate
JP2009056348A (en) * 2007-08-30 2009-03-19 Sumitomo Chemical Co Ltd Photocatalyst dispersion
JP2009167097A (en) * 1995-03-20 2009-07-30 Toto Ltd Photocatalytic member
JP2011031136A (en) * 2009-07-30 2011-02-17 Toto Ltd Photocatalyst-coated body and photocatalyst coating liquid
WO2011043496A2 (en) 2009-10-08 2011-04-14 The University Of Tokyo Copper ion-modified titanium oxide and process for producing the same, and photocatalyst
JP5618265B2 (en) * 2007-06-05 2014-11-05 国立大学法人東京大学 Photocatalyst material, method for producing the same, and method for decomposing pollutants using the material

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105178A (en) * 1994-08-10 1996-04-23 Teika Corp Tile having light catalytic function
JPH08131524A (en) * 1994-11-04 1996-05-28 Toto Ltd Multi-functional material having photocatalytic function and manufacture thereof
JP2009167097A (en) * 1995-03-20 2009-07-30 Toto Ltd Photocatalytic member
JPH08277147A (en) * 1995-03-31 1996-10-22 Nippon Muki Co Ltd Plate glass
JPH0978665A (en) * 1995-07-08 1997-03-25 Toto Ltd Toilet
JPH09111022A (en) * 1995-10-16 1997-04-28 Agency Of Ind Science & Technol Photocatalytic sheet and its production
EP0770579A1 (en) * 1995-10-26 1997-05-02 Asahi Glass Company Ltd. Modified titanium oxide sol, photocatalyst composition and photocatalyst composition-forming agent
JPH10167727A (en) * 1995-10-26 1998-06-23 Matsumoto Seiyaku Kogyo Kk Modified titanium oxide sol, photocatalyst composition and its forming agent
US6429169B1 (en) 1996-03-29 2002-08-06 Saga-Ken Photocatalytic body and method for making same
EP0846494A4 (en) * 1996-03-29 2000-01-19 Tao Inc Photocatalyst body and method of production thereof
US6107241A (en) * 1996-03-29 2000-08-22 Tao Inc. Photocatalytic body and method for making same
JP2001062309A (en) * 1999-08-30 2001-03-13 Akira Fujishima Photocatalyst membrane excellent in soil resistance and building exterior material utilizing the same and building exterior
JP2001187346A (en) * 1999-10-21 2001-07-10 Kobe Steel Ltd Photocatalyst coated material and manufacturing method thereof, and contaminant-containing material cleaning method and contaminant-containing material cleaning device using photocatalyst coated material
JP4689809B2 (en) * 1999-10-21 2011-05-25 株式会社神戸製鋼所 Photocatalyst coating material, method for producing the same, pollutant-containing material purification method and contaminant-containing material purification device using the photocatalyst coating material
JP2001276628A (en) * 2000-03-31 2001-10-09 Toshiba Corp Method of sticking photocatalyst onto structural material of nuclear reactor
KR100457769B1 (en) * 2000-09-14 2004-11-18 가부시키가이샤 후지키한 Metal oxide layer having oxygen deficit tilting structure
JP2006134027A (en) * 2004-11-05 2006-05-25 Kon Corporation:Kk Mouse pad
JP4515224B2 (en) * 2004-11-05 2010-07-28 株式会社鯤コーポレーション Mouse pad
JP2008524097A (en) * 2004-12-16 2008-07-10 エージーシー フラット グラス ユーロップ エスエー Antimicrobial substrate
WO2007026387A3 (en) * 2005-09-01 2007-05-31 Nm Tech Ltd Photocatalytic filters that are coated with titanium dioxide suspensions and other substances and methods for obtaining such filters
WO2007026387A2 (en) * 2005-09-01 2007-03-08 NM TECH LTD. - Nanomaterials and Microdevices Technology Photocatalytic filters that are coated with titanium dioxide suspensions and other substances and methods for obtaining such filters
JP5618265B2 (en) * 2007-06-05 2014-11-05 国立大学法人東京大学 Photocatalyst material, method for producing the same, and method for decomposing pollutants using the material
JP2009056348A (en) * 2007-08-30 2009-03-19 Sumitomo Chemical Co Ltd Photocatalyst dispersion
JP2011031136A (en) * 2009-07-30 2011-02-17 Toto Ltd Photocatalyst-coated body and photocatalyst coating liquid
WO2011043496A2 (en) 2009-10-08 2011-04-14 The University Of Tokyo Copper ion-modified titanium oxide and process for producing the same, and photocatalyst

Similar Documents

Publication Publication Date Title
JPH06205977A (en) Production of photocatalystic composition and photocatalystic composition
JP5498009B2 (en) Photocatalyst material, organic matter decomposition method, interior member, air cleaning device, oxidizer manufacturing device
JP5775248B2 (en) Photocatalyst material, organic matter decomposition method, interior member, air cleaning device, oxidizer manufacturing device
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
JPH0866635A (en) Photocatalytic thin film and its formation
JP5946096B2 (en) A novel visible light responsive photocatalyst with environmental resistance
JP2007098293A (en) Visible light response type photocatalyst, visible light response type photocatalyst composition and its production method
JPH10305230A (en) Photocatalyst, its production and decomposing and removing method of harmful substance
JP2002320862A (en) Photocatalyst thin film in which metal is supported on titanium oxide thin film
JP3567693B2 (en) Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances
JP4883913B2 (en) Photocatalyst and method for producing the same
JPH08229408A (en) Photocatalytically functioning particles, member containing the same, purification of water utilizing them and algicidal method of water tank for keeping aquarium fish or shellfish
JP2002159865A (en) Titanium oxide photocatalyst for basic gas removal
JP3250394B2 (en) Member having photocatalytic action, composition for forming photocatalytic thin film, and method for producing member having photocatalytic action
JP4103324B2 (en) Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same
JP2000015110A (en) Photocatalytic particles
JPH10113563A (en) Photocatalyst and production thereof
JP3456587B2 (en) Deodorizing material
JPH08224481A (en) Member having photocatalytic action
JP4484195B2 (en) Method for producing titanium oxide
JP2004082088A (en) Photocatalyst and photocatalyst material
JP3978635B2 (en) Titanyl oxalate coating liquid and method for producing photocatalytic element using the same
JP2003135974A (en) Photocatalyst material and photocatalyst coating agent prepared by using the same
JP4296533B2 (en) Titanium oxide photocatalyst with excellent nitrogen oxide removal performance
JPH11244706A (en) Photocatalyst comprising anatase-type titanium oxide and its manufacture