JPH08229408A - Photocatalytically functioning particles, member containing the same, purification of water utilizing them and algicidal method of water tank for keeping aquarium fish or shellfish - Google Patents

Photocatalytically functioning particles, member containing the same, purification of water utilizing them and algicidal method of water tank for keeping aquarium fish or shellfish

Info

Publication number
JPH08229408A
JPH08229408A JP7346581A JP34658195A JPH08229408A JP H08229408 A JPH08229408 A JP H08229408A JP 7346581 A JP7346581 A JP 7346581A JP 34658195 A JP34658195 A JP 34658195A JP H08229408 A JPH08229408 A JP H08229408A
Authority
JP
Japan
Prior art keywords
particles
metal species
insoluble
salt
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7346581A
Other languages
Japanese (ja)
Other versions
JP3261959B2 (en
Inventor
Makoto Hayakawa
信 早川
Taizo Hamano
泰三 浜野
Tatsuhiko Kuga
辰彦 久我
Yoshimitsu Saeki
義光 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP34658195A priority Critical patent/JP3261959B2/en
Publication of JPH08229408A publication Critical patent/JPH08229408A/en
Application granted granted Critical
Publication of JP3261959B2 publication Critical patent/JP3261959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE: To effectively prevent the lowering of the photocatalytical reaction of photocatalytically functioning particles without exerting adverse effect on an ecosystem by fixing metal seeds made hardly soluble and insoluble and having electron capturing effect to particles having photocatalytical activity. CONSTITUTION: Metal seeds having electron capturing effect are fixed to particles having photocatalytical activity, that is, semiconductor particles having band gaps sufficient to develop photocatalytical function such as antibacterial function, deodorizing function or algicidal function. The metal seeds are ones made hardly soluble or insoluble and having electron capturing effect and are composed of a metal and ions low in ionization tendency and easily reduced such as Pt, Pd, Au, Ag, Zn, Ni, Cu, Fe or Co. Two or more kinds of metal seeds may be together used. The metal seeds are fixed by adapting a suspension or soln. of a metal salt containing metal seeds to photocatalytically active particles to dry the impregnated particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に水環境で長期
に使用するのに好適な抗菌、脱臭、汚れ防止、防藻等の
効果を有する光触媒粒子活性を有する粒子、または光触
媒活性を有する粒子を含む部材に関する。さらには、そ
れらを利用した水の浄化方法、及び観賞魚または魚貝飼
育用水槽の防藻方法に関する。
TECHNICAL FIELD The present invention relates to a particle having photocatalytic particle activity, or a particle having photocatalytic activity, which is suitable for long-term use especially in an aqueous environment and has effects such as antibacterial activity, deodorization, stain prevention and algae protection. Related to a member including. Furthermore, it relates to a method for purifying water using them, and a method for controlling algae in an aquarium for ornamental fish or shellfish breeding.

【0002】[0002]

【従来の技術】近年、抗菌、脱臭に関する意識が高ま
り、種々の提案がなされている。その1つの方法に光触
媒を利用した方法がある。
2. Description of the Related Art In recent years, awareness of antibacterial and deodorization has increased, and various proposals have been made. One of the methods is a method using a photocatalyst.

【0003】例えば、水環境下においては、特公平5−
50294号において、光半導体微粒子を基材表面に固
定化してなる光滅菌性充填材を有することを特徴とする
滅菌性リアクターが開示されており、それにより3時間
で99%以上の滅菌に成功している。
For example, in a water environment,
No. 50294 discloses a sterilizable reactor characterized by having a photo-sterilizable filler formed by immobilizing optical semiconductor fine particles on the surface of a base material, whereby 99% or more of sterilization is successful in 3 hours. ing.

【0004】また、特公平6−7905号には、高分子
物質や塵芥の混合物が、光触媒反応を起こす触媒である
半導体表面に付着し、これを覆ってしまうため、触媒ま
で紫外線が達せず、触媒がエネルギーを受けにくくな
り、光触媒反応が低下し、反応劣化を引き起こすのを防
止するために、半導体からなる光触媒層と、それに対向
して設けられた紫外線灯および発熱体と、送風機からな
り、光触媒層全体が順次加熱されるように、光触媒層あ
るいは発熱体、または光触媒層及び発熱体が移動する光
触媒による脱臭装置が開示されている。
Further, in Japanese Examined Patent Publication No. 6-7905, a mixture of a polymer substance and dust adheres to the surface of a semiconductor, which is a catalyst that causes a photocatalytic reaction, and covers it, so that ultraviolet rays do not reach the catalyst. The catalyst is less likely to receive energy, the photocatalytic reaction is lowered, in order to prevent the deterioration of the reaction, a photocatalytic layer made of a semiconductor, an ultraviolet lamp and a heating element provided opposite thereto, and a blower, There is disclosed a deodorizing apparatus using a photocatalyst in which the photocatalyst layer or the heating element, or the photocatalyst layer and the heating element move so that the entire photocatalytic layer is sequentially heated.

【0005】さらに、特開平7−24451号には、水
棲生物の飼養域に配置した酸化チタン触媒体に紫外線を
含有した光を照射し、該飼養域の水を浄化する方法が開
示されている。
Further, Japanese Unexamined Patent Publication No. 7-24451 discloses a method of purifying water in the aquatic organisms by irradiating the titanium oxide catalysts arranged in the aquaculture region with light containing ultraviolet rays. .

【0006】また、白金、金、銀、パラジウム、銅等の
金属成分を添加すると、光触媒活性が向上することも広
く知られている。
It is also widely known that the photocatalytic activity is improved by adding metal components such as platinum, gold, silver, palladium and copper.

【0007】[0007]

【発明が解決しようとする課題】特公平6−7905号
で指摘されている異物が、光触媒反応を起こす触媒であ
る半導体表面に付着しこれを覆ってしまう現象は、液体
中ではより速く進行する。その原因として、特にアルカ
リ金属、アルカリ土類金属等の無機イオン質が半導体粒
子活性点を覆うことが最近明らかになってきた。アルカ
リ金属、アルカリ土類金属等の無機イオン質が半導体粒
子活性点を覆うと、光触媒活性が著しく損なわれる。し
たがって、光触媒を水環境下で長期にわたり安定して用
いるには特公平5−50294号、及び特開平7−24
451号に開示されている要件のみでは不足である。
The phenomenon of foreign matter, which is pointed out in Japanese Patent Publication No. 6-7905, adheres to and covers the semiconductor surface, which is a catalyst for photocatalytic reaction, progresses faster in liquid. . As a cause for this, it has been recently revealed that inorganic ionic substances such as alkali metals and alkaline earth metals cover the active sites of semiconductor particles. When the inorganic ionic substance such as alkali metal or alkaline earth metal covers the active sites of the semiconductor particles, the photocatalytic activity is significantly impaired. Therefore, in order to use the photocatalyst stably in a water environment for a long period of time, Japanese Patent Publication No. 5-50294 and Japanese Patent Laid-Open No. 7-24
The requirements disclosed in No. 451 are insufficient.

【0008】またその際、白金、金、銀、パラジウム、
銅等の光触媒活性を向上する成分を単に水溶性化合物の
塗布等の方法で添加すると、これら重金属が水環境下に
溶出し、生態系に悪影響を及ぼすおそれがある。
At that time, platinum, gold, silver, palladium,
When a component such as copper that improves the photocatalytic activity is simply added by a method such as coating with a water-soluble compound, these heavy metals may be eluted in the aquatic environment and adversely affect the ecosystem.

【0009】そこで、本発明では上記事情に鑑み、特に
水環境下における光触媒反応の低下を、生態系に悪影響
を及ぼすことなく、有効に防止し、長期にわたる光触媒
活性を有する粒子、または光触媒活性を有する粒子を含
む部材を提供することを目的とした。
In view of the above circumstances, therefore, the present invention effectively prevents the deterioration of the photocatalytic reaction in an aquatic environment without adversely affecting the ecosystem, and suppresses the particles having the photocatalytic activity for a long time or the photocatalytic activity. The object is to provide a member containing the particles.

【0010】[0010]

【課題を解決するための手段、及び作用】本発明では、
上記課題を解決すべく、光触媒活性を有する粒子に、難
溶性または不溶性処理された電子捕捉効果を有する金属
種が固定されていることを特徴とする光触媒機能粒子を
提供する。
[Means and Actions for Solving the Problems] In the present invention,
In order to solve the above problems, there is provided a photocatalyst functional particle comprising a photocatalytically active particle to which a metal species having an electron-trapping effect, which is poorly soluble or insoluble, is fixed.

【0011】このような構造にすることにより、光触媒
活性を有する粒子の活性なサイトが予め電子捕捉効果を
有する金属種で固定化されることになるので、高分子物
質や塵芥、アルカリ金属、アルカリ土類金属等の無機イ
オン質が半導体粒子活性点に付着しにくく、長期使用時
の光触媒反応の低下を有効に防止できる。かつ電子捕捉
効果を有する金属種には難溶性または不溶性処理が施さ
れているので、水環境下で使用する場合に、金属が水環
境下に溶出し、生態系に悪影響を及ぼすおそれを未然に
回避できる。
With such a structure, the active sites of the particles having photocatalytic activity are fixed in advance with a metal species having an electron-trapping effect, so that a polymer substance, dust, alkali metal, alkali Inorganic ionic substances such as earth metals are unlikely to adhere to the active sites of the semiconductor particles, and the deterioration of the photocatalytic reaction during long-term use can be effectively prevented. In addition, since the metal species that has an electron trapping effect is subjected to a sparingly soluble or insoluble treatment, when used in an aquatic environment, the metal may elute in the aquatic environment, adversely affecting the ecosystem. It can be avoided.

【0012】本発明の好ましい態様においては、難溶性
または不溶性処理は、金属種上に難溶性または不溶性の
塩を形成する処理で行う。かかる方法は具体的には、ま
ず水溶性の電子捕捉効果を有する金属種を含む物質を光
触媒粒子に適用し、その後で水溶性の電子捕捉効果を有
する金属種上に難溶性または不溶性の塩を形成する方法
なので、光触媒粒子に直接難溶性または不溶性の電子捕
捉効果を有する金属種を含む物質を適用する場合と比較
して、光触媒粒子に電子捕捉効果を有する金属種を均一
に適用できる利点を有する。
In a preferred embodiment of the present invention, the sparingly soluble or insoluble treatment is performed by forming a sparingly soluble or insoluble salt on the metal species. Specifically, such a method comprises first applying a substance containing a water-soluble metal species having an electron-trapping effect to the photocatalyst particles, and then applying a sparingly soluble or insoluble salt on the water-soluble metal species having an electron-trapping effect. Since it is a method of forming, the advantage of being able to uniformly apply the metal species having the electron-trapping effect to the photocatalyst particles is compared to the case of directly applying the hardly soluble or insoluble substance containing the metal species having the electron-trapping effect to the photocatalyst particles. Have.

【0013】本発明の好ましい態様においては、難溶性
または不溶性処理は、固定された金属種のうちの水溶性
成分を予め抽出除去する処理で行ってもよい。かかる方
法は具体的には、まず水溶性の電子捕捉効果を有する金
属種を含む物質を光触媒粒子に適用し、次に金属種の一
部を還元、または難溶性または不溶性の塩に変化させ、
その後余剰の水溶性成分を予め抽出除去する方法である
が、ここで抽出除去工程の存在により、より確実に金属
種の溶出を防止できる。
In a preferred embodiment of the present invention, the sparingly soluble or insoluble treatment may be performed by previously extracting and removing a water-soluble component of the fixed metal species. Specifically, such a method comprises first applying a substance containing a water-soluble metal species having an electron-trapping effect to photocatalyst particles, then reducing a part of the metal species, or converting it into a sparingly soluble or insoluble salt,
After that, it is a method of extracting and removing the surplus water-soluble component in advance, but the existence of the extracting and removing step can more reliably prevent the elution of the metal species.

【0014】本発明の好ましい態様においては、難溶性
または不溶性の塩は、光触媒活性を有する粒子に固定化
された金属種の塩であるようにする。このようにするこ
とにより、適用した金属種に難溶性の塩または不溶性の
塩を生成しうる溶液、気体等を直接反応させるのみで、
前記金属種上に難溶性の塩または不溶性の塩を形成しう
るので、工程上簡便である。
In a preferred embodiment of the present invention, the sparingly soluble or insoluble salt is a salt of a metal species immobilized on particles having photocatalytic activity. By doing so, only by directly reacting a solution, gas or the like which can form a sparingly soluble salt or insoluble salt with the applied metal species,
Since a sparingly soluble salt or an insoluble salt can be formed on the metal species, the process is simple.

【0015】本発明の好ましい態様においては、難溶性
または不溶性の塩は、抗菌性を有する金属種の塩である
ようにする。このようにすることにより、光触媒による
抗菌作用の他に、適用した金属種による抗菌作用を加味
できるので、より抗菌性能が向上する。また光を照射し
ない場合でも抗菌性を発揮しうるようになる。
In a preferred embodiment of the present invention, the sparingly soluble or insoluble salt is a salt of a metal species having antibacterial properties. By doing so, in addition to the antibacterial action by the photocatalyst, the antibacterial action by the applied metal species can be added, and thus the antibacterial performance is further improved. Further, the antibacterial property can be exhibited even when the light is not irradiated.

【0016】本発明の好ましい態様においては、難溶性
または不溶性の塩は、銀塩であるようにする。銀は他の
金属種と比較して抗菌作用が強いので、より抗菌性能が
向上する。
In a preferred embodiment of the present invention, the sparingly soluble or insoluble salt is a silver salt. Since silver has a stronger antibacterial action than other metal species, antibacterial performance is further improved.

【0017】本発明の好ましい態様においては、光触媒
活性を有する粒子、及び金属種は、基材表面に固定化さ
れているようにする。基材に固定された状態で使用する
方が、粒子の場合と比較して水を濁らせることなく、ま
た回収にも簡便である。
In a preferred embodiment of the present invention, the particles having photocatalytic activity and the metal species are immobilized on the surface of the substrate. It is easier to collect water when it is used in a state of being fixed to the base material, as compared with the case of particles, without making the water cloudy.

【0018】本発明の好ましい態様においては、難溶性
または不溶性の塩が白色または無色の塩であるようにす
る。このようにすることにより、光触媒基材に施された
色、模様、透明性、光沢等の意匠的外観を維持できる。
In a preferred embodiment of the present invention, the sparingly soluble or insoluble salt is a white or colorless salt. By doing so, the design appearance such as the color, pattern, transparency, and gloss applied to the photocatalyst substrate can be maintained.

【0019】本発明の好ましい態様においては、上記光
触媒機能粒子、または光触媒機能粒子を含む部材を、水
中に配置して水の浄化方法を行うようにする。水の浄化
を上記光触媒機能粒子、または光触媒機能粒子を含む部
材で行えば、光触媒による水の抗菌、防藻等を長期にわ
たり発揮することができる。また、重金属の溶出がほと
んど生じないので、生態系に悪影響を及ぼすおそれもな
い。さらに無機抗菌剤のように金属イオンの溶出で作用
を生じさせるわけではないので、塩素イオン等の存在に
より効果が低下、短期化することもない。
In a preferred embodiment of the present invention, the above-mentioned photocatalyst function particles or a member containing the photocatalyst function particles is placed in water to perform a water purification method. If the water is purified by the photocatalyst functional particles or a member containing the photocatalyst functional particles, the antibacterial action of the water by the photocatalyst and the algae prevention can be exhibited for a long period of time. In addition, since the elution of heavy metals hardly occurs, there is no risk of adversely affecting the ecosystem. Further, unlike the inorganic antibacterial agent, the action is not caused by the elution of metal ions, so that the effect is not reduced and the period is not shortened due to the presence of chlorine ions and the like.

【0020】本発明の好ましい態様においては、上記光
触媒機能粒子、または光触媒機能粒子を含む部材を、水
槽中に配置して観賞魚または魚貝飼育用水槽の防藻方法
を行うようにする。水槽中に配置して観賞魚または魚貝
飼育用水槽の防藻を、上記光触媒機能粒子、または光触
媒機能粒子を含む部材で行えば、光触媒による水槽内の
防藻等を長期にわたり発揮することができる。また、重
金属の溶出がほとんど生じないので、生態系に悪影響を
及ぼすおそれもない。さらに無機抗菌剤のように金属イ
オンの溶出で作用を生じさせるわけではないので、塩素
イオン等の存在により効果が低下、短期化することもな
い。
In a preferred embodiment of the present invention, the photocatalyst functional particles or a member containing the photocatalyst functional particles is arranged in a water tank to carry out the algae control method for an ornamental fish or fish and shellfish aquarium. If the algae in the aquarium for ornamental fish or fish and shellfish breeding placed in the aquarium is performed with the photocatalytic functional particles or a member containing the photocatalytic functional particles, the algae in the aquarium with the photocatalyst can be exerted for a long time. it can. In addition, since the elution of heavy metals hardly occurs, there is no risk of adversely affecting the ecosystem. Further, unlike the inorganic antibacterial agent, the action is not caused by the elution of metal ions, so that the effect is not reduced and the period is not shortened due to the presence of chlorine ions and the like.

【0021】本発明の好ましい態様においては、光触媒
機能粒子を含む部材を、水槽中に配置する観賞魚または
魚貝飼育用水槽の防藻方法において、前記基材は耐熱性
基材にする。基材を耐熱性にすることで、光触媒活性を
有する粒子を加熱工程のみで強固に固定できる。
[0021] In a preferred embodiment of the present invention, in the algae control method for an ornamental fish or aquarium breeding aquarium, wherein the member containing photocatalytic functional particles is placed in the aquarium, the substrate is a heat-resistant substrate. By making the substrate heat resistant, the particles having photocatalytic activity can be firmly fixed only by the heating step.

【0022】本発明の好ましい態様においては、光触媒
機能粒子を含む部材を、水槽中に配置する観賞魚または
魚貝飼育用水槽の防藻方法において、前記基材は透明基
材にする。基材を透明にすることで意匠性が良好にな
り、また観賞する際に清涼感を発揮できるとともに、光
の照射効率が向上する。
In a preferred embodiment of the present invention, in the algae control method for an ornamental fish or aquarium for breeding fish and shellfish, wherein a member containing photocatalytic functional particles is placed in the aquarium, the substrate is a transparent substrate. By making the base material transparent, the designability is improved, and a refreshing feeling can be exhibited when viewing, and the light irradiation efficiency is improved.

【0023】本発明の好ましい態様においては、上記観
賞魚または魚貝飼育用水槽の防藻方法において、基材は
球状であるようにする。基材が球状だと、水槽内に投入
しやすく、また形状もシンプルで意匠性がよい。また基
材上に形成する光触媒活性を有する粒子層に終端がない
ため剥離しにくい。さらに、球状基材は、例えば溶融し
たガラスをカットしながら傾斜のある加熱されたプレー
ト上に落下させ、該プレートに温度勾配を設けて転がる
うちに徐々に冷却されていく装置などで簡単に作製でき
るのでコスト上も安価にできる。
In a preferred embodiment of the present invention, the base material is spherical in the algae control method for an ornamental fish or fish and shellfish aquarium. If the base material is spherical, it is easy to put in a water tank, and the shape is simple and the design is good. Further, since the particle layer having photocatalytic activity formed on the substrate has no termination, it is difficult to peel off. Further, the spherical base material is easily produced by, for example, a device in which molten glass is dropped onto a heated plate having an inclination while cutting the glass, and the plate is gradually cooled while rolling while providing a temperature gradient. Because it can be done, the cost can be reduced.

【0024】本発明の好ましい態様においては、上記観
賞魚または魚貝飼育用水槽の防藻方法において、基材は
楕円体状であるようにする。基材が楕円体状だと、水槽
内に投入しやすく、また形状もシンプルで意匠性がよ
い。また基材上に形成する光触媒活性を有する粒子層に
終端がないため剥離しにくい。さらに誤って床等に落し
たときにも転がりにくい。
[0024] In a preferred embodiment of the present invention, in the method for controlling algae in an aquarium for breeding ornamental fish or fish and shellfish, the substrate is ellipsoidal. When the base material has an ellipsoidal shape, it can be easily put into a water tank, and the shape is simple and the design is good. Further, since the particle layer having photocatalytic activity formed on the substrate has no termination, it is difficult to peel off. Even if it is accidentally dropped on the floor, it does not easily roll.

【0025】[0025]

【発明の実施の形態】以下に本発明の光触媒機能粒子に
ついて具体的に説明する。本発明の光触媒機能粒子は、
光触媒活性を有する粒子に、難溶性または不溶性処理さ
れた電子捕捉効果を有する金属種が固定されている。こ
こで光触媒活性を有する粒子とは、抗菌機能、防臭機
能、防藻機能等の光触媒機能を発揮するのに充分なバン
ド・ギャップを有する半導体粒子のことである。光触媒
粒子が抗菌機能を有する理由としては所定以上の電圧が
印加されることにより感電死するという説(特公平4−
29393号)もあるが、一般には防臭機能と同様に、
光照射時に生じる活性酸素のためと考えられている。活
性酸素を生成するためには、半導体の伝導帯の位置がバ
ンドモデルで表すとき水素発生電位より上方にあり、か
つ価電子帯の上端が酸素発生電位より下方にあることを
要する。この条件を満たす半導体には、酸化チタン、チ
タン酸ストロンチウム、酸化亜鉛、炭化ケイ素、リン化
ガリウム、硫化カドミウム、セレン化カドミウム、三硫
化モリブデン等がある。また微粒化すると伝導帯の位置
は上方に移動するので、1〜10nm程度の微粒子なら
ば、酸化スズ、三酸化タングステン、酸化第二鉄等も活
性酸素を生成しうる可能性がある。このうち化学的に安
定で、安価に活性の高い微粒子を得ることができること
から、アナターゼ型酸化チタンが特に好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The photocatalytic functional particles of the present invention will be specifically described below. Photocatalyst functional particles of the present invention,
A metal species having an electron-trapping effect, which is hardly soluble or insoluble, is fixed to the particles having photocatalytic activity. Here, the particles having photocatalytic activity are semiconductor particles having a band gap sufficient to exhibit a photocatalytic function such as an antibacterial function, a deodorant function, and an algae preventive function. The reason why photocatalyst particles have an antibacterial function is that they are electrocuted when a voltage higher than a predetermined level is applied (Patent Publication 4-
29393), but in general, like the deodorant function,
It is considered to be due to active oxygen generated during light irradiation. In order to generate active oxygen, it is necessary that the position of the semiconductor conduction band is above the hydrogen generation potential and the upper end of the valence band is below the oxygen generation potential when expressed by a band model. Semiconductors that satisfy this condition include titanium oxide, strontium titanate, zinc oxide, silicon carbide, gallium phosphide, cadmium sulfide, cadmium selenide, molybdenum trisulfide and the like. Further, since the position of the conduction band moves upward when atomized, tin oxide, tungsten trioxide, ferric oxide, etc. may be able to generate active oxygen in the case of fine particles of about 1 to 10 nm. Of these, anatase-type titanium oxide is particularly preferable because it is chemically stable and inexpensive highly active fine particles can be obtained.

【0026】電子捕捉効果を有する金属種とは、Pt、
Pd、Au、Ag、Cu、Ni、Fe、Co、Zn等の
イオン化傾向の小さく、自身が還元されやすい金属及び
そのイオンをいう。尚、これらの金属種は、複数併用し
て用いても構わない。電子捕捉効果を有する金属種を光
触媒活性を有する粒子に固定する方法は、電子捕捉効果
を有する金属種を含む金属塩の懸濁液または溶液を光触
媒活性を有する粒子に適用し、乾燥させることによる。
The metal species having an electron trapping effect is Pt,
It refers to a metal such as Pd, Au, Ag, Cu, Ni, Fe, Co, and Zn, which has a small ionization tendency and is easily reduced, and its ion. It should be noted that these metal species may be used in combination. The method of fixing the metal species having the electron trapping effect to the particles having the photocatalytic activity is performed by applying a suspension or solution of a metal salt containing the metal species having the electron trapping effect to the particles having the photocatalytic activity and drying. .

【0027】金属種の難溶性または不溶性処理とは、光
触媒活性を有する粒子に固定された金属種の形態を水に
対する溶解度が小さい、若しくはない状態にすることで
ある。具体的には、難溶性または不溶性の塩へと化学反
応で変化させる方法と、光、電気、加熱、還元剤等を利
用して難溶性または不溶性の還元金属に変化させる方法
がある。
The refractory or insoluble treatment of the metal species is to make the form of the metal species fixed to the particles having photocatalytic activity into a state having low or no solubility in water. Specifically, there are a method of changing into a sparingly soluble or insoluble salt by a chemical reaction, and a method of converting into a sparingly soluble or insoluble reduced metal by utilizing light, electricity, heating, a reducing agent and the like.

【0028】難溶性または不溶性の塩へと化学反応で変
化させる方法は、例えば、金属種と難溶性または不溶性
の塩を形成しうる陰イオンを含む溶液と、上記金属種が
固定された光触媒活性を有する粒子とを接触させる方法
や、金属種と難溶性または不溶性の塩を形成しうる気体
と、反応しうる温度で、上記金属種が固定された光触媒
活性を有する粒子とを接触させる方法がある。上記2つ
のいずれの方法においても難溶性または不溶性の塩は金
属種の外側に形成されることになるので、この場合は、
反応が100%進行しなくても難溶性または不溶性処理
は完了する。
The method of changing into a sparingly soluble or insoluble salt by a chemical reaction is, for example, a solution containing an anion capable of forming a sparingly soluble or insoluble salt with a metal species and a photocatalytic activity to which the metal species is fixed. Or a gas capable of forming a sparingly soluble or insoluble salt with a metal species, and a method of contacting a particle having a photocatalytic activity to which the metal species is fixed at a temperature at which the metal species can react. is there. In either of the above two methods, the sparingly soluble or insoluble salt is formed outside the metal species. In this case,
The hardly soluble or insoluble treatment is completed even if the reaction does not proceed 100%.

【0029】加熱を利用して難溶性または不溶性の還元
金属に変化させる方法でも温度は表面から高くなるの
で、難溶性または不溶性の還元金属は金属種の外側に形
成されることになるので、従って、この場合は反応が1
00%進行しなくても難溶性または不溶性処理は完了す
る。なお、この方法の取り得る金属種はPt、Pd、A
u、Ag等であり、Cu、Ni、Fe、Co、Zn等で
は加熱時に逆に酸化されるのでこの方法は適切ではな
い。
Even in the method of changing to a sparingly soluble or insoluble reduced metal by using heating, the temperature rises from the surface, so that the sparingly soluble or insoluble reduced metal is formed outside the metal species. , In this case the reaction is 1
The sparingly soluble or insoluble treatment is completed even if the progress is not 00%. The metal species that can be used in this method are Pt, Pd, and A.
Since u, Ag, etc., and Cu, Ni, Fe, Co, Zn, etc., are reversely oxidized during heating, this method is not suitable.

【0030】還元剤を利用して難溶性または不溶性の還
元金属に変化させる方法でも還元剤からの電子の流入は
金属種の外側で生じるので、難溶性または不溶性の還元
金属は金属種の外側に形成されることになる。従って、
この場合も反応が100%進行しなくても難溶性または
不溶性処理は完了する。なお、ここで、還元剤にはアル
デヒド類、アルコール類、オレフィン類等が好適に利用
できる。
Even when the reducing agent is used to convert it into a sparingly soluble or insoluble reducing metal, the inflow of electrons from the reducing agent occurs outside the metal species, so that the sparingly soluble or insoluble reducing metal is located outside the metal species. Will be formed. Therefore,
Also in this case, the hardly soluble or insoluble treatment is completed even if the reaction does not proceed 100%. Here, aldehydes, alcohols, olefins and the like can be preferably used as the reducing agent.

【0031】光を利用して難溶性または不溶性の還元金
属に変化させる方法では、還元は光触媒の近くにある金
属種、すなわち内側の金属種から進行する。したがっ
て、この方法によれば、難溶性または不溶性処理を上記
工程のみで完了させるには、反応を100%進行させる
必要がある。ただし、この場合にさらに残留した水溶性
の塩を抽出除去するようにすれば、完全に上記反応を完
了させることなく、難溶性または不溶性処理を完了させ
ることができる。この方法で工程時間は短縮化される。
In the method of converting light into a sparingly soluble or insoluble reduced metal by utilizing light, the reduction proceeds from the metal species near the photocatalyst, that is, the metal species inside. Therefore, according to this method, in order to complete the hardly soluble or insoluble treatment only in the above steps, it is necessary to advance the reaction by 100%. However, in this case, if the remaining water-soluble salt is extracted and removed, the hardly soluble or insoluble treatment can be completed without completely completing the above reaction. With this method, the process time is shortened.

【0032】さらに、光を利用して難溶性または不溶性
の還元金属に変化させる方法以外の方法においても、さ
らに残留した水溶性の塩を抽出除去するようにすれば、
難溶性または不溶性処理をより完全に行うことができ
る。
Furthermore, even in a method other than the method of changing to a sparingly soluble or insoluble reduced metal using light, if the residual water-soluble salt is extracted and removed,
The poorly soluble or insoluble treatment can be performed more completely.

【0033】ここで難溶性の塩とは、水に対する溶解度
が小さな塩のことであり、具体的には、塩化銀、炭酸
銀、リン酸銀、ヨウ化銀、臭化銀、シュウ酸銀、酸化
銀、チオ硫酸銀、シアン化銀、ロダン化銀、塩化第一
銅、ヨウ化第一銅、臭化第一銅、ロダン化第一銅、硫化
第一銅、リン酸第二銅、シュウ酸第二銅、硫化第二銅、
炭酸第一鉄、シュウ酸第一鉄、硫化第一鉄、リン酸第二
鉄、炭酸コバルト、シュウ酸コバルト、シアン化コバル
ト、硫化コバルト、炭酸ニッケル、シュウ酸ニッケル、
シアン化ニッケル、硫化ニッケル、ヨウ化第一金、酸化
第一金、炭酸亜鉛、リン酸亜鉛、シュウ酸亜鉛、酸化亜
鉛、シアン化亜鉛、硫化亜鉛等のことである。
Here, the sparingly soluble salt is a salt having a low solubility in water, specifically, silver chloride, silver carbonate, silver phosphate, silver iodide, silver bromide, silver oxalate, Silver oxide, silver thiosulfate, silver cyanide, silver rhodanide, cuprous chloride, cuprous iodide, cuprous bromide, cuprous rhodanide, cuprous sulfide, cupric phosphate, shu Cupric acid, cupric sulfide,
Ferrous carbonate, ferrous oxalate, ferrous sulfide, ferric phosphate, cobalt carbonate, cobalt oxalate, cobalt cyanide, cobalt sulfide, nickel carbonate, nickel oxalate,
Nickel cyanide, nickel sulfide, gold (I) iodide, gold (I) oxide, zinc carbonate, zinc phosphate, zinc oxalate, zinc oxide, zinc cyanide, zinc sulfide and the like.

【0034】不溶性の塩とは、水に溶解しない塩のこと
であり、具体的には、硫化銀、酸化第一銅、シアン化第
一銅、酸化第二銅、リン酸第一鉄、酸化第一鉄、酸化第
二鉄、硫化第二鉄、リン酸コバルト、酸化コバルト、リ
ン酸ニッケル、酸化ニッケル、ヨウ化パラジウム、臭化
パラジウム、酸化パラジウム、塩化白金、ヨウ化白金、
臭化白金、酸化白金、シアン化白金、硫化白金、シアン
化第一金、硫化第一金、酸化第二金、硫化第二金等のこ
とである。
The insoluble salt is a salt that does not dissolve in water, and specifically, silver sulfide, cuprous oxide, cuprous cyanide, cupric oxide, ferrous phosphate, and oxidized salt. Ferrous iron, ferric oxide, ferric sulfide, cobalt phosphate, cobalt oxide, nickel phosphate, nickel oxide, palladium iodide, palladium bromide, palladium oxide, platinum chloride, platinum iodide,
Platinum bromide, platinum oxide, platinum cyanide, platinum sulfide, first gold cyanide, first gold sulfide, second gold oxide, second gold sulfide and the like.

【0035】水溶性の塩とは、水に対する溶解度の大き
な塩のことであり、具体的には、硝酸銀、塩素酸銀、酢
酸銀、硫酸銀、塩化第二銅、硫酸第一銅、硫酸第二銅、
臭化第二銅、酢酸第一銅、酢酸第二銅、塩素酸第二銅、
硝酸第二銅、ロダン化第二銅、塩化第一鉄、塩化第二
鉄、硫酸第一鉄、硫酸第二鉄、ヨウ化第一鉄、臭化第一
鉄、臭化第二鉄、シュウ酸第二鉄、酢酸第一鉄、酢酸第
二鉄、塩素酸第一鉄、塩素酸第二鉄、硝酸第一鉄、硝酸
第二鉄、チオ硫酸第一鉄、ロダン化第一鉄、ロダン化第
二鉄、塩化コバルト、硫酸コバルト、ヨウ化コバルト、
臭化コバルト、酢酸コバルト、塩素酸コバルト、硝酸コ
バルト、塩化ニッケル、硫酸ニッケル、ヨウ化ニッケ
ル、臭化ニッケル、酢酸ニッケル、塩素酸ニッケル、硝
酸ニッケル、ロダン化ニッケル、硫酸パラジウム、塩化
パラジウム、ロダン化パラジウム、塩化白金酸、硫酸白
金、塩化第二金、硫酸第二金、臭化第二金、シアン化第
二金、塩化亜鉛、硫酸亜鉛、ヨウ化亜鉛、臭化亜鉛、酢
酸亜鉛、塩素酸亜鉛、硝酸亜鉛、シアン化亜鉛等が挙げ
られる。
The water-soluble salt is a salt having a high solubility in water, and specifically, silver nitrate, silver chlorate, silver acetate, silver sulfate, cupric chloride, cuprous sulfate, and sulfate sulfate. Double copper,
Cupric bromide, cuprous acetate, cupric acetate, cupric chlorate,
Cupric nitrate, cupric rhodanide, ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, ferrous iodide, ferrous bromide, ferric bromide, shu Ferric acid, ferrous acetate, ferric acetate, ferrous chlorate, ferric chlorate, ferrous nitrate, ferric nitrate, ferrous thiosulfate, ferrous rhodanide, rodan Ferric iodide, cobalt chloride, cobalt sulfate, cobalt iodide,
Cobalt bromide, cobalt acetate, cobalt chlorate, cobalt nitrate, nickel chloride, nickel sulfate, nickel iodide, nickel bromide, nickel acetate, nickel chlorate, nickel nitrate, nickel rhodanide, palladium sulfate, palladium chloride, rhodanation Palladium, chloroplatinic acid, platinum sulphate, gold (II) chloride, gold (II) sulfate, gold (II) bromide, gold (II) cyanide, zinc chloride, zinc sulfate, zinc iodide, zinc bromide, zinc acetate, chloric acid Examples thereof include zinc, zinc nitrate and zinc cyanide.

【0036】難溶性または不溶性の塩が無色または白色
であることが好ましい。基材に形成した色、模様等の色
彩による外観を損なうことがないからである。上記難溶
性の塩または不溶性の塩のうち、白色塩を形成する物質
としては、塩化銀、臭化銀、シュウ酸銀、チオ硫酸銀、
シアン化銀、ロダン化銀、ヨウ化銀、塩化第一銅、臭化
第一銅、ロダン化第一銅、シアン化第一銅、炭酸第一
鉄、炭酸亜鉛、酸化亜鉛、シュウ酸亜鉛、シアン化亜
鉛、リン酸亜鉛、硫化亜鉛等が挙げられる。
The sparingly soluble or insoluble salt is preferably colorless or white. This is because the appearance due to the colors and patterns formed on the base material is not impaired. Of the above-mentioned sparingly soluble salts or insoluble salts, substances that form white salts include silver chloride, silver bromide, silver oxalate, and silver thiosulfate.
Silver cyanide, silver rhodanide, silver iodide, cuprous chloride, cuprous bromide, cuprous rhodanide, cuprous cyanide, ferrous carbonate, zinc carbonate, zinc oxide, zinc oxalate, Examples thereof include zinc cyanide, zinc phosphate, zinc sulfide and the like.

【0037】本発明による光触媒機能粒子は、粒子状の
まま静水中等に懸濁させて用いてもよいし、基材表面に
固定して用いてもよい。
The photocatalyst functional particles according to the present invention may be used in the form of particles suspended in still water or the like, or may be fixed on the surface of a base material.

【0038】粒子状のまま静水中等に懸濁させて用いる
場合の光触媒機能粒子は、例えば以下のようにして作製
する。その1つの方法は、光触媒粒子の懸濁液と金属塩
溶液(または懸濁液)を混合し、得られた混合液に紫外
線を含む光を照射して光触媒粒子に金属種を固定し、さ
らに上記金属種に難溶性または不溶性の塩を形成する陰
イオンを含む溶液を接触させることによる。他の方法と
しては、光触媒粒子の懸濁液と金属塩溶液(または懸濁
液)を混合し、得られた混合液に紫外線を含む光を照射
して光触媒粒子に金属種を固定し、さらに光触媒粒子に
付着した水溶性金属塩を水中で抽出させてもよい。また
他の方法としては、光触媒粒子の懸濁液と金属塩溶液
(または懸濁液)を混合し、得られた混合液に紫外線を
含む光を照射して光触媒粒子に金属種を固定し、さらに
光触媒粒子に付着した水溶性金属塩を還元処理させても
よい。また他の方法としては、光触媒粒子の懸濁液と金
属塩溶液(または懸濁液)を混合し、得られた混合液に
紫外線を含む光を照射して光触媒粒子に金属種を固定
し、さらに上記金属種の表面に加熱等の方法で難溶性ま
たは不溶性の保護酸化膜を形成してもよい。
The photocatalyst functional particles to be used by suspending them in still water or the like in the form of particles are produced, for example, as follows. One of the methods is to mix a suspension of photocatalyst particles with a metal salt solution (or suspension), irradiate the resulting mixed solution with light including ultraviolet rays to fix the metal species on the photocatalyst particles, and By contacting the metal species with a solution containing an anion that forms a sparingly soluble or insoluble salt. As another method, a suspension of photocatalyst particles and a metal salt solution (or suspension) are mixed, and the resulting mixed solution is irradiated with light including ultraviolet rays to fix the metal species to the photocatalyst particles, and The water-soluble metal salt attached to the photocatalyst particles may be extracted in water. As another method, a suspension of photocatalyst particles and a metal salt solution (or suspension) are mixed, and the resulting mixed solution is irradiated with light containing ultraviolet rays to fix the metal species to the photocatalyst particles, Further, the water-soluble metal salt attached to the photocatalyst particles may be subjected to reduction treatment. As another method, a suspension of photocatalyst particles and a metal salt solution (or suspension) are mixed, and the resulting mixed solution is irradiated with light containing ultraviolet rays to fix the metal species to the photocatalyst particles, Furthermore, a hardly soluble or insoluble protective oxide film may be formed on the surface of the above metal species by a method such as heating.

【0039】ここで光触媒粒子またはゾルはなるべく懸
濁液中に単分散させるようにする。例えばアナターゼ型
酸化チタンの場合には等電点がpH6.5なので酸性ま
たはアルカリ性で分散させる。この際、分散性を向上さ
せるために分散剤(解膠剤)や表面活性剤若しくは表面
処理剤を添加してもよい。また懸濁液に用いる溶液は基
本的に何でもよい。一般的には水やエタノールがよく使
用される。
The photocatalyst particles or sol are preferably monodispersed in the suspension. For example, in the case of anatase-type titanium oxide, the isoelectric point is pH 6.5, and therefore it is dispersed acidic or alkaline. At this time, a dispersant (peptizer), a surface-active agent or a surface-treating agent may be added to improve dispersibility. The solution used for the suspension may be basically any solution. Generally, water and ethanol are often used.

【0040】光触媒粒子粒子の懸濁液またはゾルと金属
塩溶液を混合する際には、両者のpHをほば等しくする
ほうがよい。懸濁液中の光触媒粒子またはゾルの分散性
を変化させずにすむからである。こで金属塩溶液とは、
Pt、Pd、Au、Ag、Cu、Ni、Fe、Co、Z
n等の電子捕捉効果を有する金属元素を含む塩と溶媒と
からなる溶液をいう。このような塩としては、硝酸銀、
塩素酸銀、酢酸銀、硫酸銀、塩化第二銅、硫酸第一銅、
硫酸第二銅、臭化第二銅、酢酸第一銅、酢酸第二銅、塩
素酸第二銅、硝酸第二銅、ロダン化第二銅、塩化第一
鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄、ヨウ化第一
鉄、臭化第一鉄、臭化第二鉄、シュウ酸第二鉄、酢酸第
一鉄、酢酸第二鉄、塩素酸第一鉄、塩素酸第二鉄、硝酸
第一鉄、硝酸第二鉄、チオ硫酸第一鉄、ロダン化第一
鉄、ロダン化第二鉄、塩化コバルト、硫酸コバルト、ヨ
ウ化コバルト、臭化コバルト、酢酸コバルト、塩素酸コ
バルト、硝酸コバルト、塩化ニッケル、硫酸ニッケル、
ヨウ化ニッケル、臭化ニッケル、酢酸ニッケル、塩素酸
ニッケル、硝酸ニッケル、ロダン化ニッケル、硫酸パラ
ジウム、塩化パラジウム、ロダン化パラジウム、塩化白
金酸、硫酸白金、塩化第二金、硫酸第二金、臭化第二
金、シアン化第二金、塩化亜鉛、硫酸亜鉛、ヨウ化亜
鉛、臭化亜鉛、酢酸亜鉛、塩素酸亜鉛、硝酸亜鉛、シア
ン化亜鉛等が挙げられる。また溶媒としては水、エタノ
ール、プロパノール等が使用できるが、なるべく光触媒
粒子またはゾルの懸濁液と同じ種類を用いることが望ま
しい。
When the suspension or sol of the photocatalyst particles and the metal salt solution are mixed, it is preferable that the pH of both is almost equal. This is because the dispersibility of the photocatalyst particles or sol in the suspension does not need to be changed. Here, the metal salt solution is
Pt, Pd, Au, Ag, Cu, Ni, Fe, Co, Z
A solution composed of a salt containing a metal element having an electron trapping effect such as n and a solvent. Such salts include silver nitrate,
Silver chlorate, silver acetate, silver sulfate, cupric chloride, cuprous sulfate,
Cupric sulfate, cupric bromide, cuprous acetate, cupric acetate, cupric chlorate, cupric nitrate, cupric rhodanide, ferrous chloride, ferric chloride, ferric sulfate Ferrous iron, ferric sulfate, ferrous iodide, ferrous bromide, ferric bromide, ferric oxalate, ferrous acetate, ferric acetate, ferrous chlorate, chloric acid Ferric iron, ferrous nitrate, ferric nitrate, ferrous thiosulfate, ferrous rhodanide, ferric rhodanide, cobalt chloride, cobalt sulfate, cobalt iodide, cobalt bromide, cobalt acetate, chlorine Cobalt acid, cobalt nitrate, nickel chloride, nickel sulfate,
Nickel iodide, nickel bromide, nickel acetate, nickel chlorate, nickel nitrate, nickel rhodanide, palladium sulfate, palladium chloride, palladium rhodanide, chloroplatinic acid, platinum sulfate, gold (II) chloride, gold (II) sulfate, odor Examples include gold (II) chloride, gold (II) cyanide, zinc chloride, zinc sulfate, zinc iodide, zinc bromide, zinc acetate, zinc chlorate, zinc nitrate, and zinc cyanide. As the solvent, water, ethanol, propanol or the like can be used, but it is desirable to use the same kind as the suspension of photocatalyst particles or sol as much as possible.

【0041】光触媒粒子の懸濁液またはゾルと金属塩溶
液とを撹絆しながら紫外線を含む光を照射する工程にお
いて、紫外線を含む光を照射する光源は、紫外線を照射
しうるものであればよく、例えば、紫外線ランプ、BL
Bランプ、キセノンランプ、水銀灯、蛍光灯などが挙げ
られる。紫外線を含む光の照射方法も基本的には問わな
いが、容器上方から照射するほうがよい。容器による紫
外線の吸収がないからである。
In the step of irradiating light containing ultraviolet rays while stirring the suspension or sol of photocatalyst particles and the metal salt solution, the light source for irradiating light containing ultraviolet rays may be any light source capable of irradiating ultraviolet rays. Well, for example, UV lamp, BL
Examples include B lamps, xenon lamps, mercury lamps, and fluorescent lamps. The method of irradiating the light containing ultraviolet rays is not particularly limited, but it is better to irradiate from above the container. This is because the container does not absorb ultraviolet rays.

【0042】難溶性または不溶性の塩を形成する陰イオ
ンを含む溶液は、金属種と前記溶液が接触することによ
り反応し、難溶性または不溶性の塩を金属種表面に形成
しうる溶液である。 例えば、金属種が銀(イオン)の
場合は、塩化ナトリウム、塩化カリウム、塩化アンモニ
ウム、塩化第二鉄等の可溶性塩化物や、可溶性臭化物、
可溶性ヨウ化物、可溶性シアン化物、可溶性ロダン化
物、可溶性リン酸塩、可溶性シュウ酸塩、可溶性チオ硫
酸塩、可溶性炭酸塩等を含む溶液をさす。また金属種が
銅(イオン)の場合は、可溶性リン酸塩、可溶性シュウ
酸塩等を含む溶液をさす。また金属種が鉄の場合は、可
溶性リン酸塩等を含む溶液をさす。また金属種がコバル
トまたはニッケル(イオン)の場合は、可溶性シュウ酸
塩、可溶性シアン化物、可溶性炭酸塩等を含む溶液をさ
す。また金属種が亜鉛(イオン)の場合は、可溶性リン
酸塩、可溶性シュウ酸塩、可溶性シアン化物、可溶性炭
酸塩等を含む溶液をさす。
The solution containing an anion forming a sparingly soluble or insoluble salt is a solution capable of forming a sparingly soluble or insoluble salt on the surface of a metal species by reacting the metal species with the solution. For example, when the metal species is silver (ion), soluble chlorides such as sodium chloride, potassium chloride, ammonium chloride, ferric chloride, soluble bromide,
A solution containing soluble iodide, soluble cyanide, soluble rhodanide, soluble phosphate, soluble oxalate, soluble thiosulfate, soluble carbonate and the like. When the metal species is copper (ion), it means a solution containing soluble phosphate, soluble oxalate and the like. When the metal species is iron, it means a solution containing soluble phosphate. When the metal species is cobalt or nickel (ion), it means a solution containing a soluble oxalate, a soluble cyanide, a soluble carbonate or the like. When the metal species is zinc (ion), it means a solution containing soluble phosphate, soluble oxalate, soluble cyanide, soluble carbonate and the like.

【0043】基材表面に光触媒機能粒子を固定化して用
いる場合の、基材表面に光触媒機能粒子を固定化した防
臭、抗菌等の光触媒機能を有する多機能材の作製方法
は、例えば以下のようにして作製する。その1つの方法
は、基材表面に光触媒活性を有する層を形成する工程、
その上に上記金属種を含む溶液(または懸濁液)を適用
する工程、上記金属種と難溶性または不溶性の塩を形成
する陰イオンを含む溶液を金属種に接触させる工程を順
次行うことによる。他の方法としては、基材表面に光触
媒活性を有する層を形成する工程、その上に上記金属種
を含む溶液(または懸濁液)を適用する工程、上記金属
種を還元処理する工程を順次行うことにしてもよい。た
だし、この場合、還元処理を光還元により行う場合は、
さらに基材上に残留する水溶性の塩を抽出除去する工程
を行う。他の方法としては、光触媒活性を有する粒子に
金属種を固定する工程、上記金属種を固定した光触媒活
性を有する粒子を基材表面に適用する工程、上記金属種
がその表面に難溶性または不溶性の保護酸化膜を形成す
る温度で熱処理する工程を順次行うことにしてもよい。
他の方法としては、光触媒活性を有する粒子に金属種を
固定する工程、上記金属種を固定した光触媒活性を有す
る粒子を基材表面に適用し加熱固定する工程、上記金属
種と難溶性または不溶性の塩を形成する陰イオンを含む
溶液を金属種に接触させる工程を順次行うことにしても
よい。
When the photocatalyst functional particles are immobilized on the surface of the substrate and used, a method for producing a multifunctional material having a photocatalytic function such as deodorant and antibacterial, in which the photocatalyst functional particles are immobilized on the surface of the substrate, is described below. And make. One of the methods is to form a layer having photocatalytic activity on the surface of a substrate,
By sequentially performing a step of applying a solution (or suspension) containing the above metal species, and a step of contacting a solution containing an anion forming a sparingly soluble or insoluble salt with the above metal species to the metal species. . As another method, a step of forming a layer having a photocatalytic activity on the surface of a substrate, a step of applying a solution (or suspension) containing the above metal species thereon, and a step of reducing the above metal species are sequentially performed. You may decide to do it. However, in this case, when the reduction treatment is performed by photoreduction,
Further, a step of extracting and removing the water-soluble salt remaining on the base material is performed. As another method, a step of fixing a metal species to a particle having a photocatalytic activity, a step of applying a particle having a photocatalytic activity to which the metal species is fixed to a substrate surface, the metal species is hardly soluble or insoluble on the surface. The steps of heat treatment at the temperature for forming the protective oxide film may be sequentially performed.
As another method, a step of fixing a metal species to the particles having a photocatalytic activity, a step of applying the particles having a photocatalytic activity to which the metal species are fixed to the surface of a substrate and heating and fixing the same, the metal species hardly soluble or insoluble The step of contacting the metal species with a solution containing an anion forming a salt may be sequentially performed.

【0044】ここで用いる基材の材質は、セラミック、
陶磁器材料、金属、ガラス、熱硬化性樹脂、熱可塑性樹
脂あるいはそれらの複合物等基本的に何でもよい。ただ
し、光触媒活性を有する粒子は上述のように酸化物半導
体であることから、基材表面に固定するには一般に30
0℃以上の高温で熱処理する必要があるので、熱的安定
性に優れるセラミック、ガラスあるいは陶磁器材料であ
ることが好ましい。また基材をセラミック、陶磁器材料
若しくは金属にした場合には、軽量化の観点から多孔質
であることが好ましい。
The material of the substrate used here is ceramic,
Basically, any material such as ceramic material, metal, glass, thermosetting resin, thermoplastic resin, or a composite thereof may be used. However, since particles having photocatalytic activity are oxide semiconductors as described above, it is generally 30
Since it is necessary to perform heat treatment at a high temperature of 0 ° C. or higher, it is preferable to use a ceramic, glass or ceramic material having excellent thermal stability. When the base material is ceramic, ceramic material or metal, it is preferably porous from the viewpoint of weight reduction.

【0045】基材の形状も基本的にどのようなものでも
よく、例えぱ、タイル、壁材、床材等の板状物や棒状
物、球状物、円柱状物、円筒状物、角柱状物、中空の角
柱状物などの単純形状のものでも、衛生陶器、洗面台、
浴槽、流し台等およびその付属品などの複雑形状のもの
でも構わない。
The shape of the base material may be basically any, for example, plate-like materials such as tiles, wall materials, flooring materials, rod-like objects, spherical objects, columnar objects, cylindrical objects, prismatic objects. Objects, even simple shapes such as hollow prismatic objects, sanitary ware, washbasins,
It may have a complicated shape such as a bathtub, a sink, and its accessories.

【0046】基材表面とは、最表面およびその近傍をい
う。したがって、基材表面に光触媒活性を有する粒子が
ある程度埋設、含浸されている場合、その埋設、含浸部
分までを含む。基材における光触媒活性を有する粒子を
固定する面は、基材表面の一部でもよいし、全面でもよ
い。
The substrate surface means the outermost surface and its vicinity. Therefore, when the particles having photocatalytic activity are buried or impregnated to some extent on the surface of the base material, the embedding and impregnated parts are included. The surface of the base material on which the particles having photocatalytic activity are fixed may be a part or the entire surface of the base material.

【0047】ここで基材表面に光触媒活性を有する層を
形成する工程は、基本的に出発原料あるいはそれに適当
な処理を施したものを基材表面に塗布後、熱処理するこ
とにより行う。
Here, the step of forming a layer having a photocatalytic activity on the surface of the base material is basically carried out by applying a starting material or a material obtained by subjecting it to an appropriate treatment on the surface of the base material and then heat-treating it.

【0048】出発原料としては、光触媒活性を有する物
質のゾルや、光触媒活性を有する物質を構成する金属元
素を含むアルコキシド、有機金属塩、無機酸塩、ハロゲ
ン化物塩等を用いる。このような出発原料において、基
材が金属の場合は耐蝕性の観点から分散液はアルカリ性
または中性が好ましい。陶磁器、タイル、セラミック等
の場合は酸性、アルカリ性いずれの分散液を用いてもよ
い。このとき用いる酸としては、硝酸、硫酸、塩酸、酢
酸、リン酸、有機酸等が挙げられる。アルカリの場合は
アンモニア、アルカリ金属またはアルカリ土類金属を含
む水酸化物等が挙げられるが、熱処理後に金属汚染物が
生成しないことからアンモニアが特に好ましい。これら
の分散液に、さらに有機系、リン酸系の分散剤、表面活
性剤、表面処理剤等を添加してもよい。
As the starting material, a sol of a substance having photocatalytic activity, an alkoxide containing a metal element constituting the substance having photocatalytic activity, an organic metal salt, an inorganic acid salt, a halide salt, or the like is used. In such a starting material, when the substrate is a metal, the dispersion is preferably alkaline or neutral from the viewpoint of corrosion resistance. In the case of ceramics, tiles, ceramics, etc., either acidic or alkaline dispersion liquid may be used. Examples of the acid used at this time include nitric acid, sulfuric acid, hydrochloric acid, acetic acid, phosphoric acid, organic acids and the like. Examples of the alkali include ammonia and hydroxides containing an alkali metal or an alkaline earth metal, but ammonia is particularly preferable because no metal contaminant is generated after the heat treatment. An organic or phosphoric acid-based dispersant, a surface-active agent, a surface-treating agent or the like may be further added to these dispersions.

【0049】また、出発原料としてゾルを用いる場合
は、光触媒活性を有する物質のゾルの平均粒径は0.0
5μm以下好ましくは0.01μm以下がよい。粒径が
小さいほど光触媒活性が高いからである。ここで平均粒
径は、ゾルを粉末X線回折したときの結晶の最大ピーク
の積分幅からScherrer式により求められる。出
発原料としてゾルを用いる場合、基材表面への塗布方法
としては、ゾルの懸濁液をスプレー・コーティング、ロ
ール・コーティング、ディップ・コーティング、スピン
・コーティング、CVD、電子ビーム蒸着、スパッタな
どして塗布する方法があり、そのいずれでもよいし、そ
れ以外の方法でもよい。ただし、スプレー・コーティン
グ、ロール・コーティング、ディップ・コーティング
は、CVD、電子ビーム蒸着、スパッタなどと比較して
特別の設備を要せず、安価に塗膜可能である利点があ
る。
When a sol is used as the starting material, the sol of the substance having photocatalytic activity has an average particle size of 0.0.
5 μm or less, preferably 0.01 μm or less. This is because the smaller the particle size, the higher the photocatalytic activity. Here, the average particle diameter is obtained by the Scherrer equation from the integrated width of the maximum peak of the crystal when the sol is subjected to powder X-ray diffraction. When a sol is used as the starting material, the sol suspension may be applied by spray coating, roll coating, dip coating, spin coating, CVD, electron beam evaporation, sputtering, etc. There is a method of coating, and any of them may be used, or any other method may be used. However, spray coating, roll coating, and dip coating have an advantage that they can be coated at low cost without requiring special equipment as compared with CVD, electron beam evaporation, sputtering, and the like.

【0050】出発原料としてアルコキシドを用いる場合
は、アルコキシドに適当な希釈剤と必要ならば塩酸等の
加水分解抑制剤を添加した混合液を塗布する。ここで適
当な希釈剤とは、エタノール、プロパノール、メタノー
ル等のアルコール類が好ましいが、それに限定されるも
のではない。ただし水はできる限り含まないほうがよ
い。水が含まれるとチタンアルコキシド等の多くのアル
コキシドにおいて加水分解が爆発的に促進され、クラッ
クの一因をなすからである。アルコキシドの基材への塗
布方法は、例えば、乾燥空気をキャリヤーとしてフロー
・コーティング法により塗布する。
When an alkoxide is used as a starting material, a mixture of alkoxide with a suitable diluent and, if necessary, a hydrolysis inhibitor such as hydrochloric acid is applied. Here, the suitable diluent is preferably alcohols such as ethanol, propanol and methanol, but is not limited thereto. However, it is better not to include water as much as possible. This is because when water is contained, hydrolysis is explosively promoted in many alkoxides such as titanium alkoxide, which contributes to cracking. The alkoxide is applied to the base material by, for example, a flow coating method using dry air as a carrier.

【0051】出発原料としてアルコキシド、有機金属
塩、無機酸塩、ハロゲン化物塩等を用いた場合には、塗
布後の熱処理はこれら前駆体が酸化物に変化しかつ結晶
化すると同時に、このようにして得た光触媒活性を有す
る粒子が基材表面へ高い密着強度で固定化される温度で
行う。その温度は例えば、光触媒活性を有する粒子がア
ナターゼ型酸化チタンである場合には400℃以上80
0℃以下である。それに対し、出発原料としてゾルを用
いた場合には、既に酸化物結晶であるので、単に光触媒
活性を有する粒子が基材表面へ高い密着強度で固定化さ
れる温度で熱処理すればよい。
When an alkoxide, an organic metal salt, an inorganic acid salt, a halide salt or the like is used as a starting material, the heat treatment after coating changes the precursor into an oxide and crystallizes at the same time. It is carried out at a temperature at which the particles having photocatalytic activity thus obtained are immobilized on the surface of the substrate with high adhesion strength. The temperature is, for example, 400 ° C. or higher and 80 ° C. or higher when the particles having photocatalytic activity are anatase type titanium oxide.
It is 0 ° C or lower. On the other hand, when sol is used as the starting material, since it is already an oxide crystal, it may be simply heat-treated at a temperature at which the particles having photocatalytic activity are fixed to the surface of the substrate with high adhesion strength.

【0052】その上に金属種を適用する工程は、Pt、
Pd、Au、Ag、Cu、Ni、Fe、Co、 Zn等
の電子捕捉効果を有する金属元素を含む塩と溶媒とから
なる溶液を塗布した後、紫外線を含む光を照射すること
により行う。ここで溶液の塗布方法は、基本的にどのよ
うな方法でもよいが、スプレー・コティング法またはデ
ィップ・コーティング法が筒便である。その両者を比較
すると、使用する溶液の量が少なくてすむこと、均一に
塗布できること、膜厚を制御しやすいこと、裏面に付け
たくないときにそれが可能であることなどの理由によ
り、スプレー・コーティング法がより好ましい。
The step of applying a metal species thereon is Pt,
It is performed by applying a solution containing a salt containing a metal element having an electron-trapping effect such as Pd, Au, Ag, Cu, Ni, Fe, Co, and Zn and a solvent, and then irradiating with light including ultraviolet rays. The method for applying the solution may be basically any method, but the spray coating method or the dip coating method is convenient. Comparing the two, spraying is possible because of the small amount of solution used, uniform application, easy control of the film thickness, and the ability to do it when you do not want to attach it to the back surface. The coating method is more preferable.

【0053】スプレー・コーティング法により溶液を塗
布する場合は、紫外線を含む光を照射する前に塗布物を
乾燥させたほうがよい。塗布量に対する金属の固定化率
が向上するので、コスト上有利だからである。スプレー
・コーティング法により溶液を塗布する場合の溶媒も基
本的に限定されるものでなく、水、エタノール、プロパ
ノール、メタノール等種々の溶媒を利用できる。このう
ち分散性が同一ならばエタノールを使用することが最も
好ましい。エタノールは水系よりも乾燥速度が速いの
で、乾燥工程にかかる時間を短縮でき、生産性が向上す
るからである。また表面張力が低いので光触媒活性を有
する粒子層への濡れもよい。さらにメタノール等の他の
揮発性溶媒と異なり無害である。また分散性等の理由に
より水を使用しなければならない場合は、エタノール等
の犠牲酸化剤を少量添加すると光還元反応がより迅速に
進行するので好ましい。
When the solution is applied by the spray coating method, it is preferable to dry the applied material before irradiating with light including ultraviolet rays. This is because the metal immobilization rate with respect to the coating amount is improved, which is advantageous in terms of cost. The solvent used for applying the solution by the spray coating method is not particularly limited, and various solvents such as water, ethanol, propanol and methanol can be used. Of these, ethanol is most preferably used if the dispersibility is the same. Since ethanol has a faster drying rate than an aqueous system, the time required for the drying step can be shortened and the productivity is improved. Further, since the surface tension is low, it is good to wet the particle layer having photocatalytic activity. Furthermore, unlike other volatile solvents such as methanol, it is harmless. When water must be used for reasons such as dispersibility, it is preferable to add a small amount of a sacrificial oxidizing agent such as ethanol because the photoreduction reaction will proceed more quickly.

【0054】なお、基材と光触媒活性を有する粒子層と
の間に樹脂、釉薬、無機ガラス質、半田等のバインダー
からなる層を介してもよい。
A layer made of a binder such as resin, glaze, inorganic glass or solder may be interposed between the base material and the particle layer having photocatalytic activity.

【0055】[0055]

【実施例】【Example】

実施例1 5cm角のタイル基材表面に、平均粒径0.01μmの
酸化チタンゾルを塗布後、900℃で熱処理し、ルチル
型酸化チタン薄膜を形成した。この段階で止めた試料を
比較試料1とする。その後、硝酸銀水溶液をスプレー・
コーティング法にて塗布し、20WのBLBランプを光
源として10分光照射し、銀をルチル型酸化チタン薄膜
上に固定した。このときの銀の担持量は約2μg/cm
であり、茶黒色に呈色した。その後、0.1mol/
lヨウ化カリウム水溶液を比較試料2上に0.1ml/
cmの割合で塗布し反応させた。その結果、試料表面
は黄白色へと変化し白色化された。ヨウ化銀層が形成さ
れたためと考えられる。この試料を実施試料1とする。
Example 1 A 5 cm square tile substrate surface was coated with titanium oxide sol having an average particle size of 0.01 μm and then heat-treated at 900 ° C. to form a rutile type titanium oxide thin film. The sample stopped at this stage is referred to as Comparative sample 1. After that, spray an aqueous solution of silver nitrate
It was applied by a coating method and irradiated with 10 spectra using a 20 W BLB lamp as a light source to fix silver on the rutile type titanium oxide thin film. The amount of silver supported at this time is about 2 μg / cm
2 and was colored blackish black. After that, 0.1 mol /
0.1 ml of potassium iodide aqueous solution on Comparative sample 2
It was applied and reacted at a ratio of cm 2 . As a result, the surface of the sample turned yellowish white and was whitened. It is considered that the silver iodide layer was formed. This sample is referred to as a working sample 1.

【0056】これら試料について、耐摩耗性および光活
性とその経時的変化を評価した。耐摩耗性試験について
は、プラスチック消しゴムを用いた摺動摩耗を行い、外
観の変化を比較し評価した。その結果、実施試料1、比
較試料1のいずれの試料も40回以上摺動させても外観
上の変化を生じず、良好な結果を示した。光活性につい
ては△pH試験で評価した。△pH試験とは、試料表面
にヨウ化カリウム水溶液を滴下し、次いで滴下したヨウ
化カリウム水溶液に30分間紫外線を照射し、照射前の
ヨウ化カリウム水溶液のpHと照射後のヨウ化カリウム
水溶液のpHとの差により光活性を評価する方法であ
る。すなわちこの方法によれば試料表面の光活性が高け
れば下記に示すような酸化還元反応がより進行するので
照射後のpHは照射前のpHより高くなっていく。 酸化反応:2I+2h→I 還元反応:O+2HO+4e→4OH また△pH試験の△pH値と実際の防臭等の効果の強さ
との対応性を評価するため防臭特性も調べた。防臭特性
はR30(L)で評価した。R30(L)とは光照射後
の除去率のことで、具体的には11Lのガラス容器内に
試料を入れ、薄膜を形成した面を光源(BLB蛍光灯4
W)から8cmの距離に配置し、メチルメルカプタンガ
スを初期濃度3ppmとなるように容器内に注入し、3
0分間光照射したときの濃度変化を測定することで得ら
れる。結果を図1に示す。図1より△pHがほば0なら
ば、R30(L)も0%であり、△pHが1程度ならば
R30(L)は100%に近い値が得られることが判明
した。したがってこの間の両者の関係が直線的ならぱ△
pHが0.8以上あれば、少なくとも防臭効果に充分な
光活性が得られたことになる。
These samples were evaluated for wear resistance and photoactivity and their change over time. Regarding the abrasion resistance test, sliding abrasion using a plastic eraser was performed, and changes in appearance were compared and evaluated. As a result, no change was observed in the appearance of any of the samples of Example 1 and Comparative Sample 1 even if they were slid 40 times or more, showing good results. Photoactivity was evaluated by the ΔpH test. The ΔpH test is to drop a potassium iodide aqueous solution on the surface of the sample, and then irradiate the dropped potassium iodide aqueous solution with ultraviolet rays for 30 minutes to measure the pH of the potassium iodide aqueous solution before the irradiation and the potassium iodide aqueous solution after the irradiation. It is a method of evaluating photoactivity by the difference from pH. That is, according to this method, if the photoactivity of the sample surface is high, the oxidation-reduction reaction as shown below proceeds further, so that the pH after irradiation becomes higher than the pH before irradiation. Oxidation reaction: 2I + 2h + → I 2 reduction reaction: O 2 + 2H 2 O + 4e → 4OH Also, in order to evaluate the correspondence between the ΔpH value of the ΔpH test and the actual strength of deodorization, etc. Examined. The deodorant property was evaluated by R30 (L). R30 (L) is the removal rate after light irradiation. Specifically, the sample is placed in an 11 L glass container, and the surface on which the thin film is formed is the light source (BLB fluorescent lamp 4).
It was placed at a distance of 8 cm from W), and methyl mercaptan gas was injected into the container so that the initial concentration was 3 ppm, and 3
It can be obtained by measuring the change in concentration when light is irradiated for 0 minutes. The results are shown in Fig. 1. From FIG. 1, it was found that if ΔpH is almost 0, R30 (L) is also 0%, and if ΔpH is about 1, R30 (L) is close to 100%. Therefore, the relationship between them is linear.
If the pH is 0.8 or more, at least sufficient photoactivity for the deodorizing effect is obtained.

【0057】光活性の経時的変化は以下のような方法で
評価した。まず試料を公衆浴場の浴槽水を循環させるよ
うにした装置の循環路に配置し、所定期間連続で水を循
環させた。その後、試料を取り出し、オートクレーブ中
121℃で20分洗浄し、80体積%エタノールに2時
間浸漬し、50℃で乾燥させて試料表面を洗浄した。洗
浄後、△pH試験を行い、循環装置配置前後の△pH値
を比較して光活性の経時的変化を評価した。結果を図2
に示す。図2より実施試料1では循環装置中に1か月放
置した試料でも△pHの変化がほとんどなく、良好な光
活性を示すことが判明した。
The change with time in photoactivity was evaluated by the following method. First, the sample was placed in a circulation path of an apparatus for circulating bath water in a public bath, and water was circulated continuously for a predetermined period. Then, the sample was taken out, washed in an autoclave at 121 ° C. for 20 minutes, immersed in 80% by volume ethanol for 2 hours and dried at 50 ° C. to wash the sample surface. After washing, a ΔpH test was performed, and ΔpH values before and after the circulation device was placed were compared to evaluate changes in photoactivity with time. The result is shown in Figure 2.
Shown in It was found from FIG. 2 that the sample of Example 1 left for one month in the circulation device showed almost no change in ΔpH and showed good photoactivity.

【0058】実施例2 5cm角のタイル基材表面に、平均粒径0.01μmの
酸化チタンゾルを塗布し、830℃で熱処理してアナタ
ーゼ型酸化チタン薄膜形成した。この段階で止めた試料
を比較試料2とする。その後、酢酸銅水溶液をスプレー
・コーティング法にて塗布し、20WのBLBランプで
10分光照射して銅を固定した。その後、400℃で熱
処理して銅粒子の表面に酸化第一銅による層を形成し、
実施試料2を得た。これら実施試料2および比較試料2
について光活性の経時的変化を評価した。結果を図3に
示す。図3より実施試料2では循環装置中に1か月放置
した試料でも△pHの変化がほとんどなく、良好な光活
性を示すことが判明した。
Example 2 Titanium oxide sol having an average particle size of 0.01 μm was applied to a 5 cm square tile substrate surface and heat-treated at 830 ° C. to form an anatase type titanium oxide thin film. The sample stopped at this stage is referred to as Comparative sample 2. Then, an aqueous solution of copper acetate was applied by a spray coating method, and 10 spectra were irradiated with a 20 W BLB lamp to fix copper. Then, heat-treated at 400 ° C. to form a layer of cuprous oxide on the surface of the copper particles,
A working sample 2 was obtained. These execution sample 2 and comparative sample 2
Was evaluated for changes in photoactivity over time. The results are shown in Fig. 3. From FIG. 3, it was found that the sample of Example 2 left for one month in the circulation device showed almost no change in ΔpH and showed good photoactivity.

【0059】実施例3 2mmφのガラスビーズ基材上に、平均粒径0.01μ
mの酸化チタンゾルを塗布し、800℃で熱処理してア
ナターゼ型酸化チタン薄膜形成した。ここで、酸化チタ
ン塗布量は基材100gに対し、1.2gとした。この
段階で止めた試料を比較試料3とする。その後、試料を
酢酸銅水溶液中に浸漬し、20WのBLBランプで5分
光照射して銅を固定した。この段階で止めた試料を比較
試料4とする。その後、余剰に付着した酢酸銅を1%塩
酸水溶液中に抽出させ、実施試料3を得た。得られた試
料を図5に示すように循環水槽内に設置し、8か月後の
濁度、COD値、大腸菌数、藻の発生量、銅イオンの溶
出濃度を調べた。結果を表1に示す。表1より8か月後
の濁度、COD値、大腸菌数、藻の発生量は、ブランク
と比較していずれの試料も優れており、特に実施試料
3、比較試料4で優れた効果を示した。さらに実施試料
3では、比較試料4と比較して銅イオンの溶出が認めら
れず、金属の溶出が抑えられていることが判明した。
Example 3 On a 2 mmφ glass bead substrate, an average particle size of 0.01 μ
m titanium oxide sol was applied and heat treated at 800 ° C. to form an anatase type titanium oxide thin film. Here, the coating amount of titanium oxide was 1.2 g per 100 g of the substrate. The sample stopped at this stage is referred to as Comparative sample 3. Then, the sample was dipped in an aqueous solution of copper acetate and irradiated with 5 spectra with a 20 W BLB lamp to fix copper. The sample stopped at this stage is referred to as Comparative sample 4. Then, excess copper acetate attached was extracted into a 1% hydrochloric acid aqueous solution to obtain a practical sample 3. The obtained sample was placed in a circulating water tank as shown in FIG. 5, and after 8 months, the turbidity, COD value, Escherichia coli count, algae generation amount, and copper ion elution concentration were examined. The results are shown in Table 1. From Table 1, the turbidity, COD value, the number of E. coli, and the amount of algae produced after 8 months were excellent in all the samples as compared with the blank, and in particular, the practical sample 3 and the comparative sample 4 showed excellent effects. It was Further, in the execution sample 3, the elution of copper ions was not recognized as compared with the comparative sample 4, and it was found that the elution of metal was suppressed.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【発明の効果】光触媒活性を有する粒子に、難溶性また
は不溶性処理された電子捕捉効果を有する金属種が固定
化されているようにすることにより、長期にわたり光触
媒活性を有し、かつ生態系に悪影響を及ぼさない光触媒
機能粒子またはそれを含む部材を提供することができ
る。さらに上記光触媒機能粒子またはそれを含む部材
は、上記性質に基づき、水の浄化や、観賞魚用水槽、ま
たは魚貝飼育用水槽の防藻に好適に利用できる。
EFFECTS OF THE INVENTION By immobilizing a metal species having an electron-trapping effect, which is hardly soluble or insoluble on the particles having a photocatalytic activity, the photocatalytic activity is maintained for a long period of time, and the ecosystem is maintained. It is possible to provide a photocatalyst functional particle that does not have a bad influence or a member including the same. Further, the photocatalyst functional particles or a member containing the photocatalyst particles can be suitably used for purification of water and algae control in aquariums for ornamental fish or aquariums for breeding fish and shellfish based on the above properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】表面にルチル型酸化チタン薄膜を形成したタイ
ルと、その上に金属種を担持させて更に難溶性の塩を形
成させたものの光活性を示すグラフ。
FIG. 1 is a graph showing the photoactivity of a tile having a rutile type titanium oxide thin film formed on its surface and a tile having a metal species supported thereon to form a sparingly soluble salt.

【図2】表面にルチル型酸化チタン薄膜を形成したタイ
ルと、その上に金属種を担持させて更に難溶性の塩を形
成させたものの光活性の経時変化を示すグラフ。
FIG. 2 is a graph showing the change over time in photoactivity of a tile having a rutile-type titanium oxide thin film formed on its surface and a tile having a metal species supported thereon to form a sparingly soluble salt.

【図3】表面にアナターゼ型酸化チタン薄膜を形成した
タイルと、その上に金属種を担持させて更に熱処理した
ものに対する光活性の経時変化を示すグラフ。
FIG. 3 is a graph showing a change with time in photoactivity for a tile having an anatase type titanium oxide thin film formed on its surface and a tile having a metal species supported thereon and further heat-treated.

【図4】本発明の実施例における循環水槽装置。FIG. 4 shows a circulating water tank device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ポンプ、2…実施例3の試料、3…水 1 ... Pump, 2 ... Sample of Example 3, 3 ... Water

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 A01N 59/20 A01N 59/20 Z B01J 23/72 B01J 23/72 M 27/08 27/08 M (72)発明者 佐伯 義光 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location A01N 59/20 A01N 59/20 Z B01J 23/72 B01J 23/72 M 27/08 27/08 M (72) Inventor Yoshimitsu Saeki 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu, Fukuoka Prefecture Totoki Equipment Co., Ltd.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 光触媒活性を有する粒子に、難溶性また
は不溶性処理された電子捕捉効果を有する金属種が固定
されていることを特徴とする光触媒機能粒子。
1. A photocatalyst functional particle, wherein a metal species having an electron-trapping effect, which is hardly soluble or insoluble, is fixed to the particle having photocatalytic activity.
【請求項2】 前記難溶性または不溶性処理は、前記金
属種上に難溶性または不溶性の塩を形成する処理である
ことを特徴とする請求項1に記載の光触媒機能粒子。
2. The photocatalyst functional particle according to claim 1, wherein the hardly soluble or insoluble treatment is a treatment for forming a slightly soluble or insoluble salt on the metal species.
【請求項3】 前記難溶性または不溶性処理は、前記固
定された金属種のうちの水溶性成分を予め抽出除去する
処理であることを特徴とする請求項1に記載の光触媒機
能粒子。
3. The photocatalyst functional particle according to claim 1, wherein the hardly soluble or insoluble treatment is a treatment of previously extracting and removing a water-soluble component of the fixed metal species.
【請求項4】 前記難溶性または不溶性の塩は、光触媒
活性を有する粒子に固定化された金属種の塩であること
を特徴とする請求項2に記載の光触媒機能粒子。
4. The photocatalyst functional particle according to claim 2, wherein the sparingly soluble or insoluble salt is a salt of a metal species immobilized on particles having photocatalytic activity.
【請求項5】 前記難溶性または不溶性の塩は、抗菌性
を有する金属種の塩であることを特徴とする請求項2に
記載の光触媒機能粒子。
5. The photocatalytic functional particle according to claim 2, wherein the sparingly soluble or insoluble salt is a salt of a metal species having antibacterial properties.
【請求項6】 前記難溶性または不溶性の塩は、銀塩で
あることを特徴とする請求項5に記載の光触媒機能粒
子。
6. The photocatalytic functional particle according to claim 5, wherein the sparingly soluble or insoluble salt is a silver salt.
【請求項7】 前記光触媒活性を有する粒子、及び前記
金属種は、基材表面に固定化されていることを特徴とす
る請求項1乃至6に記載の光触媒機能粒子を含む部材。
7. The member containing photocatalyst functional particles according to claim 1, wherein the particles having photocatalytic activity and the metal species are immobilized on the surface of a base material.
【請求項8】 前記難溶性または不溶性の塩が白色また
は無色の塩であることを特徴とする請求項7に記載の光
触媒機能粒子を含む部材。
8. The member containing photocatalyst functional particles according to claim 7, wherein the sparingly soluble or insoluble salt is a white or colorless salt.
【請求項9】 請求項1乃至8に記載の光触媒機能粒
子、または光触媒機能粒子を含む部材を、水中に配置す
ることを特徴とする水の浄化方法。
9. A water purification method comprising arranging the photocatalyst functional particles according to claim 1 or a member containing the photocatalyst functional particles in water.
【請求項10】 請求項1乃至8に記載の光触媒機能粒
子、または光触媒機能粒子を含む部材を、水槽中に配置
することを特徴とする観賞魚または魚貝飼育用水槽の防
藻方法。
10. A method for controlling algae in an aquarium for ornamental fish or fish and shellfish breeding, which comprises disposing the photocatalytic functional particles according to claim 1 or a member containing the photocatalytic functional particles in a water tank.
【請求項11】 請求項7または8に記載の光触媒機能
粒子を含む部材を、水槽中に配置する観賞魚または魚貝
飼育用水槽の防藻方法であって、前記基材は耐熱性基材
であることを特徴とする観賞魚または魚貝飼育用水槽の
防藻方法。
11. A method for controlling algae in an aquarium for breeding ornamental fish or shellfish, wherein the member containing the photocatalytic functional particles according to claim 7 or 8 is placed in an aquarium, and the substrate is a heat-resistant substrate. A method for controlling algae in an aquarium for ornamental fish or fish and shellfish breeding.
【請求項12】 請求項7、8または11に記載の光触
媒機能粒子を含む部材を、水槽中に配置する観賞魚また
は魚貝飼育用水槽の防藻方法であって、前記基材は透明
基材であることを特徴とする観賞魚または魚貝飼育用水
槽の防藻方法。
12. A method for controlling algae in an aquarium for ornamental fish or fish and shellfish breeding, wherein the member containing the photocatalytic functional particles according to claim 7, 8 or 11 is placed in an aquarium, wherein the base material is a transparent substrate. A method for controlling algae in an aquarium for ornamental fish or fish and shellfish breeding, which is characterized by being made of wood.
【請求項13】 前記基材は、球状であることを特徴と
する請求項11または12に記載の観賞魚または魚貝飼
育用水槽の防藻方法。
13. The algae control method for an ornamental fish or fish and shellfish breeding aquarium according to claim 11, wherein the base material has a spherical shape.
【請求項14】 前記基材は、楕円体状であることを特
徴とする請求項11または12に記載の観賞魚または魚
貝飼育用水槽の防藻方法。
14. The algae control method for an ornamental fish or fish and shellfish breeding aquarium according to claim 11, wherein the base material has an ellipsoidal shape.
JP34658195A 1994-12-01 1995-12-01 Photocatalytic material Expired - Lifetime JP3261959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34658195A JP3261959B2 (en) 1994-12-01 1995-12-01 Photocatalytic material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33230594 1994-12-01
JP6-332305 1994-12-01
JP34658195A JP3261959B2 (en) 1994-12-01 1995-12-01 Photocatalytic material

Publications (2)

Publication Number Publication Date
JPH08229408A true JPH08229408A (en) 1996-09-10
JP3261959B2 JP3261959B2 (en) 2002-03-04

Family

ID=26574150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34658195A Expired - Lifetime JP3261959B2 (en) 1994-12-01 1995-12-01 Photocatalytic material

Country Status (1)

Country Link
JP (1) JP3261959B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349423A (en) * 1998-02-19 1999-12-21 Daido Steel Co Ltd Antibacterial and deodorant material and its production
JP2005270835A (en) * 2004-03-25 2005-10-06 Hitachi Chem Co Ltd Fine particle structural body, its precursor composition, its production method, and its application
JP2005288429A (en) * 2004-03-11 2005-10-20 Japan Vilene Co Ltd Ozone decomposing material, method for manufacturing the same, ozone decomposing method and method for regenerating the same
EP1977824A2 (en) 2007-03-30 2008-10-08 National University Corporation Hokkaido University Tungsten oxide photcatalyst
JP2009233648A (en) * 2007-10-09 2009-10-15 Sumitomo Chemical Co Ltd Photocatalyst dispersion liquid
JP2010110672A (en) * 2008-11-04 2010-05-20 Sumitomo Chemical Co Ltd Photocatalytic body-dispersion liquid
JP2011020009A (en) * 2009-07-13 2011-02-03 Hokkaido Univ Photocatalyst body for decomposing volatile aromatic compound, and functional product of photocatalyst
JP2011050802A (en) * 2009-01-27 2011-03-17 Sumitomo Chemical Co Ltd Method for producing dispersion liquid of noble metal-deposited photocatalyst particle
JP2011190192A (en) * 2010-03-12 2011-09-29 Univ Of Tokyo Microorganism-inactivating agent
JP2013166705A (en) * 2010-12-22 2013-08-29 Univ Of Tokyo Virus inactivating agent
US9572347B2 (en) 2009-12-24 2017-02-21 The University Of Tokyo Method for inactivating a virus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349423A (en) * 1998-02-19 1999-12-21 Daido Steel Co Ltd Antibacterial and deodorant material and its production
JP2005288429A (en) * 2004-03-11 2005-10-20 Japan Vilene Co Ltd Ozone decomposing material, method for manufacturing the same, ozone decomposing method and method for regenerating the same
JP2005270835A (en) * 2004-03-25 2005-10-06 Hitachi Chem Co Ltd Fine particle structural body, its precursor composition, its production method, and its application
EP1977824A2 (en) 2007-03-30 2008-10-08 National University Corporation Hokkaido University Tungsten oxide photcatalyst
JP2009233648A (en) * 2007-10-09 2009-10-15 Sumitomo Chemical Co Ltd Photocatalyst dispersion liquid
JP2010110672A (en) * 2008-11-04 2010-05-20 Sumitomo Chemical Co Ltd Photocatalytic body-dispersion liquid
JP2011050802A (en) * 2009-01-27 2011-03-17 Sumitomo Chemical Co Ltd Method for producing dispersion liquid of noble metal-deposited photocatalyst particle
JP2011020009A (en) * 2009-07-13 2011-02-03 Hokkaido Univ Photocatalyst body for decomposing volatile aromatic compound, and functional product of photocatalyst
US9572347B2 (en) 2009-12-24 2017-02-21 The University Of Tokyo Method for inactivating a virus
JP2011190192A (en) * 2010-03-12 2011-09-29 Univ Of Tokyo Microorganism-inactivating agent
JP2013166705A (en) * 2010-12-22 2013-08-29 Univ Of Tokyo Virus inactivating agent

Also Published As

Publication number Publication date
JP3261959B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
Tan et al. Effects of organic hole scavengers on the photocatalytic reduction of selenium anions
US7846864B2 (en) Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same
JP4564263B2 (en) Ultrafine metal particle-containing photocatalyst and method for producing the same
CN101977688A (en) Photocatalyst material, method for decomposition of organic material, interior member, air purification device, and apparatus for preparation of oxidizing agent
JP3261959B2 (en) Photocatalytic material
JPH06205977A (en) Production of photocatalystic composition and photocatalystic composition
JP2002320862A (en) Photocatalyst thin film in which metal is supported on titanium oxide thin film
WO2007053585A2 (en) Method and apparatus for producing reactive oxidizing species
JPH0417098B2 (en)
JP3987289B2 (en) Photocatalyst, method for producing the same, and photocatalyst using the same
JP3228035B2 (en) Manufacturing method of antibacterial material
TWI665015B (en) Antibacterial photocatalyst material, method for manufacturing the same, and photocatalyst component using the same
CN110893341A (en) Photocatalyst dispersion liquid, photocatalyst composite material and photocatalyst device
JPH11169726A (en) Functional material having photocatalytic function and composite functional material and manufacture thereof
JP3987395B2 (en) Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same
JP3261909B2 (en) Member having catalyst containing fine metal particles and method for producing the same
JP3250394B2 (en) Member having photocatalytic action, composition for forming photocatalytic thin film, and method for producing member having photocatalytic action
CN110893342A (en) Photocatalyst composite material, method for producing photocatalyst composite material, and photocatalyst device
US20110011419A1 (en) Photocatalytic auto-cleaning process of stains
JPH08131834A (en) Titanium oxide sol for photocatalyst and multifunctional member having photocatalytic action
JP4570637B2 (en) Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same
Hou et al. Studies on photocatalytic activity of Ag/TiO 2 films
JP2010214309A (en) Photocatalytic body-dispersed liquid and application thereof
JP3431301B2 (en) Tile with photocatalytic function
JP2005319451A (en) Photocatalyst and method for manufacturing the same

Legal Events

Date Code Title Description
S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314211

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

EXPY Cancellation because of completion of term