JP4689809B2 - Photocatalyst coating material, method for producing the same, pollutant-containing material purification method and contaminant-containing material purification device using the photocatalyst coating material - Google Patents

Photocatalyst coating material, method for producing the same, pollutant-containing material purification method and contaminant-containing material purification device using the photocatalyst coating material Download PDF

Info

Publication number
JP4689809B2
JP4689809B2 JP2000305917A JP2000305917A JP4689809B2 JP 4689809 B2 JP4689809 B2 JP 4689809B2 JP 2000305917 A JP2000305917 A JP 2000305917A JP 2000305917 A JP2000305917 A JP 2000305917A JP 4689809 B2 JP4689809 B2 JP 4689809B2
Authority
JP
Japan
Prior art keywords
photocatalyst
film
titanium
coating material
contaminant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000305917A
Other languages
Japanese (ja)
Other versions
JP2001187346A (en
Inventor
龍哉 安永
俊樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000305917A priority Critical patent/JP4689809B2/en
Publication of JP2001187346A publication Critical patent/JP2001187346A/en
Application granted granted Critical
Publication of JP4689809B2 publication Critical patent/JP4689809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Ventilation (AREA)
  • Physical Water Treatments (AREA)
  • Catalysts (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光触媒性と耐久性に優れた光触媒被覆材、及びその製造方法、並びに該光触媒被覆材を使用する汚染物質含有物浄化方法及び汚染物質含有物浄化装置に関するものである。
【0002】
【従来の技術、及び発明が解決しようとする課題】
光触媒の代表である酸化チタン(TiO2 )は、半導体でありその表面に紫外線を照射することにより光触媒性を発現し、正孔による酸化力により有機物などを分解できることが知られている。このような光触媒反応により、酸化チタンはホルムアルデヒドなどの揮発性の有機化合物の分解、トイレの悪臭物質の分解、院内感染防止のための殺菌などに有効であり、これらへの利用が進められている。酸化チタンは一般に粉末の形態で供給されるが、この場合、製品として供される光触媒被覆材の製作にあたっては、酸化チタン粉末を基材上に保持して固定化する必要がある。
【0003】
基材上に酸化チタン粉末を固定化するには光触媒反応で分解されないバインダーを用いる必要があり、現状ではフッ素樹脂系バインダーやシリコン系バインダーが多く用いられている。しかし、基材上にバインダーにて酸化チタン粉末を保持してなる光触媒被覆材では、酸化チタン粒子が表面に現れ難くなるため、得られる光触媒被覆材の光触媒性(光触媒作用)が低い(弱い)という欠点があった。
【0004】
一方、基材上に、酸化チタン粉末ではなく、Ti原子を含有するアルコキシド,アセチルアセトナート等の液体の有機チタン化合物を塗布し、これを400℃程度以上の高温で焼成して酸化チタンの薄膜を形成することにより、光触媒被覆材を得るようにした方法が知られている。このような液体有機チタン化合物を塗布し高温焼成を行う方法では、前記したバインダーにて酸化チタン粉末を固定化したものと違って、最表面が全面的に酸化チタン膜で被覆された光触媒被覆材を得ることができる。
【0005】
ところが、前述した液体有機チタン化合物の塗布・焼成による方法においては、400℃程度以上の高温で焼成を行うので、焼成時に基材の構成元素が表面方向へ拡散し、形成されている酸化チタン膜中に侵入することから、基材の組成によっては、基材からの非Ti成分が前記酸化チタン膜中に不純物として侵入してしまうことになる。このような不純物が多量に酸化チタン膜中に侵入した場合は、正常な酸化チタンの結晶成長を阻害してしまい、酸化チタン結晶膜が形成されなくなってしまう。また、不純物の混入量が酸化チタンの結晶成長を阻害するほどではない場合でも、半導体である酸化チタンの光触媒作用をおこすバンドギャップ間に不純物に起因する準位が形成されてしまい、この準位が電子と正孔の再結合サイトとなって多量の電子と正孔が再結合して消滅し光触媒反応効率が著しく低下してしまう。
【0006】
そこで本発明の目的は、基材上に光触媒膜として酸化チタン結晶の薄膜を形成してなる光触媒被覆材において、光触媒性と耐久性との両者に優れた光触媒被覆材、及びその製造方法を提供することにある。また、本発明の他の目的は、光触媒性と耐久性との両者に優れた前記光触媒被覆材を使用して、光触媒膜の剥離を生じることがなく耐久性の点において実用に適するとともに、汚染物質を効果的に分解・除去することができる、光触媒による汚染物質含有物浄化方法及び光触媒による汚染物質含有物浄化装置を提供することにある。
【0007】
【課題を解決するための手段】
本願請求項1の発明は、チタン基合金基材上に、アナターゼ型及び/又はルチル型の酸化チタン結晶を90体積%以上含有する光触媒膜が形成されてなる光触媒被覆材であって、前記チタン基合金基材のチタン含有量が70質量%以上であり、前記光触媒膜の厚みが0.1μm以上であり、前記チタン基合金基材と前記光触媒膜の間に存在し、酸化チタン結晶、チタン基合金結晶とも異なる不可避的薄膜の厚みが0.05μm以下である光触媒被覆材である。
【0008】
請求項2の発明は、前記請求項1記載の光触媒被覆材において、前記光触媒膜中の全酸化チタン結晶に対するアナターゼ型酸化チタン結晶の体積比が80%以上であることを特徴とするものである。
【0009】
請求項3の発明は、チタン含有量が70質量%以上であるチタン基合金からなる基材をその表面酸化膜を除去すべく酸洗処理し、しかる後、表面に形成される、酸化チタン結晶、チタン基合金結晶とも異なる不可避的薄膜の膜厚が0.05μm以下である該チタン基合金基材にチタン化合物を塗布し、このものを酸素含有雰囲気下で温度400℃以上で焼成し、この塗布・焼成を1回、あるいは2回以上繰り返し行うことにより、当該チタン基合金基材上に酸化チタン結晶を90体積%以上含有し厚みが0.1μm以上の光触媒膜を形成することを特徴とする光触媒被覆材の製造方法である。
【0010】
請求項4の発明は、請求項1又は2記載の光触媒被覆材の表面に、紫外線を照射するとともに汚染物質を含有する気体又は液体を接触させることにより、前記汚染物質を分解・除去することを特徴とする光触媒による汚染物質含有物浄化方法である。
【0011】
請求項5の発明は、請求項1又は2記載の光触媒被覆材を用いて構成された光触媒部と、該光触媒部を構成する前記光触媒被覆材の表面に紫外線を照射する紫外線照射部と、汚染物質を含有する気体又は液体を前記光触媒部に導き、前記紫外線が照射されている前記光触媒被覆材の表面に接触させるための汚染物質含有物導入手段とを備えていることを特徴とする光触媒による汚染物質含有物浄化装置である。
【0012】
請求項6の発明は、請求項5記載の光触媒による汚染物質含有物浄化装置において、前記汚染物質が悪臭物質であり、生ゴミ処理に用いられるものであることを特徴とするものである。
【0013】
請求項7の発明は、請求項5記載の光触媒による汚染物質含有物浄化装置において、前記汚染物質が有機性ガスであり、クリーンルーム又はクリーンルーム内の局所空間の気体浄化に用いられるものであることを特徴とするものである。
【0014】
請求項8の発明は、請求項5記載の光触媒による汚染物質含有物浄化装置において、前記汚染物質が揮発性汚染物質であり、前記汚染物質含有物導入手段が、液体中に含まれる揮発性汚染物質を気体中に移行させ、この移行させた揮発性汚染物質を含む気体を前記紫外線が照射されている前記光触媒被覆材の表面に導き接触させるように構成されてなることを特徴とするものである。
【0015】
前記特徴を有する本発明に係る光触媒被覆材、及びその製造方法について説明する。本発明においては、チタン基合金基材を酸洗処理して該基材の表面酸化膜を除去し、しかる後、該チタン基合金基材表面に不可避的に形成される自然酸化膜など、酸化チタン結晶、チタン基合金結晶とも異なる不可避的薄膜の膜厚が0.05μm以下(ゼロを含む)において、前記酸洗処理されたチタン基合金基材に液体有機チタン化合物などのチタン化合物を塗布して酸素含有雰囲気下で焼成を行うことによって、前記酸洗処理されたチタン基合金基材上に、チタン基合金基材中のTi原子と塗膜中のTi原子とを界面間で相互拡散させながら、かつ大気中からのO原子(酸素原子)を塗膜から基材へ侵入させながら、その過程で光触媒膜として酸化チタン結晶の薄膜が形成される。
【0016】
前述のように焼成することによって、チタン基合金基材中のTi原子と塗膜中のTi原子とを界面間で相互拡散させながら、かつ大気中からのO原子を塗膜から基材へ侵入させながらチタン基合金基材上に光触媒膜が形成されるため、チタン基合金基材のTi原子と光触媒膜のTi原子とが連続的につながった界面構造となり、チタン基合金基材に対して密着性の良い光触媒膜を形成することができ、耐久性に優れた光触媒被覆材が得られる。
【0017】
このような密着性の良い光触媒膜を得るためには、チタン基合金基材と光触媒膜の間に存在する不可避的薄膜の厚みが0.05μm以下である必要がある。一般に、空気中に数日間置かれたチタン基材表面には厚み0.05μm程度の自然酸化膜が形成される。この自然酸化膜はアナターゼ型あるいはルチル型酸化チタン結晶ではなく非晶質構造である。また、不可避的汚れによる薄膜が形成されることもある。そして、このような自然酸化膜などの不可避的薄膜の厚みが0.05μmより大きいものでは、焼成時における前述したTi原子の界面間での相互拡散、及びO原子の基材への侵入が阻害されて、光触媒膜の密着性が悪い。したがって前記不可避的薄膜は、厚み0.05μm以下である必要があり、光触媒膜の密着性を高める点から、好ましくは厚み0.03μm以下、特に好ましくは厚み0.01μm以下である。なお、このような不可避的薄膜の厚みについては、透過型電子顕微鏡(TEM)による該薄膜の断面観察により測定することができる。また当然ながら、この不可避的薄膜は無いことが最も好ましく、チタン基合金基材を酸洗処理してその表面酸化膜を除去した後、直ちに前記の塗布・焼成を行うようにすることがよい。
【0018】
本発明においては、高い光触媒性を得るには、形成される光触媒膜中の非酸化チタン結晶成分が少ないことがよく、光触媒膜中の酸化チタン結晶含有率(体積%)を90体積%以上にする必要がある。よって光触媒膜の酸化チタン結晶含有率(体積%)は、90体積%以上であり、光触媒性を高める点から、好ましくは95体積%以上、特に好ましくは99体積%以上である。なお、光触媒膜中の酸化チタン結晶は、結晶構造がアナターゼ型の酸化チタン結晶若しくは結晶構造がルチル型の酸化チタン結晶、又はこれら両者の混合相よりなっている。
【0019】
ここで前記した光触媒膜中の酸化チタン結晶含有率については、TEM断面観察により求めることができる。すなわち、光触媒膜中のアナターゼ型とルチル型の酸化チタン結晶の電子回折の反射によって結像した暗視野像では、酸化チタン結晶部分は明るく、一方、非晶質部分などの非酸化チタン結晶部分は前記酸化チタン結晶部分よりも暗くなる。このような暗視野像を解析することによって幾何学的に光触媒膜中の酸化チタン結晶含有率を計算により求めることができる。
【0020】
本発明においては、光触媒膜の厚みについては、該厚みが薄すぎると、焼成時においてチタン基合金基材からの非Ti成分が不純物として該光触媒膜表面まで容易に達し、該膜中の非酸化チタン結晶成分が10体積%を上回ってしまい光触媒性が低下することになる。したがって、光触媒膜の厚みは、0.1μm以上である必要があり、光触媒膜中不純物低減の点から、好ましくは0.2μm以上、特に好ましくは0.3μm以上である。光触媒膜の厚みは、TEMによる該膜の断面観察により測定することができる。
【0021】
また本発明においては、焼成温度は、酸化チタン結晶を生成させるために400℃以上とする必要がある。また焼成温度は、前述したTi原子の界面間での相互拡散とO原子の基材への侵入とを促進させて光触媒膜の密着性を向上させる点から、450℃以上が好ましく、特に好ましくは500℃以上がよい。
【0022】
一方、焼成温度が高すぎると、アナターゼ型酸化チタン結晶がこれに比べて光触媒性が比較的低いルチル型酸化チタン結晶に転化し、該ルチル型酸化チタン結晶の増加にともなって光触媒性がしだいに低下する(ルチル型酸化チタン結晶の光触媒性がなぜ低いかについての機構は明確に解明されていない)。よって焼成温度の上限側については、700℃以下にて光触媒膜の全酸化チタン結晶中のアナターゼ型酸化チタン結晶体積比を80%以上とすることがよく、好ましくは650℃以下にてアナターゼ型酸化チタン結晶体積比を90%以上とすることがよく、特に好ましくは600℃以下にてアナターゼ型酸化チタン結晶体積比を95%以上とすることがよい。
【0023】
ここで前記アナターゼ型酸化チタン結晶体積比は、光触媒膜中の全酸化チタン結晶に対するアナターゼ型酸化チタン結晶の占める割合(体積%)であり、アナターゼ型酸化チタン結晶体積/〔アナターゼ型酸化チタン結晶体積+ルチル型酸化チタン結晶体積〕という値の百分率である。この体積比の値は、TEM断面観察において、アナターゼ型酸化チタン結晶の電子回折の反射による暗視野像ではアナターゼ型酸化チタン結晶部が明るくなり、ルチル型酸化チタン結晶の電子回折の反射による暗視野像ではルチル型酸化チタン結晶部が明るくなるので、両者の比から幾何学的に求めることができる。
【0024】
本発明においては、このような400℃以上の高い温度による焼成によって、前述したように塗膜中のTi原子と基材中のTi原子とを界面間で相互拡散させながら光触媒膜を形成するには、基材がチタン基合金よりなるものである必要がある。また、界面間でTi原子を相互拡散させるとともに、形成される光触媒膜中の非酸化チタン結晶成分を10体積%以下に抑えて、酸化チタン結晶含有率を90体積%以上にするためには、チタン基合金基材は、そのTi含有率が70質量%である必要がある。このチタン基合金基材のTi含有率は、光触媒膜へ拡散する非Ti成分を減らして光触媒性を高める点から、好ましくは光触媒膜中の酸化チタン結晶含有率を95体積%以上とするためには80質量%以上、特に好ましくは酸化チタン結晶含有率を99体積%以上とするためには90質量%以上がよい。
【0025】
またチタン基合金基材の形状(形態)については、平板状、パイプ状、網状、線状など種々の形状のものが適用できるが、光触媒性をより向上させるために有効表面積をなるべく大きくすることがよく、網状をなすものや、表面に微細な凸凹を有するものがよい。
【0026】
本発明においては、酸洗処理されたチタン基合金基材の表面に塗布されるチタン化合物としては、チタンにアルコールを結合させたアルコキシドやアセチルアセトナートなどの液体有機チタン化合物が望ましい。なお、チタン基合金基材上に、固体粉末状、固体フィルム状、板状などをなす有機チタン化合物、あるいは無機チタン化合物をのせて焼成を行うようにしても光触媒膜の形成を行うことができる。
【0027】
ところで、酸化チタン光触媒に接するように金属の粒子、あるいは酸化チタンと成分が異なる酸化物などの粒子を分散・担持させると、該粒子部分で光触媒によるカソード反応が下地よりも起こりやすくなり、光触媒のアノード反応とカソード反応のサイトが分離され、両反応の相殺による損失が最小限となるため光触媒性(光触媒特性)がさらに向上することが知られている。本発明においてもこのような技術と組み合わせることにより、さらに高い光触媒性を得ることができる。
【0028】
次に、本発明に係る光触媒による汚染物質含有物浄化方法、及び光触媒による汚染物質含有物浄化装置によれば、本発明に係る前記光触媒被覆材を使用し、この光触媒被覆材の表面に、つまり光触媒膜表面に紫外線を照射するとともに汚染物質を含有する気体又は液体を接触させることにより、前記光触媒被覆材の持つ優れた機械的耐久性と優れた光触媒性(光触媒活性)とが発揮されて、光触媒膜の剥離を生じることがなく耐久性の点において実用に適し、汚染物質を効果的に分解・除去することができる。
【0029】
ここで、気体中(大気中)の汚染物質としては、メチルメルカプタン(家庭ゴミなどで発生する)や硫化水素などの悪臭物質、空中浮遊菌、NOX (窒素酸化物)やSOX (硫黄酸化物)などの大気汚染物質、などが挙げられる。また、液体中(水中)の汚染物質としては、藻類などの微生物、プランクトンの死骸、アンモニア、ダイオキシンなどが挙げられる。また、揮発性汚染物質という観点からは、トリクロロエチレンやテトロクロロエチレンなどの高揮発性有機溶剤が挙げられる。
【0030】
【実施例】
以下、本発明に係る光触媒被覆材とその製造方法について、その実施例を比較例とともに説明する。
【0031】
〔実施例1〜24及び比較例1〜16〕:光触媒膜の酸化チタン結晶含有率が光触媒性に及ぼす影響、光触媒膜の膜厚が光触媒性に及ぼす影響、及びチタン基合金基材のTi含有率が前記酸化チタン結晶含有率に及ぼす影響について説明する。
【0032】
Ti含有率が65〜95質量%のTi−Fe二元合金を溶製し、これを厚み1mm×幅50mm×長さ50mmの寸法に板加工してチタン基合金からなる基材を所要個数用意する一方、同寸法に板加工した普通鋼S50C(JIS G 3311)からなる基材を所要個数用意した。そして、各基材についてフッ酸水溶液で酸洗いして基材表面の自然酸化膜を完全に除去した後、直ちに液体有機チタン化合物の1種であるアセチルアセトンチタンを周知のディップ方式で塗布し、このものを大気雰囲気下で温度400℃で30分間焼成した。この塗布・焼成を2〜6回繰り返して基材表面に所要厚みの光触媒膜を被覆形成してなる光触媒被覆材とした。
【0033】
このようにして得られた各々の光触媒被覆材について、その光触媒膜の酸化チタン結晶含有率(体積%)を先に説明したように透過型電子顕微鏡(TEM)による断面観察像から幾何学的に計算し求めた。また光触媒性を評価するために、ヨウ化カリウム水溶液(濃度:0.1mol/L、150mL)に光触媒被覆材をその酸化チタン膜の面が受光面(受光面積:25cm2 )となるように浸漬し、強度2.6mW/cm2 の紫外線を30分間照射したときに生成するヨウ素の量を吸光度分析により求めた。結果を表1に示す。
【0034】
【表1】

Figure 0004689809
【0035】
表1に示すように、基材が普通鋼S50Cよりなる比較例1〜5では、本発明で規定する「Ti含有率が70質量%以上のチタン基合金基材」という要件を欠くため、膜中の酸化チタン結晶含有率が50体積%未満と低くなっており、焼成時に基材から非Ti金属原子であるFe原子が多量に表面方向に拡散して酸化チタン結晶の生成を阻害したと考えられる。そのため、光触媒性の指標であるヨウ素生成量は1×10-5〜3×10-5mol程度と少なく、光触媒性が著しく低いものとなっている。また同様に、比較例6〜10では、チタン基合金基材ではあるものの「Ti含有率が70質量%以上」という本発明で規定する要件を欠き、光触媒膜中の酸化チタン結晶含有率が90体積%未満と低いため光触媒性が著しく低くなっている。
【0036】
これに対して、チタン基合金基材としてTi含有率が70質量%(本発明で規定する下限値)以上のTi−Fe二元合金基材を用いた実施例1〜24では、光触媒膜中の酸化チタン結晶含有率が90体積%(本発明で規定する下限値)以上になっており、ヨウ素生成量も20×10-5mol以上と多く、高い光触媒性が得られている。Ti−Fe二元合金基材のTi含有率に着目すると、Ti含有率が大きくなるにしたがって光触媒膜中の酸化チタン結晶含有率が高くなり、これにつれてヨウ素生成量も多くなっている。
【0037】
ただし、基材のTi含有率が70質量%以上と高くなっても光触媒膜の膜厚が0.05μmである比較例11〜16では、該膜の酸化チタン結晶含有率が90体積%に達せず、そのためにヨウ素生成量が少なく光触媒性が著しく低い。一方、光触媒膜の膜厚が0.1μm(本発明で規定する下限値)以上のものは、基材のTi含有率が70質量%以上において該膜中の酸化チタン結晶含有率が90体積%以上となり、光触媒膜の膜厚が0.2μm、0.3μmと厚くなるほど、該膜中の酸化チタン結晶含有率が増加しヨウ素生成量が増えて光触媒性が向上する傾向が見られる。
【0038】
このように実施例1〜24では高い光触媒性を有する光触媒被覆材が得られた。そして、Ti含有率80質量%のTi−Fe二元合金基材を用いた実施例9〜12では酸化チタン結晶含有率が95〜99体積%という光触媒膜が得られ、さらにTi含有率90質量%の基材を用いた実施例17〜20では酸化チタン結晶含有率が99体積%という光触媒膜が得られており、特に光触媒性に優れた光触媒被覆材が得られている。
【0039】
〔実施例25〜69及び比較例17〜61〕:焼成温度が光触媒膜の密着性に及ぼす影響、酸化膜(自然酸化膜,陽極酸化膜)が密着性に及ぼす影響、及び光触媒膜のアナターゼ型酸化チタン結晶体積比が光触媒性に及ぼす影響について説明する。
【0040】
Ti含有率が95質量%のTi−Fe二元合金を溶製し、これを厚み1mm×幅50mm×長さ50mmの寸法に板加工してチタン基合金からなる基材を所要個数用意した。そして、後述のように基材表面の状態を変化させた各基材について、液体有機チタン化合物であるアセチルアセトンチタンをディップ方式で塗布し、大気雰囲気下で350〜900℃での各種温度(表2〜表4参照)にて30分間焼成を行った。各基材についてこの塗布・焼成を5回繰り返して基材上に厚み0.5μmの光触媒膜を被覆形成して、光触媒被覆材とした。
【0041】
前記の基材表面の処理について説明すると、用意した所要個数の基材のうち、その一部についてはフッ酸水溶液で酸洗いして基材表面の自然酸化膜を完全に除去した後、直ちに前記の塗布・焼成を行った。また、一部については大気中に放置することにより、0.005〜0.05μm(表2〜表4参照)の自然酸化膜を生成させてから前記の塗布・焼成を行った。さらに、残りの基材については、濃度1vol%のリン酸水溶液中で印加電圧50〜100Vにて陽極酸化処理を行い、厚み0.08〜0.2μm(表2〜表4参照)の陽極酸化膜を形成させてから前記の塗布・焼成を行った。
【0042】
なお、前記自然酸化膜と陽極酸化膜とは、それらの電子線回折像によると酸化チタン結晶をわずかに部分的に含有するものの、大部分は非晶質(アモルファス)構造であることを確認している。
【0043】
このようにしてつくられた各光触媒被覆材について、スクラッチ試験により光触媒膜が剥離するときの臨界荷重を測定することにより、密着性を評価した。スクラッチ試験は、直径200μmの半球状ダイヤモンド圧子を用い、荷重負荷速度:100N/min、試料移動速度:10mm/minにて垂直荷重を連続的に負荷して、前記臨界荷重を測定する試験である。また、先の実施例1〜24の場合と同様なヨウ素生成試験により光触媒性を評価した。また各処理温度毎の代表例として、酸洗いして自然酸化膜を除去した基材上に各温度による焼成で形成された光触媒膜について、先に説明したように透過型電子顕微鏡による断面観察像からアナターゼ型酸化チタン結晶体積比を幾何学的に計算により求めた(実施例25,30,35,40,45,50,55,60,65)。これらの試験結果を表2〜表4に示す。
【0044】
【表2】
Figure 0004689809
【0045】
【表3】
Figure 0004689809
【0046】
【表4】
Figure 0004689809
【0047】
表2から分かるように、比較例17〜25では、本発明で規定する「温度400℃以上で焼成」という要件を欠き、焼成温度が350℃と低いため塗布された有機チタンが酸化チタン結晶に転化しておらず、そのためヨウ素生成量は2×10-5mol以下と少なく、光触媒性が著しく弱いものとなっている。
【0048】
一方、実施例では、焼成温度が400℃(実施例25〜29),450℃(実施例30〜34),500℃(実施例35〜39),550℃(実施例40〜44),600℃(実施例45〜49)のものでは、塗布された有機チタンはアナターゼ型酸化チタン結晶体積比が95%以上よりなる酸化チタン結晶に転化するためにヨウ素生成量が50×10-5mol前後の値にまでなっており、高い光触媒性が得られている。
【0049】
そして、焼成温度が650℃(実施例50〜54),700℃(実施例55〜59)のものでは、アナターゼ型酸化チタン結晶の一部がルチル型酸化チタン結晶に転化し、アナターゼ型酸化チタン結晶体積比が90〜80%に低下し、これによって光触媒性の若干の低下が見られる。また、焼成温度750℃(実施例60〜64)のものでは、アナターゼ型酸化チタン結晶体積比が60%になり、焼成温度900℃(実施例65〜69)のものでは、すべてがルチル型酸化チタン結晶よりなる光触媒膜となってヨウ素生成量が20×10-5mol程度まで低くなっている。これら焼成温度750℃,900℃のものは「アナターゼ型酸化チタン結晶体積比:80%以上」という本発明の推奨条件から外れるものの、ヨウ素生成量が20×10-5mol以上であり光触媒性はある程度良い。
【0050】
このように表2,表3に示される光触媒性の低下傾向から、焼成温度の上限側については、700℃以下にて全酸化チタン結晶中のアナターゼ型酸化チタン結晶体積比を80%以上とし、好ましくは650℃以下にて同体積比を90%以上とし、特に好ましくは600℃以下にて同体積比を95%以上にすることがよいという結果が得られた。
【0051】
また焼成温度の下限側については、表2に示されるように、焼成温度が400℃,450℃,500℃と高くなるにしたがって界面間におけるTi原子の相互拡散が促進されるので、光触媒膜の密着性を表す剥離臨界荷重が増加することから、400℃以上、好ましく450℃以上、特に好ましくは500℃以上にすることがよいという結果が得られている。
【0052】
一方、基材と光触媒膜の間にある酸化膜については、自然酸化膜や陽極酸化膜などの非晶質膜が存在すると光触媒膜の剥離臨界荷重が低下するものの、実施例25〜69ではいずれも剥離臨界荷重30N以上という密着性の良いものが得られている。この酸化膜の膜厚については、厚み0.05μm以下、光触媒膜の密着性を高める点から、好ましくは厚み0.03μm以下、特に好ましくは厚み0.01μm以下という結果が得られている。
【0053】
ところが比較例22〜61では、本発明で規定する「厚み0.05μm以下」という要件を欠き、焼成時における塗膜のTi原子と基材のTi原子との界面間での相互拡散、及びO原子の基材への侵入が妨げられるため、剥離臨界荷重値が実施例の「1/10」程度と大幅に小さくなっており、光触媒膜の密着性が極めて悪い。例えば比較例37では、基材と酸化チタン膜の間に、印加電圧100Vにて形成された厚み0.20μmの陽極酸化膜(非晶質膜)が存在している。このため、焼成時に前記陽極酸化膜の存在によって基材からの不純物が光触媒膜に入ることはないので、光触媒性は十分に良く、49×10-5molのヨウ素生成量が得られているものの、焼成時における界面間でのTi原子の相互拡散が抑制されて基材と光触媒膜とが一体となった構造が得られず、剥離臨界荷重値は3Nという低い値であった。
【0054】
次に、実施例に基づいて、本発明に係る光触媒による汚染物質含有物浄化方法と光触媒による汚染物質含有物浄化装置について説明する。
【0055】
〔実施例70〕:ここでは、悪臭物質であるアンモニアの分解・除去性能と殺菌性能(滅菌性能)について調べた。図1は本発明の一実施形態による消臭装置の構成を示す説明図である。図1において、17は断面矩形で角形形状をなし、生ゴミをバクテリアにより減量して堆肥化するため生ゴミ処理槽(コンポスター)、11は断面矩形で角形形状をなし、生ゴミ処理槽17の上方に配設された消臭槽、15は生ゴミ処理槽17と消臭槽11とを連通する処理気体導入管、16は消臭槽11と生ゴミ処理槽17とを連通する処理気体排出管、14は処理気体導入管内に設けられた吸引ファンである。消臭槽11の内周面には光触媒被覆材12が全周にわたって貼り付けられている。また、消臭槽11の内部には消臭槽中心軸線に沿って延びる蛍光灯型の紫外線ランプ13(波長250nmの殺菌灯を使用した)が配置されている。
【0056】
光触媒による汚染物質含有物浄化装置としての消臭装置10は、光触媒被覆材12を用いて構成された光触媒部としての消臭槽11と、消臭槽11を構成する光触媒被覆材12の表面に紫外線を照射する紫外線照射部としての紫外線ランプ13と、汚染物質である悪臭物質を含有する気体を消臭槽11に導き、紫外線が照射されている光触媒被覆材12の表面に接触させるための汚染物質含有物導入手段としての吸引ファン14、処理気体導入管15及び処理気体排出管16と、により構成されている。
【0057】
このように構成された消臭装置10を備えた生ゴミ処理槽17において、生ゴミ処理槽17内に残飯、野菜くず及び肉などからなる生ゴミと、バクテリアによる発酵を促すための酵母菌とを投入し、生ゴミを発酵させることにより、生ゴミ処理槽17内に悪臭物質と細菌とを含有する温度約45℃の気体を発生させた。前記細菌は生ゴミの堆肥化に伴う好熱性細菌などの細菌である。この悪臭物質と細菌とを含有する気体を、生ゴミ処理槽17内から処理気体導入管15を介して消臭槽11内に導き、消臭槽11内を通過させながら、紫外線ランプ13にて強度10mW/cm2 の紫外線が照射されている光触媒被覆材12の表面に接触させるようにした。この消臭槽11内を通過した気体は、処理気体排出管16を介して生ゴミ処理槽17内に戻るようになっている。本実験では、生ゴミ処理槽17からの気体を5時間連続循環させた。なお、消臭槽11内に図示しない冷却コイルをこれが光触媒被覆材12に接触するように設け、該冷却コイル内に冷却媒体を流すことにより、光触媒被覆材12をその温度が5℃程度になるように冷却した。これは、気体中の水分が光触媒被覆材12に触れて結露するため、悪臭物質や細菌を光触媒被覆材12表面に接触させる点で有利なためである。
【0058】
本実験では、表5に示すように、消臭槽11に用いる光触媒被覆材12として、比較のために実験No.1では光触媒膜を被覆しないTi含有率95質量%のチタン合金材を使用し、比較のために実験No.2では普通鋼S50Cよりなる基材に厚み0.4μmの光触媒膜を被覆したもの(表1の比較例5)を使用し、比較のために実験No.3ではTi含有率65質量%のチタン合金基材に厚み0.4μmの光触媒膜を被覆したもの(表1の比較例10)を使用した。また、実験No.4ではTi含有率90質量%のチタン合金基材に厚み0.4μmの光触媒膜を被覆したもの(表1の実施例20)を使用し、実験No.5ではTi含有率95質量%のチタン合金基材に厚み0.4μmの光触媒膜を被覆したもの(表1の実施例24)を使用した。
【0059】
そして、本実験においては、悪臭物質であるアンモニア(NH4 )の濃度を測定した。すなわち、消臭槽11の光触媒被覆材12に触れて結露した水分を消臭槽11の外部に排出させて採取した。この採取された水100mLを1リットル容器に入れて30分放置してから、該容器中の悪臭物質であるアンモニアの濃度を測定した。また、前記採取された水1g当たりの全菌数を平板希釈法により計測した。結果を表5に示す。
【0060】
なお、消臭槽11として、Ti含有率95質量%のチタン合金基材に厚み0.10μmの陽極酸化膜と厚み0.5μmの光触媒膜とをこの順で被覆してなる光触媒被覆材(表2の比較例27)を使用したもの、及び、Ti含有率95質量%のチタン合金基材に厚み0.20μmの陽極酸化膜と厚み0.5μmの光触媒膜とをこの順で被覆してなる光触媒被覆材(表2の比較例29)を使用したものとについても、実験を行った。しかしながら、これら両方の消臭槽ともに、実験中にその光触媒膜が前記陽極酸化膜の存在によって剥離してしまい、耐久性の点で実用に適するものでなかった。
【0061】
【表5】
Figure 0004689809
【0062】
表5に示すように、アンモニア濃度については、実験No.2と実験No.3の各比較例では、光触媒膜の無い場合(実験No.1の比較例)に比較して約60%に低下しているものの、15〜16ppm程度残留していた。これに対して、実験No.4と実験No.5の各発明例では、1ppm以下にまで減らすことができた。一方、細菌については、光触媒膜の無い場合(実験No.1の比較例)では、紫外線照射にてある程度殺菌されるものの、数として105 〔CFU/g〕台の菌が残っていた。また、実験No.2と実験No.3の各比較例では、菌数が104 〔CFU/g〕台まで減少したものの、殺菌効果は十分ではなかった。これに対して、実験No.4と実験No.5の各発明例では、菌数が102 〔CFU/g〕台まで減少し、優れた殺菌効果が得られた。
【0063】
なお、さらに優れた消臭効果を得るため、消臭槽11に用いる光触媒被覆材として、光触媒膜の表面に、活性炭やゼオライトなどの悪臭吸着機能を持つ吸着剤の粒子を分散させた構造とし、これにより光触媒と吸着剤を複合させたものを用いるようにしてもよい。
【0064】
また、前記実施の形態では悪臭物質であるアンモニアの分解・除去について述べたが、本発明は、他の悪臭物質であるメチルメルカプタンや硫化水素、さらに大気汚染物質であるNOX やSOX の分解・除去にも有効である。
【0065】
〔実施例71〕:ここでは、クリーンルーム内の局所空間における有機性ガス汚染防止性能について調べた。図2は本発明の一実施形態による空気浄化装置の構成を示す説明図である。図2において、25は内部に多数のシリコンウエハ26を収納するウエハ収納箱である。ウエハ収納箱25は、本例ではクラス100000のクリーンルーム内に設置されており、クリーンルーム内の局所空間を形成している。ウエハ収納箱25の背面には紫外線を通す石英ガラス窓24が設けられており、このウエハ収納箱25内における石英ガラス窓24に近接した位置に光触媒パネル21が配置されている。光触媒パネル21は、本例では矩形をなすパネル基板上に光触媒被覆材22を貼り付けてなるものである。また、石英ガラス窓24を間にしてウエハ収納箱25の外側には蛍光灯型の紫外線ランプ23(波長250nmの殺菌灯を使用した)が配置されている。ウエハ収納箱25の内部には、光触媒パネル21を間にして石英ガラス窓24とは反対側に位置に試料台27が配置されており、この試料台27上にシリコンウエハ26が載置されている。前記紫外線ランプ23は、石英ガラス窓24を通して光触媒被覆材22の表面に紫外線を照射する一方、ランプ熱に起因する温度差によりウエハ収納箱25内の空気を流動化させるものである。図2における矢印で示すように、紫外線ランプ23によりウエハ収納箱25内の空気を光触媒被覆材22表面に接触させるように循環させることができる。
【0066】
光触媒による汚染物質含有物浄化装置としての空気浄化装置20は、光触媒被覆材22を用いて構成された光触媒部としての光触媒パネル21と、光触媒パネル21を構成する光触媒被覆材22の表面に紫外線を照射する紫外線照射部としての紫外線ランプ23及び石英ガラス窓24と、により構成されている。ここで、紫外線ランプ23は、汚染物質である有機性ガスを含有する気体を光触媒パネル21に導き、紫外線が照射されている光触媒被覆材22の表面に接触させるための汚染物質含有物導入手段をも構成している。
【0067】
さて、クリーンルーム内に設置されたウエハ収納箱25内には、シリコンウエハ26の搬入、搬出により、汚染物質を含むクリーンルーム空気が侵入することになる。前記のように構成された空気浄化装置20を備えたウエハ収納箱25において、ウエハ収納箱25内に置かれたシリコンウエハ26表面の有機性ガスによる汚染度を調べた。ここで、有機性ガスとは例えば、フタル酸エステル、脂肪族エステル、トルエン、エチルベンゼンである。これらの有機性ガスがシリコンウエハ26表面に付着すると、シリコンウエハ26表面は疎水性になり、該表面に成膜される膜の付着力が弱くなるという不具合がある。
【0068】
本実験では、表6に示すように、光触媒パネル21に用いる光触媒被覆材22として、比較のために実験No.6では光触媒膜を被覆しないTi含有率95質量%のチタン合金材を使用し、比較のために実験No.7では普通鋼S50Cよりなる基材に厚み0.4μmの光触媒膜を被覆したもの(表1の比較例5)を使用し、比較のために実験No.8ではTi含有率65質量%のチタン合金基材に厚み0.4μmの光触媒膜を被覆したもの(表1の比較例10)を使用した。また、実験No.9ではTi含有率90質量%のチタン合金基材に厚み0.4μmの光触媒膜を被覆したもの(表1の実施例20)を使用し、実験No.10ではTi含有率95質量%のチタン合金基材に厚み0.4μmの光触媒膜を被覆したもの(表1の実施例24)を使用した。
【0069】
そして、本実験では、シリコンウエハ表面の有機性ガスによる汚染度は、水によるぬれの接触角を測定する水滴接触角法により評価した。有機性ガスがシリコンウエハ表面に付着すると、前述したようにシリコンウエハ表面は疎水性になり、水をはじいてぬれにくくなる。よって、有機性ガスの汚染度が高いほど接触角が大きく、逆に汚染度が低いほど接触角が小さい。実験は、ウエハ収納箱25内に洗浄された清浄なシリコンウエハを置き、光触媒被覆材22の表面に紫外線を照射し、所定収納時間後にウエハ収納箱25から取り出された所定数のシリコンウエハについて接触角を測定することにより行った。紫外線ランプ23による光触媒被覆材22の照射量は50mW/cm2 である。結果を表6に示す。
【0070】
なお、光触媒パネル21として、前記表2の比較例27の光触媒被覆材を使用したもの、及び前記表2の比較例29の光触媒被覆材を使用したものとについても、実験を行った。しかしながら、これら両方の光触媒パネルともに、実験中にその光触媒膜が剥離してしまい、耐久性の点で実用に適するものでなかった。
【0071】
【表6】
Figure 0004689809
【0072】
表6に示すように、光触媒膜の無い場合(実験No.6の比較例)は、収納時間が長くなるに従って有機性ガスによる汚染が進行するため接触角が大きくなり、収納時間が30時間を超えると接触角が24°程度に落ちつく傾向が見られた。実験No.7と実験No.8の各比較例では、収納時間が50時間でも接触角が20°以下となっているものの、シリコンウエハに対する有機性ガス汚染防止効果は十分でなかった。これに対して、実験No.9と実験No.10の各発明例では、接触角が初期値5°のままで全く増大せず、優れた有機性ガス汚染防止効果が得られた。
【0073】
なお、前記実施の形態ではクリーンルーム内の局所空間の気体浄化について述べたが、本発明はクリーンルームの気体浄化にも適用可能である。
【0074】
〔実施例72〕:ここでは、飼育水中に溶存するアンモニアの分解・除去性能について調べた。図3は本発明の一実施形態による水浄化装置の構成を示す説明図である。図3において、37は上面が開口した箱形の鑑賞魚飼育水槽である。この鑑賞魚飼育水槽37の上に、上面が開口した箱形の光触媒フィルタ槽31が図示しない支持板を介して配置されている。光触媒フィルタ槽31内には後述する網目構造の光触媒被覆材32が収納されている。35は処理水導入管、34は処理水導入管35の途中に設けられた送水ポンプであり、送水ポンプ34に吸入された鑑賞魚飼育水槽37内の飼育水は、処理水導入管35を通って光触媒フィルタ槽31中に導入される。光触媒フィルタ槽31に導入された飼育水は、後述する網目構造の光触媒被覆材32に接触しながら網目の隙間を通り、次いで処理水排出管36を通って鑑賞魚飼育水槽37へ戻されるようになっている。光触媒フィルタ槽31上方には、蛍光灯型の紫外線ランプ33(波長250nmの殺菌灯を使用した)が配置されている。
【0075】
前記網目構造の光触媒被覆材32は、外形寸法:幅320mm×長さ115mm×厚み0.1mm、網目寸法:1mm×1mm、という網状に形成された網状光触媒被覆材を10枚積み重ねてなるものである。この網目構造の光触媒被覆材32を、幅320mm×長さ115mm×高さ100mmという外形寸法の光触媒フィルタ槽31内に収納してある。
【0076】
光触媒による汚染物質含有物浄化装置としての水浄化装置30は、網目構造の光触媒被覆材32を用いて構成された光触媒部としての光触媒フィルタ槽31と、この光触媒フィルタ槽31を構成する前記網目構造の光触媒被覆材32の表面に紫外線を照射する紫外線照射部としての紫外線ランプ33と、魚類にとって有害なアンモニアを含む飼育水を光触媒フィルタ槽31に導き、紫外線が照射されている網目構造の光触媒被覆材32の表面に接触させるための汚染物質含有物導入手段としての送水ポンプ34、処理水導入管35及び処理水排出管36と、により構成されている。
【0077】
本実験では、表7に示すように、網目構造の光触媒被覆材32として、比較のために実験No.11では光触媒膜を被覆しないTi含有率95質量%のチタン合金材を網状に形成したものを使用し、比較のために実験No.12では普通鋼S50Cよりなる基材を網状に形成し、これに厚み0.4μmの光触媒膜を被覆したもの(表1の比較例5を網状に形成したもの)を使用し、比較のために実験No.13ではTi含有率65質量%のチタン合金基材を網状に形成し、これに厚み0.4μmの光触媒膜を被覆したもの(表1の比較例10を網状に形成したもの)を使用した。また、実験No.14ではTi含有率90質量%のチタン合金基材を網状に形成し、これに厚み0.4μmの光触媒膜を被覆したもの(表1の実施例20を網状に形成したもの)を使用し、実験No.15ではTi含有率95質量%のチタン合金基材を網状に形成し、これに厚み0.4μmの光触媒膜を被覆したもの(表1の実施例24を網状に形成したもの)を使用した。
【0078】
本実験においては、送水ポンプ34を作動させたときの光触媒フィルタ槽31の水面より高さ50mmの位置に紫外線ランプ33を配置し、紫外線ランプ33の前記水面における強度が10mW/cm2 となるようにした。そして、鑑賞魚飼育水槽37に金魚20匹を飼育し、送水ポンプ34により飼育水を光触媒フィルタ槽31を通して循環させながら、金魚の***によって生成する飼育水中のアンモニアの濃度を測定した。その結果を表7に示す。
【0079】
なお、網目構造の光触媒被覆材32として、前記表2の比較例27の光触媒被覆材を網状に形成し、これを使用したもの、及び、前記表2の比較例29の光触媒被覆材を網状に形成し、これを使用したものとについても、実験を行った。しかしながら、これら両方の網目構造の光触媒被覆材ともに、実験中にその光触媒膜が剥離してしまい、耐久性の点で実用に適するものでなかった。
【0080】
【表7】
Figure 0004689809
【0081】
表7に示すように、光触媒膜の無い場合(実験No.11の比較例)、アンモニア濃度は2週間までは時間の経過とともに増加し、3週間を超えると徐々に低下した。この低下の理由は、鑑賞魚飼育水槽37において増殖した微生物が飼育水の浄化に寄与するためと考えられる。実験No.12と実験No.13の各比較例では、アンモニアの分解・除去効果が認められるものの、十分でなかった。これに対して、実験No.14と実験No.15の各発明例では、アンモニア濃度が初期値0ppmのままで全く増大せず、アンモニアを効果的に分解・除去することができた。
【0082】
なお、前記実施の形態では水質汚染物質であるアンモニアの分解・除去について述べたが、本発明は、他の水質汚染物質として、藻類などの微生物、プランクトンの死骸、ダイオキシンについてもその分解・除去に有効である。
【0083】
〔実施例73〕:ここでは、揮発性汚染物質であるトリクロロエチレンの分解・除去性能について調べた。図4は本発明の一実施形態による揮発性汚染物質除去装置の構成を示す説明図である。図4において、46はストリッピング(Stripping)槽である。ストリッピング槽46は、該ストリッピング槽46の底面近くに接続された処理水供給管46bを通して揮発性汚染物質であるトリクロロエチレンを含む処理水が供給される一方、圧縮空気吹込み管46aを通して圧縮空気が前記処理水中に吹き込まれるように構成されている。ストリッピング槽46は、空気バブリングによる脱気を行うことにより、処理水に含まれるトリクロロエチレンを空気中に移行(抽出)するためのものである。41はストリッピング槽46の外部に設けられたリアクターである。断面矩形で角形形状をなすリアクター41の内周面には光触媒被覆材42が全周にわたって貼り付けられている。また、リアクター41の内部にはリアクター中心軸線に沿って延びる蛍光灯型の紫外線ランプ43(波長250nmの殺菌灯を使用した)が配置されている。45はストリッピング槽46とリアクター41とを連通し、ストリッピング槽46内からトリクロロエチレンを含む空気をリアクター41に導くための処理気体導入管である。この処理気体導入管45の途中に吸引ファン44が設けられている。なお、リアクター41の下流側の面には次工程につながる配管が接続されている。
【0084】
光触媒による汚染物質含有物浄化装置としての揮発性汚染物質除去装置40は、光触媒被覆材42を用いて構成された光触媒部としてのリアクター41と、リアクター41を構成する光触媒被覆材42の表面に紫外線を照射する紫外線照射部としての紫外線ランプ43と、揮発性汚染物質であるトリクロロエチレンを含む空気をリアクター41に導き、紫外線が照射されている光触媒被覆材42の表面に接触させるための汚染物質含有物導入手段としてのストリッピング槽46、処理気体導入管45及び吸引ファン44と、により構成されている。
【0085】
本実験では、表8に示すように、リアクター41に用いる光触媒被覆材42として、比較のために実験No.16では光触媒膜を被覆しないTi含有率95質量%のチタン合金材を使用し、比較のために実験No.17では普通鋼S50Cよりなる基材に厚み0.4μmの光触媒膜を被覆したもの(表1の比較例5)を使用し、比較のために実験No.18ではTi含有率65質量%のチタン合金基材に厚み0.4μmの光触媒膜を被覆したもの(表1の比較例10)を使用した。また、実験No.19ではTi含有率90質量%のチタン合金基材に厚み0.4μmの光触媒膜を被覆したもの(表1の実施例20)を使用し、実験No.20ではTi含有率95質量%のチタン合金基材に厚み0.4μmの光触媒膜を被覆したもの(表1の実施例24)を使用した。
【0086】
本実験では、ストリッピング槽46内に濃度100ppmのトリクロロエチレンを含む処理水を送り込み、ストリッピング槽46内において空気バブリングによる脱気を行うことにより、空気中に移行されたトリクロロエチレンを含む空気を得、このトリクロロエチレンを含む空気をリアクター41に導くようにした。紫外線ランプ43による光触媒被覆材42の照射量は10mW/cm2 である。そして、ストリッピング槽46内における空気中のトリクロロエチレン濃度(初期濃度)とリアクター41の下流側出口における空気中のトリクロロエチレン濃度(処理後の濃度)とを測定した。その結果を表8に示す。なお、ストリッピング槽46の排水管46cからの脱気がなされた処理水のトリクロロエチレン濃度は、実験No.16〜No.20のいずれの場合も10ppmまで低下していた。
【0087】
なお、前記表2の比較例27の光触媒被覆材と同じく表2の比較例29の光触媒被覆材については、両者ともリアクターに貼り付ける段階でその光触媒膜が剥離してしまい、耐久性の点で実用に適するものでなかった。
【0088】
【表8】
Figure 0004689809
【0089】
表8に示すように、光触媒膜の無い場合(実験No.16の比較例)は、初期濃度と処理後の濃度がともに10ppmであり、トリクロロエチレンの分解・除去効果が認められなかった。実験No.17と実験No.18の各比較例では、処理後の濃度が初期濃度より低下して8〜7ppmになっており、トリクロロエチレンの分解・除去効果が認められるものの、十分でなかった。これに対して、実験No.19と実験No.20の各発明例では、処理後の濃度が2〜1ppmまで低下しており、トリクロロエチレンを効果的に分解・除去することができた。
【0090】
【発明の効果】
以上述べたように、本発明によれば、チタン基合金基材上に光触媒膜として酸化チタン結晶の薄膜を形成してなり、光触媒性と耐久性との両者に優れた光触媒被覆材を提供することができる。また、本発明によれば、光触媒膜の剥離を生じることがなく耐久性の点において実用に適するとともに、汚染物質を効果的に分解・除去することができる、光触媒による汚染物質含有物浄化方法、及び光触媒による汚染物質含有物浄化装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による消臭装置の構成を示す説明図である。
【図2】本発明の一実施形態による空気浄化装置の構成を示す説明図である。
【図3】本発明の一実施形態による水浄化装置の構成を示す説明図である。
【図4】本発明の一実施形態による揮発性汚染物質除去装置の構成を示す説明図である。
【符号の説明】
10…消臭装置 11…消臭槽 12…光触媒被覆材 13…紫外線ランプ
14…吸引ファン 15…処理気体導入管 16…処理気体排出管 17…生ゴミ処理槽 20…空気浄化装置 21…光触媒パネル 22…光触媒被覆材 23…紫外線ランプ 24…石英ガラス窓 25…ウエハ収納箱 26…シリコンウエハ 27…試料台 30…水浄化装置 31…光触媒フィルタ槽 32…光触媒被覆材 33…紫外線ランプ 34…送水ポンプ 35…処理水導入管 36…処理水排出管 37…鑑賞魚飼育水槽 40…揮発性汚染物質除去装置 41…リアクター 42…光触媒被覆材 43…紫外線ランプ 44…吸引ファン
45…処理気体導入管 46…ストリッピング槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalyst coating material excellent in photocatalytic properties and durability, a method for producing the same, and a contaminant-containing material purification method and a contaminant-containing material purification device using the photocatalyst coating material.
[0002]
[Background Art and Problems to be Solved by the Invention]
Titanium oxide (TiO2), a representative photocatalyst 2 ) Is a semiconductor and is known to exhibit photocatalytic properties by irradiating its surface with ultraviolet light, and to decompose organic substances and the like by the oxidizing power of holes. Due to this photocatalytic reaction, titanium oxide is effective for decomposing volatile organic compounds such as formaldehyde, decomposing odorous substances in toilets, and sterilizing to prevent nosocomial infections. . Titanium oxide is generally supplied in the form of a powder. In this case, when manufacturing a photocatalyst coating material to be provided as a product, it is necessary to hold and fix the titanium oxide powder on a substrate.
[0003]
In order to fix the titanium oxide powder on the base material, it is necessary to use a binder that is not decomposed by the photocatalytic reaction, and at present, a fluororesin binder and a silicon binder are often used. However, in a photocatalyst coating material in which titanium oxide powder is held on a base material with a binder, titanium oxide particles are less likely to appear on the surface, so the photocatalytic property (photocatalytic action) of the resulting photocatalyst coating material is low (weak). There was a drawback.
[0004]
On the other hand, instead of titanium oxide powder, a liquid organic titanium compound such as alkoxide or acetylacetonate containing Ti atoms is applied to the substrate, and this is baked at a high temperature of about 400 ° C. or more to form a titanium oxide thin film. There is known a method in which a photocatalyst coating material is obtained by forming. In the method of applying such a liquid organic titanium compound and firing at high temperature, the photocatalyst coating material whose outermost surface is entirely covered with a titanium oxide film is different from the method in which the titanium oxide powder is fixed with the binder described above. Can be obtained.
[0005]
However, in the above-described method of applying and baking the liquid organic titanium compound, since the baking is performed at a high temperature of about 400 ° C. or higher, the constituent elements of the base material diffuse in the surface direction during baking, and the formed titanium oxide film Therefore, depending on the composition of the base material, a non-Ti component from the base material may enter the titanium oxide film as an impurity. When a large amount of such impurities enter the titanium oxide film, normal crystal growth of titanium oxide is inhibited, and the titanium oxide crystal film is not formed. Further, even when the amount of impurities mixed is not so high as to inhibit the crystal growth of titanium oxide, a level caused by the impurity is formed between the band gaps that cause the photocatalytic action of titanium oxide, which is a semiconductor, and this level. Becomes a recombination site of electrons and holes, so that a large amount of electrons and holes are recombined and disappear, and the photocatalytic reaction efficiency is remarkably lowered.
[0006]
Accordingly, an object of the present invention is to provide a photocatalyst coating material in which a titanium oxide crystal thin film is formed as a photocatalyst film on a base material, which is excellent in both photocatalytic properties and durability, and a method for producing the same. There is to do. In addition, another object of the present invention is to use the photocatalyst coating material excellent in both photocatalytic properties and durability, and is suitable for practical use in terms of durability without causing peeling of the photocatalytic film. It is an object of the present invention to provide a contaminant-containing material purification method using a photocatalyst and a contaminant-containing material purification device using a photocatalyst that can effectively decompose and remove the material.
[0007]
[Means for Solving the Problems]
The invention of claim 1 of the present application is a photocatalyst coating material in which a photocatalyst film containing 90% by volume or more of anatase type and / or rutile type titanium oxide crystals is formed on a titanium base alloy base material. The titanium content of the base alloy substrate is 70% by mass or more, the thickness of the photocatalyst film is 0.1 μm or more, and exists between the titanium base alloy substrate and the photocatalyst film. It is a photocatalyst coating material in which the thickness of an inevitable thin film different from the base alloy crystal is 0.05 μm or less.
[0008]
The invention of claim 2 is the photocatalyst coating material of claim 1, wherein the volume ratio of the anatase-type titanium oxide crystal to the total titanium oxide crystal in the photocatalyst film is 80% or more. .
[0009]
The invention of claim 3 is a pickling treatment to remove the surface oxide film of a base material made of a titanium-based alloy having a titanium content of 70% by mass or more. Formed on the surface The thickness of inevitable thin films, which is different from titanium oxide crystals and titanium-based alloy crystals, is 0.05 μm or less The By applying a titanium compound to a titanium-based alloy substrate, firing this at a temperature of 400 ° C. or higher in an oxygen-containing atmosphere, and repeating this coating and firing once or twice or more, Concerned A method for producing a photocatalyst coating material comprising forming a photocatalyst film having a thickness of 0.1 μm or more on a titanium-based alloy base material containing titanium oxide crystals by 90% by volume or more.
[0010]
The invention of claim 4 is to decompose and remove the pollutant by irradiating the surface of the photocatalyst coating material of claim 1 or 2 with ultraviolet rays and bringing a gas or liquid containing the pollutant into contact. This is a feature of a contaminant-containing purification method using a photocatalyst.
[0011]
The invention according to claim 5 is a photocatalyst portion constituted by using the photocatalyst coating material according to claim 1, an ultraviolet ray irradiation portion for irradiating the surface of the photocatalyst coating material constituting the photocatalyst portion with ultraviolet rays, and contamination. A photocatalyst comprising a contaminant-containing material introducing means for guiding a gas or liquid containing a substance to the photocatalyst portion and bringing it into contact with the surface of the photocatalyst coating material irradiated with the ultraviolet rays. It is a pollutant-containing substance purification device.
[0012]
According to a sixth aspect of the present invention, in the pollutant-containing material purification apparatus using a photocatalyst according to the fifth aspect, the pollutant is a malodorous substance and is used for garbage disposal.
[0013]
According to a seventh aspect of the present invention, in the pollutant-containing substance purification apparatus using the photocatalyst according to the fifth aspect, the pollutant is an organic gas and is used for gas purification in a clean room or a local space in a clean room. It is a feature.
[0014]
According to an eighth aspect of the present invention, in the apparatus for purifying pollutant-containing substances using a photocatalyst according to the fifth aspect, the pollutant is a volatile pollutant, and the pollutant-containing substance introducing means is a volatile pollutant contained in a liquid. The material is transferred into the gas, and the gas containing the transferred volatile pollutant is guided and brought into contact with the surface of the photocatalyst coating material irradiated with the ultraviolet rays. is there.
[0015]
The photocatalyst coating material according to the present invention having the above characteristics and a method for producing the same will be described. In the present invention, the titanium-based alloy base material is pickled to remove the surface oxide film of the base material, and then oxidized, such as a natural oxide film inevitably formed on the surface of the titanium-based alloy base material. When the inevitable thin film thickness, which is different from titanium crystal and titanium-based alloy crystal, is 0.05 μm or less (including zero), a titanium compound such as a liquid organic titanium compound is applied to the pickled titanium-based alloy substrate. By firing in an oxygen-containing atmosphere, Ti atoms in the titanium-based alloy substrate and Ti atoms in the coating film are interdiffused between the interfaces on the pickled titanium-based alloy substrate. However, while O atoms (oxygen atoms) from the atmosphere enter the base material from the coating film, a thin film of titanium oxide crystals is formed as a photocatalytic film in the process.
[0016]
By firing as described above, Ti atoms in the titanium-based alloy base material and Ti atoms in the coating film interdiffuse between the interfaces, and O atoms from the atmosphere enter the base material from the coating film. As the photocatalytic film is formed on the titanium-based alloy base material, the Ti structure of the titanium-based alloy base material and the Ti atom of the photocatalytic film are continuously connected to each other. A photocatalyst film having good adhesion can be formed, and a photocatalyst coating material excellent in durability can be obtained.
[0017]
In order to obtain such a photocatalytic film with good adhesion, the thickness of the inevitable thin film existing between the titanium-based alloy base material and the photocatalytic film needs to be 0.05 μm or less. In general, a natural oxide film having a thickness of about 0.05 μm is formed on the surface of a titanium substrate placed in air for several days. This natural oxide film is not anatase type or rutile type titanium oxide crystal but an amorphous structure. In addition, a thin film due to inevitable dirt may be formed. When the thickness of such an inevitable thin film such as a natural oxide film is larger than 0.05 μm, the above-described interdiffusion between the interfaces of Ti atoms and the intrusion of O atoms into the base material are inhibited during firing. As a result, the adhesion of the photocatalytic film is poor. Therefore, the inevitable thin film needs to have a thickness of 0.05 μm or less, and is preferably 0.03 μm or less, particularly preferably 0.01 μm or less, from the viewpoint of improving the adhesion of the photocatalytic film. In addition, about the thickness of such an inevitable thin film, it can measure by cross-sectional observation of this thin film with a transmission electron microscope (TEM). Of course, it is most preferable that this inevitable thin film is not present, and it is preferable to perform the above-described application and firing immediately after the surface oxide film is removed by pickling the titanium-based alloy substrate.
[0018]
In the present invention, in order to obtain high photocatalytic properties, it is preferable that the non-titanium oxide crystal component in the formed photocatalyst film is small, and the titanium oxide crystal content (volume%) in the photocatalyst film is 90% by volume or more. There is a need to. Therefore, the titanium oxide crystal content (% by volume) of the photocatalytic film is 90% by volume or more, and is preferably 95% by volume or more, and particularly preferably 99% by volume or more from the viewpoint of enhancing the photocatalytic property. The titanium oxide crystal in the photocatalyst film is composed of an anatase-type titanium oxide crystal, a rutile-type titanium oxide crystal, or a mixed phase of both.
[0019]
Here, the titanium oxide crystal content in the photocatalyst film can be determined by TEM cross-sectional observation. That is, in the dark field image formed by reflection of electron diffraction of anatase type and rutile type titanium oxide crystals in the photocatalytic film, the titanium oxide crystal part is bright, while the non-titanium oxide crystal part such as the amorphous part is It becomes darker than the titanium oxide crystal part. By analyzing such a dark field image, the titanium oxide crystal content in the photocatalytic film can be obtained geometrically by calculation.
[0020]
In the present invention, if the thickness of the photocatalyst film is too thin, the non-Ti component from the titanium-based alloy substrate easily reaches the surface of the photocatalyst film as an impurity during firing, and the non-oxidation in the film The titanium crystal component exceeds 10% by volume and the photocatalytic property is lowered. Therefore, the thickness of the photocatalyst film needs to be 0.1 μm or more, and is preferably 0.2 μm or more, particularly preferably 0.3 μm or more from the viewpoint of reducing impurities in the photocatalyst film. The thickness of the photocatalytic film can be measured by observing the cross section of the film with TEM.
[0021]
In the present invention, the firing temperature needs to be 400 ° C. or higher in order to produce titanium oxide crystals. Further, the firing temperature is preferably 450 ° C. or more, particularly preferably from the viewpoint of improving the adhesion of the photocatalytic film by promoting the interdiffusion between the Ti atom interfaces and the penetration of O atoms into the base material. 500 degreeC or more is good.
[0022]
On the other hand, if the calcination temperature is too high, the anatase-type titanium oxide crystal is converted to a rutile-type titanium oxide crystal having a relatively low photocatalytic property, and the photocatalytic property gradually increases as the rutile-type titanium oxide crystal increases. (The mechanism of why the photocatalytic properties of rutile-type titanium oxide crystals are low has not been clearly elucidated). Therefore, regarding the upper limit of the firing temperature, the anatase-type titanium oxide crystal volume ratio in the total titanium oxide crystals of the photocatalytic film should be 80% or more at 700 ° C. or less, and preferably anatase-type oxidation at 650 ° C. or less. The titanium crystal volume ratio is preferably 90% or more, particularly preferably 600 ° C. or less and the anatase-type titanium oxide crystal volume ratio is 95% or more.
[0023]
Here, the anatase-type titanium oxide crystal volume ratio is the ratio (volume%) of the anatase-type titanium oxide crystal to the total titanium oxide crystal in the photocatalyst film, and the anatase-type titanium oxide crystal volume / [anatase-type titanium oxide crystal volume]. + Rutile-type titanium oxide crystal volume]. This volume ratio value is obtained by TEM cross-sectional observation, in the dark field image due to reflection of electron diffraction of anatase type titanium oxide crystal, the anatase type titanium oxide crystal part becomes bright, and dark field due to reflection of electron diffraction of rutile type titanium oxide crystal. In the image, the rutile-type titanium oxide crystal part becomes bright, and can be obtained geometrically from the ratio of the two.
[0024]
In the present invention, by firing at a high temperature of 400 ° C. or higher, a photocatalytic film is formed while interdiffusing Ti atoms in the coating and Ti atoms in the base material between the interfaces as described above. Requires that the substrate be made of a titanium-based alloy. Further, in order to interdiffuse Ti atoms between the interfaces, to suppress the non-titanium oxide crystal component in the formed photocatalytic film to 10% by volume or less, and to make the titanium oxide crystal content 90% by volume or more, The titanium-based alloy base material needs to have a Ti content of 70% by mass. The titanium content of the titanium-based alloy substrate is preferably set so that the content of titanium oxide crystals in the photocatalytic film is 95% by volume or more from the viewpoint of increasing the photocatalytic property by reducing non-Ti components diffusing into the photocatalytic film. Is 80% by mass or more, and particularly preferably 90% by mass or more in order to make the titanium oxide crystal content 99% by volume or more.
[0025]
As for the shape (form) of the titanium-based alloy base material, various shapes such as a flat plate shape, a pipe shape, a net shape, and a linear shape can be applied. In order to further improve the photocatalytic property, the effective surface area should be increased as much as possible. Those having a net shape and those having fine irregularities on the surface are preferable.
[0026]
In the present invention, the titanium compound applied to the surface of the pickled titanium-based alloy substrate is preferably a liquid organic titanium compound such as alkoxide or acetylacetonate in which alcohol is bonded to titanium. Note that a photocatalytic film can also be formed by firing an organic titanium compound or an inorganic titanium compound in the form of a solid powder, solid film, or plate on a titanium-based alloy substrate. .
[0027]
By the way, if metal particles or particles such as oxides having different components from titanium oxide are dispersed and supported so as to be in contact with the titanium oxide photocatalyst, the cathodic reaction by the photocatalyst is more likely to occur in the particle portion than the base. It is known that the sites of the anodic reaction and the cathodic reaction are separated, and the loss due to cancellation of both reactions is minimized, so that the photocatalytic properties (photocatalytic properties) are further improved. Even in the present invention, a higher photocatalytic property can be obtained by combining with such a technique.
[0028]
Next, according to the pollutant-containing material purification method using a photocatalyst and the photocatalyst-containing pollutant-containing material purification apparatus according to the present invention, the photocatalyst coating material according to the present invention is used, and the surface of the photocatalyst coating material, By irradiating the photocatalyst film surface with ultraviolet light and contacting a gas or liquid containing a contaminant, the excellent mechanical durability and excellent photocatalytic property (photocatalytic activity) of the photocatalyst coating material are exhibited. The photocatalyst film is not peeled off, is suitable for practical use in terms of durability, and can effectively decompose and remove contaminants.
[0029]
Here, the pollutants in the gas (in the atmosphere) include methyl mercaptan (generated from household garbage), malodorous substances such as hydrogen sulfide, airborne bacteria, NO X (Nitrogen oxide) and SO X And air pollutants such as (sulfur oxide). In addition, examples of contaminants in the liquid (in water) include microorganisms such as algae, dead bodies of plankton, ammonia, and dioxin. Further, from the viewpoint of volatile pollutants, highly volatile organic solvents such as trichlorethylene and tetrochloroethylene are exemplified.
[0030]
【Example】
Examples of the photocatalyst coating material and the manufacturing method thereof according to the present invention will be described below together with comparative examples.
[0031]
[Examples 1 to 24 and Comparative Examples 1 to 16]: The effect of the titanium oxide crystal content of the photocatalytic film on the photocatalytic property, the effect of the film thickness of the photocatalytic film on the photocatalytic property, and the Ti content of the titanium-based alloy substrate The effect of the rate on the titanium oxide crystal content will be described.
[0032]
A Ti-Fe binary alloy having a Ti content of 65 to 95% by mass is melted and processed into a size of 1 mm thickness x 50 mm width x 50 mm length to prepare a required number of base materials made of a titanium-based alloy. On the other hand, a required number of base materials made of plain steel S50C (JIS G 3311) processed to the same dimensions were prepared. And after pickling each substrate with an aqueous hydrofluoric acid solution to completely remove the natural oxide film on the substrate surface, immediately apply acetylacetone titanium, which is one of liquid organic titanium compounds, by a well-known dip method. The thing was baked for 30 minutes at the temperature of 400 degreeC by the atmospheric condition. This coating / firing was repeated 2 to 6 times to obtain a photocatalyst coating material in which a photocatalytic film having a required thickness was formed on the surface of the substrate.
[0033]
About each photocatalyst coating material obtained in this way, the titanium oxide crystal content (volume%) of the photocatalyst film is geometrically determined from a cross-sectional observation image by a transmission electron microscope (TEM) as described above. Calculated and determined. In order to evaluate the photocatalytic property, a photocatalyst coating material is applied to a potassium iodide aqueous solution (concentration: 0.1 mol / L, 150 mL), and the surface of the titanium oxide film is a light receiving surface (light receiving area: 25 cm). 2 ) So that the strength is 2.6 mW / cm 2 The amount of iodine produced when the ultraviolet rays were irradiated for 30 minutes was determined by absorbance analysis. The results are shown in Table 1.
[0034]
[Table 1]
Figure 0004689809
[0035]
As shown in Table 1, in Comparative Examples 1 to 5 in which the base material is made of ordinary steel S50C, the film lacks the requirement of “a titanium-based alloy base material having a Ti content of 70% by mass or more” defined in the present invention. The content of titanium oxide crystals in the inside is as low as less than 50% by volume, and it is thought that Fe atoms, which are non-Ti metal atoms, diffused in a large amount from the base material during firing to inhibit the formation of titanium oxide crystals. It is done. Therefore, the amount of iodine produced, which is a photocatalytic index, is 1 × 10 -Five ~ 3x10 -Five The photocatalytic property is extremely low, as low as about mol. Similarly, in Comparative Examples 6 to 10, although it is a titanium-based alloy base material, it lacks the requirement defined in the present invention that “Ti content is 70% by mass or more”, and the content of titanium oxide crystals in the photocatalytic film is 90%. Since it is as low as less than volume%, the photocatalytic property is extremely low.
[0036]
On the other hand, in Examples 1 to 24 using a Ti-Fe binary alloy base material having a Ti content of 70% by mass (the lower limit specified in the present invention) or more as a titanium-based alloy base material, The titanium oxide crystal content is 90% by volume (the lower limit specified in the present invention) or more, and the amount of iodine produced is 20 × 10. -Five A high photocatalytic property is obtained with a large amount of mol or more. Focusing on the Ti content of the Ti—Fe binary alloy substrate, the titanium oxide crystal content in the photocatalyst film increases as the Ti content increases, and the amount of iodine produced increases accordingly.
[0037]
However, even when the Ti content of the substrate is as high as 70% by mass or more, in Comparative Examples 11 to 16 in which the film thickness of the photocatalytic film is 0.05 μm, the titanium oxide crystal content of the film can reach 90% by volume. Therefore, the amount of iodine produced is small and the photocatalytic property is remarkably low. On the other hand, when the film thickness of the photocatalyst film is 0.1 μm (lower limit specified in the present invention) or more, the titanium oxide crystal content in the film is 90% by volume when the Ti content of the substrate is 70% by mass or more. As described above, as the film thickness of the photocatalyst film is increased to 0.2 μm and 0.3 μm, the titanium oxide crystal content in the film increases, the amount of iodine generated increases, and the photocatalytic property tends to be improved.
[0038]
Thus, in Examples 1-24, the photocatalyst coating material which has high photocatalytic property was obtained. In Examples 9 to 12 using a Ti—Fe binary alloy base material having a Ti content of 80% by mass, a photocatalytic film having a titanium oxide crystal content of 95 to 99% by volume is obtained, and a Ti content of 90% by mass is obtained. In Examples 17 to 20 using a% substrate, a photocatalyst film having a titanium oxide crystal content of 99% by volume was obtained, and a photocatalyst coating material particularly excellent in photocatalytic properties was obtained.
[0039]
[Examples 25 to 69 and Comparative Examples 17 to 61]: Influence of baking temperature on adhesion of photocatalyst film, influence of oxide film (natural oxide film, anodized film) on adhesion, and anatase type of photocatalyst film The influence of the titanium oxide crystal volume ratio on the photocatalytic property will be described.
[0040]
A Ti—Fe binary alloy having a Ti content of 95% by mass was melted and processed into a size of 1 mm thick × 50 mm wide × 50 mm long to prepare a required number of base materials made of a titanium-based alloy. And about each base material which changed the state of the base-material surface like the after-mentioned, the acetylacetone titanium which is a liquid organic titanium compound is apply | coated by a dip system, and various temperature (Table 2 in 350-900 degreeC) by an atmospheric condition. To Table 4) for 30 minutes. This coating / firing was repeated 5 times for each substrate, and a photocatalyst film having a thickness of 0.5 μm was formed on the substrate to form a photocatalyst coating material.
[0041]
Explaining the treatment of the substrate surface, among the required number of substrates prepared, a part of the substrate is pickled with a hydrofluoric acid aqueous solution to completely remove the natural oxide film on the substrate surface, Was applied and fired. Further, a part of the film was allowed to stand in the atmosphere to form a natural oxide film of 0.005 to 0.05 μm (see Tables 2 to 4), and then the coating and baking were performed. Further, the remaining base material is anodized in an aqueous solution of phosphoric acid having a concentration of 1 vol% at an applied voltage of 50 to 100 V, and anodized with a thickness of 0.08 to 0.2 μm (see Tables 2 to 4). After the film was formed, the above coating and baking were performed.
[0042]
The natural oxide film and the anodic oxide film were confirmed to have an amorphous structure although most of them contained titanium oxide crystals according to their electron diffraction patterns. ing.
[0043]
About each photocatalyst coating material produced in this way, adhesiveness was evaluated by measuring the critical load when a photocatalyst film peels by a scratch test. The scratch test is a test in which a hemispherical diamond indenter having a diameter of 200 μm is used, a vertical load is continuously applied at a load load speed of 100 N / min, and a sample moving speed is 10 mm / min, and the critical load is measured. . Moreover, the photocatalytic property was evaluated by the iodine production | generation test similar to the case of previous Examples 1-24. As a typical example for each processing temperature, the photocatalytic film formed by firing at various temperatures on a substrate that has been pickled to remove the natural oxide film, as described above, is a cross-sectional observation image using a transmission electron microscope. Thus, the volume ratio of anatase-type titanium oxide crystal was geometrically calculated (Examples 25, 30, 35, 40, 45, 50, 55, 60, 65). These test results are shown in Tables 2-4.
[0044]
[Table 2]
Figure 0004689809
[0045]
[Table 3]
Figure 0004689809
[0046]
[Table 4]
Figure 0004689809
[0047]
As can be seen from Table 2, Comparative Examples 17 to 25 lack the requirement of “baking at a temperature of 400 ° C. or higher” defined in the present invention, and since the baking temperature is as low as 350 ° C., the coated organic titanium becomes a titanium oxide crystal. Not converted, so the amount of iodine produced is 2 × 10 -Five The photocatalytic property is remarkably weak with less than mol.
[0048]
On the other hand, in an Example, baking temperature is 400 degreeC (Examples 25-29), 450 degreeC (Examples 30-34), 500 degreeC (Examples 35-39), 550 degreeC (Examples 40-44), 600. In the case of the one at 0 ° C. (Examples 45 to 49), the applied organic titanium is converted into a titanium oxide crystal having an anatase-type titanium oxide crystal volume ratio of 95% or more. -Five The value is around mol, and high photocatalytic properties are obtained.
[0049]
And in the thing of 650 degreeC (Examples 50-54) and 700 degreeC (Examples 55-59) with a calcination temperature, a part of anatase type titanium oxide crystal is converted into a rutile type titanium oxide crystal, and anatase type titanium oxide The crystal volume ratio is reduced to 90-80%, whereby a slight reduction in photocatalytic properties is observed. In addition, when the firing temperature is 750 ° C. (Examples 60 to 64), the anatase-type titanium oxide crystal volume ratio is 60%, and when the firing temperature is 900 ° C. (Examples 65 to 69), all are rutile oxidation. It becomes a photocatalyst film made of titanium crystals, and the amount of iodine produced is 20 × 10 -Five It is as low as mol. Although these firing temperatures of 750 ° C. and 900 ° C. deviate from the recommended condition of the present invention “anatase-type titanium oxide crystal volume ratio: 80% or more”, the amount of iodine produced is 20 × 10 -Five The photocatalytic property is good to some extent.
[0050]
Thus, from the lowering tendency of the photocatalytic properties shown in Tables 2 and 3, the upper limit side of the firing temperature is set to 80% or more of the anatase-type titanium oxide crystal volume ratio in the total titanium oxide crystal at 700 ° C. or less, The results show that the volume ratio is preferably 90% or more at 650 ° C. or less, and particularly preferably 95% or more at 600 ° C. or less.
[0051]
As shown in Table 2, the lower limit of the firing temperature is such that the interdiffusion of Ti atoms between the interfaces is promoted as the firing temperature increases to 400 ° C., 450 ° C., and 500 ° C. Since the critical peeling load representing the adhesion increases, the result that 400 ° C. or higher, preferably 450 ° C. or higher, particularly preferably 500 ° C. or higher is obtained.
[0052]
On the other hand, with respect to the oxide film between the base material and the photocatalyst film, the presence of an amorphous film such as a natural oxide film or an anodic oxide film reduces the critical separation load of the photocatalyst film. Also, a material having good adhesion with a peeling critical load of 30 N or more is obtained. With respect to the thickness of the oxide film, a thickness of 0.05 μm or less and a thickness of 0.03 μm or less, particularly preferably 0.01 μm or less, are obtained from the viewpoint of improving the adhesion of the photocatalyst film.
[0053]
However, Comparative Examples 22 to 61 lack the requirement of “thickness of 0.05 μm or less” defined in the present invention, interdiffusion between the interface between the Ti atom of the coating film and the Ti atom of the base material during firing, and O Since the penetration of atoms into the base material is hindered, the critical separation load value is significantly reduced to about “1/10” of the example, and the adhesion of the photocatalytic film is extremely poor. For example, in Comparative Example 37, an anodic oxide film (amorphous film) having a thickness of 0.20 μm formed at an applied voltage of 100 V exists between the base material and the titanium oxide film. For this reason, since impurities from the base material do not enter the photocatalytic film due to the presence of the anodic oxide film during firing, the photocatalytic property is sufficiently good, 49 × 10 -Five Although the amount of iodine produced in mol was obtained, the interdiffusion of Ti atoms between the interfaces during firing was suppressed, and a structure in which the substrate and the photocatalytic film were integrated was not obtained. The value was as low as 3N.
[0054]
Next, based on an Example, the contaminant containing material purification method by the photocatalyst based on this invention and the contaminant containing material purification apparatus by a photocatalyst are demonstrated.
[0055]
[Example 70]: Here, decomposition / removal performance and sterilization performance (sterilization performance) of ammonia, which is a malodorous substance, were examined. FIG. 1 is an explanatory view showing a configuration of a deodorizing apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 17 denotes a rectangular section having a rectangular shape, a garbage disposal tank (composter) for reducing the amount of garbage with bacteria to compost, and 11 is a rectangular section having a rectangular shape. The deodorizing tank 15 is disposed above, a processing gas introduction pipe 15 for communicating the garbage processing tank 17 and the deodorizing tank 11, and a processing gas for communicating the deodorizing tank 11 and the garbage processing tank 17. A discharge pipe 14 is a suction fan provided in the processing gas introduction pipe. A photocatalyst coating material 12 is attached to the inner peripheral surface of the deodorization tank 11 over the entire circumference. In addition, a fluorescent lamp type ultraviolet lamp 13 (using a germicidal lamp with a wavelength of 250 nm) extending along the central axis of the deodorization tank is disposed inside the deodorization tank 11.
[0056]
A deodorizing apparatus 10 as a contaminant-containing material purification apparatus using a photocatalyst is provided on a surface of a deodorizing tank 11 as a photocatalyst unit configured using the photocatalyst coating material 12 and a photocatalyst coating material 12 constituting the deodorizing tank 11. Contamination for bringing ultraviolet lamp 13 as an ultraviolet irradiation section for irradiating ultraviolet rays and gas containing malodorous substances as contaminants into deodorizing tank 11 and bringing them into contact with the surface of photocatalyst coating material 12 irradiated with ultraviolet rays. A suction fan 14, a processing gas introduction pipe 15 and a processing gas discharge pipe 16 are provided as substance-containing material introduction means.
[0057]
In the garbage processing tank 17 provided with the deodorizing apparatus 10 configured in this manner, the garbage consisting of leftovers, vegetable scraps, meat, etc. in the garbage processing tank 17, and yeast for promoting fermentation by bacteria, And fermenting raw garbage, a gas having a temperature of about 45 ° C. containing malodorous substances and bacteria was generated in the raw garbage treatment tank 17. The bacteria are bacteria such as thermophilic bacteria accompanying composting of garbage. A gas containing the malodorous substance and bacteria is introduced from the garbage processing tank 17 into the deodorizing tank 11 through the processing gas introduction pipe 15 and is passed through the deodorizing tank 11 by the ultraviolet lamp 13. Strength 10mW / cm 2 It was made to contact the surface of the photocatalyst coating material 12 irradiated with the ultraviolet rays. The gas that has passed through the deodorizing tank 11 returns to the garbage processing tank 17 through the processing gas discharge pipe 16. In this experiment, the gas from the garbage processing tank 17 was continuously circulated for 5 hours. In addition, a cooling coil (not shown) is provided in the deodorization tank 11 so as to come into contact with the photocatalyst coating material 12, and the temperature of the photocatalyst coating material 12 becomes about 5 ° C. by flowing a cooling medium in the cooling coil. To cool. This is because moisture in the gas touches the photocatalyst coating material 12 to cause condensation, which is advantageous in bringing malodorous substances and bacteria into contact with the surface of the photocatalyst coating material 12.
[0058]
In this experiment, as shown in Table 5, as a photocatalyst coating material 12 used in the deodorization tank 11, an experiment No. In No. 1, a titanium alloy material having a Ti content of 95% by mass that does not cover the photocatalyst film is used. In No. 2, a substrate made of plain steel S50C and coated with a photocatalyst film having a thickness of 0.4 μm (Comparative Example 5 in Table 1) was used. In No. 3, a titanium alloy substrate having a Ti content of 65% by mass coated with a photocatalyst film having a thickness of 0.4 μm (Comparative Example 10 in Table 1) was used. In addition, Experiment No. In No. 4, a titanium alloy substrate having a Ti content of 90 mass% coated with a photocatalyst film having a thickness of 0.4 μm (Example 20 in Table 1) was used. In No. 5, a titanium alloy substrate having a Ti content of 95% by mass coated with a photocatalyst film having a thickness of 0.4 μm (Example 24 in Table 1) was used.
[0059]
In this experiment, ammonia (NH Four ) Was measured. That is, the moisture dewed by touching the photocatalyst coating material 12 of the deodorization tank 11 was discharged outside the deodorization tank 11 and collected. 100 mL of the collected water was put in a 1 liter container and allowed to stand for 30 minutes, and then the concentration of ammonia, which is a malodorous substance, in the container was measured. The total number of bacteria per 1 g of the collected water was measured by a plate dilution method. The results are shown in Table 5.
[0060]
In addition, as the deodorizing tank 11, a photocatalyst coating material (table) obtained by coating a 0.10 μm thick anodized film and a 0.5 μm thick photocatalyst film in this order on a titanium alloy substrate having a Ti content of 95% by mass. 2 using Comparative Example 27), and a titanium alloy substrate having a Ti content of 95% by mass, an anodized film having a thickness of 0.20 μm and a photocatalytic film having a thickness of 0.5 μm are coated in this order. Experiments were also conducted on the photocatalyst coating material (Comparative Example 29 in Table 2). However, both of these deodorization tanks were not suitable for practical use in terms of durability because the photocatalyst film was peeled off due to the presence of the anodic oxide film during the experiment.
[0061]
[Table 5]
Figure 0004689809
[0062]
As shown in Table 5, the ammonia concentration was measured according to Experiment No. 2 and Experiment No. In each comparative example of 3, although it was reduced to about 60% as compared with the case without the photocatalyst film (comparative example of experiment No. 1), about 15 to 16 ppm remained. In contrast, Experiment No. 4 and Experiment No. In each invention example of 5, it was able to reduce to 1 ppm or less. On the other hand, in the case where there is no photocatalytic film (comparative example of Experiment No. 1), bacteria are sterilized to some extent by ultraviolet irradiation, but the number is 10 Five [CFU / g] bacteria were left. In addition, Experiment No. 2 and Experiment No. In each comparative example of 3, the number of bacteria is 10 Four Although it decreased to [CFU / g], the bactericidal effect was not sufficient. In contrast, Experiment No. 4 and Experiment No. In each invention example of 5, the number of bacteria is 10 2 It decreased to [CFU / g] and an excellent bactericidal effect was obtained.
[0063]
In order to obtain a more excellent deodorizing effect, the photocatalyst coating material used in the deodorization tank 11 has a structure in which particles of an adsorbent having a bad odor adsorbing function such as activated carbon or zeolite are dispersed on the surface of the photocatalyst film, Thus, a composite of the photocatalyst and the adsorbent may be used.
[0064]
Further, in the above embodiment, the decomposition / removal of ammonia, which is a malodorous substance, has been described. However, the present invention is not limited to methyl mercaptan and hydrogen sulfide, which are other malodorous substances, and NO, which is an air pollutant. X Or SO X It is also effective for the decomposition and removal of
[0065]
[Example 71]: Here, the organic gas contamination prevention performance in a local space in a clean room was examined. FIG. 2 is an explanatory diagram showing the configuration of the air purification device according to the embodiment of the present invention. In FIG. 2, reference numeral 25 denotes a wafer storage box for storing a large number of silicon wafers 26 therein. In this example, the wafer storage box 25 is installed in a clean room of class 100000, and forms a local space in the clean room. A quartz glass window 24 through which ultraviolet rays pass is provided on the back surface of the wafer storage box 25, and the photocatalyst panel 21 is disposed in the wafer storage box 25 at a position close to the quartz glass window 24. The photocatalyst panel 21 is formed by sticking a photocatalyst coating material 22 on a rectangular panel substrate in this example. A fluorescent lamp type ultraviolet lamp 23 (using a germicidal lamp with a wavelength of 250 nm) is disposed outside the wafer storage box 25 with the quartz glass window 24 in between. Inside the wafer storage box 25, a sample stage 27 is disposed at a position opposite to the quartz glass window 24 with the photocatalyst panel 21 therebetween, and a silicon wafer 26 is placed on the sample stage 27. Yes. The ultraviolet lamp 23 irradiates ultraviolet light onto the surface of the photocatalyst coating material 22 through the quartz glass window 24, while fluidizing the air in the wafer storage box 25 due to a temperature difference caused by lamp heat. As indicated by arrows in FIG. 2, the air in the wafer storage box 25 can be circulated by the ultraviolet lamp 23 so as to contact the surface of the photocatalyst coating material 22.
[0066]
The air purification device 20 as a contaminant-containing material purification device using a photocatalyst is configured to apply ultraviolet light to the surface of the photocatalyst panel 21 as a photocatalyst portion configured using the photocatalyst coating material 22 and the photocatalyst coating material 22 constituting the photocatalyst panel 21. It comprises an ultraviolet lamp 23 and a quartz glass window 24 as an ultraviolet irradiation unit for irradiation. Here, the ultraviolet lamp 23 is a pollutant-containing substance introducing means for guiding a gas containing an organic gas as a pollutant to the photocatalyst panel 21 and bringing it into contact with the surface of the photocatalyst coating material 22 irradiated with ultraviolet rays. It also constitutes.
[0067]
Now, clean room air containing contaminants enters the wafer storage box 25 installed in the clean room due to the loading and unloading of the silicon wafer 26. In the wafer storage box 25 equipped with the air purification device 20 configured as described above, the degree of contamination by the organic gas on the surface of the silicon wafer 26 placed in the wafer storage box 25 was examined. Here, the organic gas is, for example, phthalic acid ester, aliphatic ester, toluene, or ethylbenzene. When these organic gases adhere to the surface of the silicon wafer 26, the surface of the silicon wafer 26 becomes hydrophobic, and there is a problem that the adhesion force of the film formed on the surface becomes weak.
[0068]
In this experiment, as shown in Table 6, as a photocatalyst coating material 22 used for the photocatalyst panel 21, an experiment No. In No. 6, a titanium alloy material having a Ti content of 95% by mass that does not cover the photocatalyst film is used. 7 used a base material made of plain steel S50C coated with a photocatalyst film having a thickness of 0.4 μm (Comparative Example 5 in Table 1). In No. 8, a titanium alloy base material having a Ti content of 65 mass% coated with a photocatalyst film having a thickness of 0.4 μm (Comparative Example 10 in Table 1) was used. In addition, Experiment No. In No. 9, a titanium alloy substrate having a Ti content of 90% by mass coated with a photocatalytic film having a thickness of 0.4 μm (Example 20 in Table 1) was used. In No. 10, a titanium alloy substrate having a Ti content of 95% by mass coated with a photocatalyst film having a thickness of 0.4 μm (Example 24 in Table 1) was used.
[0069]
In this experiment, the degree of contamination of the silicon wafer surface by the organic gas was evaluated by a water droplet contact angle method for measuring the contact angle of water wetting. When the organic gas adheres to the surface of the silicon wafer, as described above, the surface of the silicon wafer becomes hydrophobic and becomes difficult to wet with repelling water. Therefore, the higher the degree of contamination of the organic gas, the larger the contact angle. Conversely, the lower the degree of contamination, the smaller the contact angle. In the experiment, a cleaned silicon wafer is placed in the wafer storage box 25, the surface of the photocatalyst coating material 22 is irradiated with ultraviolet rays, and a predetermined number of silicon wafers taken out from the wafer storage box 25 are contacted after a predetermined storage time. This was done by measuring the corners. The irradiation amount of the photocatalyst coating material 22 by the ultraviolet lamp 23 is 50 mW / cm. 2 It is. The results are shown in Table 6.
[0070]
In addition, it experimented also about what used the photocatalyst coating material of the comparative example 27 of the said Table 2 and what used the photocatalyst coating material of the comparative example 29 of the said Table 2 as the photocatalyst panel 21. However, both of these photocatalyst panels were not suitable for practical use in terms of durability because the photocatalyst film was peeled off during the experiment.
[0071]
[Table 6]
Figure 0004689809
[0072]
As shown in Table 6, when there is no photocatalyst film (Comparative Example of Experiment No. 6), the contact angle increases because the contamination by the organic gas proceeds as the storage time becomes longer, and the storage time becomes 30 hours. When it exceeded, the tendency for a contact angle to settle to about 24 degrees was seen. Experiment No. 7 and Experiment No. In each comparative example of 8, the contact angle was 20 ° or less even when the storage time was 50 hours, but the organic gas contamination prevention effect on the silicon wafer was not sufficient. In contrast, Experiment No. 9 and Experiment No. In each of the ten invention examples, the contact angle did not increase at all with the initial value of 5 °, and an excellent organic gas contamination preventing effect was obtained.
[0073]
In the above embodiment, the gas purification in the local space in the clean room has been described. However, the present invention can also be applied to the gas purification in the clean room.
[0074]
[Example 72]: Here, the decomposition / removal performance of ammonia dissolved in the breeding water was examined. FIG. 3 is an explanatory diagram showing the configuration of the water purification apparatus according to one embodiment of the present invention. In FIG. 3, reference numeral 37 denotes a box-shaped appreciation fish breeding aquarium with an open top. A box-shaped photocatalytic filter tank 31 having an open upper surface is disposed on the appreciation fish breeding water tank 37 via a support plate (not shown). In the photocatalyst filter tank 31, a photocatalyst coating material 32 having a network structure described later is accommodated. 35 is a treated water introduction pipe, 34 is a water supply pump provided in the middle of the treated water introduction pipe 35, and the breeding water in the appreciation fish breeding aquarium 37 sucked into the water feed pump 34 passes through the treated water introduction pipe 35. And introduced into the photocatalytic filter tank 31. The breeding water introduced into the photocatalyst filter tank 31 passes through the mesh gap while contacting the photocatalyst coating material 32 having a mesh structure, which will be described later, and then returns to the appreciation fish breeding tank 37 through the treated water discharge pipe 36. It has become. Above the photocatalytic filter tank 31, a fluorescent lamp type ultraviolet lamp 33 (using a germicidal lamp with a wavelength of 250 nm) is arranged.
[0075]
The photocatalyst coating material 32 having a mesh structure is formed by stacking 10 network photocatalyst coating materials formed in a net shape of outer dimensions: width 320 mm × length 115 mm × thickness 0.1 mm and mesh size: 1 mm × 1 mm. is there. This network-structured photocatalyst coating material 32 is housed in a photocatalyst filter tank 31 having outer dimensions of width 320 mm × length 115 mm × height 100 mm.
[0076]
A water purification device 30 as a contaminant-containing material purification device using a photocatalyst includes a photocatalyst filter tank 31 as a photocatalyst portion configured using a photocatalyst coating material 32 having a mesh structure, and the mesh structure constituting the photocatalyst filter tank 31. A photocatalyst coating having a mesh structure in which ultraviolet lamp 33 as an ultraviolet irradiation unit for irradiating the surface of photocatalyst coating material 32 with ultraviolet rays and breeding water containing ammonia harmful to fish is guided to photocatalyst filter tank 31 and irradiated with ultraviolet rays. A water supply pump 34 as a contaminant-containing material introduction means for contacting the surface of the material 32, a treated water introduction pipe 35, and a treated water discharge pipe 36 are configured.
[0077]
In this experiment, as shown in Table 7, as a photocatalyst coating material 32 having a network structure, Experiment No. No. 11 uses a titanium alloy material having a Ti content of 95% by mass that does not cover the photocatalyst film and is formed in a net shape. In No. 12, a substrate made of plain steel S50C was formed in a net shape, and this was coated with a 0.4 μm thick photocatalyst film (Comparative Example 5 in Table 1 formed in a net shape). Experiment No. In No. 13, a titanium alloy base material having a Ti content of 65% by mass was formed in a net shape, and a photocatalytic film having a thickness of 0.4 μm was coated thereon (the comparative example 10 in Table 1 was formed in a net shape). In addition, Experiment No. In No. 14, a titanium alloy base material having a Ti content of 90% by mass was formed in a net shape, and this was coated with a photocatalytic film having a thickness of 0.4 μm (Example 20 in Table 1 formed in a net shape). Experiment No. In No. 15, a titanium alloy base material having a Ti content of 95% by mass was formed in a net shape, and this was coated with a photocatalytic film having a thickness of 0.4 μm (Example 24 in Table 1 formed in a net shape).
[0078]
In this experiment, an ultraviolet lamp 33 is disposed at a position 50 mm higher than the water surface of the photocatalytic filter tank 31 when the water pump 34 is operated, and the intensity of the ultraviolet lamp 33 on the water surface is 10 mW / cm. 2 It was made to become. Then, 20 goldfishes were bred in the appreciation fish breeding aquarium 37, and the concentration of ammonia in the breeding water produced by excretion of the goldfish was measured while circulating the breeding water through the photocatalytic filter tank 31 by the water pump 34. The results are shown in Table 7.
[0079]
In addition, as the photocatalyst coating material 32 having a network structure, the photocatalyst coating material of Comparative Example 27 in Table 2 was formed into a net shape, and the photocatalyst coating material of Comparative Example 29 in Table 2 was formed into a net shape. Experiments were also carried out on those formed and used. However, both of these photocatalyst coating materials having a network structure were not suitable for practical use in terms of durability because the photocatalyst film was peeled off during the experiment.
[0080]
[Table 7]
Figure 0004689809
[0081]
As shown in Table 7, when there was no photocatalyst film (Comparative Example of Experiment No. 11), the ammonia concentration increased with the lapse of time up to 2 weeks and gradually decreased after exceeding 3 weeks. The reason for this decrease is thought to be that microorganisms grown in the appreciation fish breeding aquarium 37 contribute to the purification of the breeding water. Experiment No. 12 and Experiment No. In each of the 13 comparative examples, although the decomposition / removal effect of ammonia was recognized, it was not sufficient. In contrast, Experiment No. 14 and Experiment No. In each of the 15 invention examples, the ammonia concentration did not increase at all at the initial value of 0 ppm, and ammonia could be effectively decomposed and removed.
[0082]
In the above embodiment, the decomposition and removal of ammonia, which is a water pollutant, has been described. However, the present invention can also decompose and remove microorganisms such as algae, dead bodies of plankton, and dioxin as other water pollutants. It is valid.
[0083]
Example 73 Here, the decomposition / removal performance of trichlorethylene, which is a volatile pollutant, was examined. FIG. 4 is an explanatory diagram showing the configuration of the volatile contaminant removing apparatus according to one embodiment of the present invention. In FIG. 4, 46 is a stripping tank. The stripping tank 46 is supplied with treated water containing trichlorethylene, which is a volatile pollutant, through a treated water supply pipe 46b connected near the bottom of the stripping tank 46, while compressed air is supplied through a compressed air blowing pipe 46a. Is configured to be blown into the treated water. The stripping tank 46 is for transferring (extracting) trichlorethylene contained in the treated water into the air by performing deaeration by air bubbling. A reactor 41 is provided outside the stripping tank 46. A photocatalyst coating material 42 is attached to the inner peripheral surface of the reactor 41 having a rectangular cross section and a square shape over the entire circumference. Further, inside the reactor 41, a fluorescent lamp type ultraviolet lamp 43 (using a germicidal lamp with a wavelength of 250 nm) extending along the reactor central axis is disposed. A processing gas introduction pipe 45 communicates the stripping tank 46 and the reactor 41 and guides the air containing trichlorethylene from the stripping tank 46 to the reactor 41. A suction fan 44 is provided in the middle of the processing gas introduction pipe 45. In addition, piping connected to the next process is connected to the downstream surface of the reactor 41.
[0084]
A volatile pollutant removing device 40 as a pollutant containing material purifying device using a photocatalyst includes a reactor 41 as a photocatalyst unit configured using the photocatalyst coating material 42, and ultraviolet light on the surface of the photocatalyst coating material 42 constituting the reactor 41. Containing contaminants for guiding the ultraviolet lamp 43 as an ultraviolet irradiating unit for irradiating light and air containing trichlorethylene, which is a volatile contaminant, to the reactor 41 and bringing it into contact with the surface of the photocatalyst coating 42 irradiated with ultraviolet rays A stripping tank 46, a processing gas introduction pipe 45, and a suction fan 44 are introduced as introduction means.
[0085]
In this experiment, as shown in Table 8, as a photocatalyst coating material 42 used for the reactor 41, the experiment No. No. 16 uses a titanium alloy material having a Ti content of 95% by mass that does not cover the photocatalyst film. In No. 17, a substrate made of plain steel S50C and coated with a photocatalyst film having a thickness of 0.4 μm (Comparative Example 5 in Table 1) was used. In No. 18, a titanium alloy substrate having a Ti content of 65 mass% coated with a photocatalyst film having a thickness of 0.4 μm (Comparative Example 10 in Table 1) was used. In addition, Experiment No. In No. 19, a titanium alloy substrate having a Ti content of 90% by mass coated with a photocatalytic film having a thickness of 0.4 μm (Example 20 in Table 1) was used. In No. 20, a titanium alloy substrate having a Ti content of 95% by mass coated with a photocatalyst film having a thickness of 0.4 μm (Example 24 in Table 1) was used.
[0086]
In this experiment, treated water containing trichlorethylene at a concentration of 100 ppm is fed into the stripping tank 46, and deaeration is performed by air bubbling in the stripping tank 46 to obtain air containing trichlorethylene transferred into the air. The air containing trichlorethylene was led to the reactor 41. The irradiation amount of the photocatalyst coating material 42 by the ultraviolet lamp 43 is 10 mW / cm. 2 It is. Then, the trichlorethylene concentration in air (initial concentration) in the stripping tank 46 and the trichlorethylene concentration in air (concentration after treatment) at the downstream outlet of the reactor 41 were measured. The results are shown in Table 8. The trichlorethylene concentration of the treated water deaerated from the drain pipe 46c of the stripping tank 46 was measured according to Experiment No. 16-No. In all cases, the value was reduced to 10 ppm.
[0087]
As for the photocatalyst coating material of Comparative Example 27 in Table 2, the photocatalyst film of Comparative Example 29 in Table 2 was peeled off at the stage of being attached to the reactor, and in terms of durability. It was not suitable for practical use.
[0088]
[Table 8]
Figure 0004689809
[0089]
As shown in Table 8, when there was no photocatalyst film (Comparative Example of Experiment No. 16), both the initial concentration and the concentration after treatment were 10 ppm, and the effect of decomposing / removing trichlorethylene was not recognized. Experiment No. 17 and Experiment No. In each of the 18 comparative examples, the concentration after treatment decreased from the initial concentration to 8 to 7 ppm, and although the decomposition and removal effect of trichlorethylene was observed, it was not sufficient. In contrast, Experiment No. 19 and Experiment No. In each of the 20 inventive examples, the concentration after treatment was reduced to 2 to 1 ppm, and trichlorethylene could be effectively decomposed and removed.
[0090]
【The invention's effect】
As described above, according to the present invention, a thin film of a titanium oxide crystal is formed as a photocatalytic film on a titanium-based alloy substrate, and a photocatalytic coating material excellent in both photocatalytic properties and durability is provided. be able to. In addition, according to the present invention, the method for purifying contaminants with a photocatalyst that is suitable for practical use in terms of durability without causing peeling of the photocatalyst film, and that can effectively decompose and remove contaminants, And a pollutant-containing material purification apparatus using a photocatalyst can be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of a deodorizing apparatus according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a configuration of an air purification device according to an embodiment of the present invention.
FIG. 3 is an explanatory diagram showing a configuration of a water purification device according to an embodiment of the present invention.
FIG. 4 is an explanatory diagram showing a configuration of a volatile contaminant removing apparatus according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Deodorizing apparatus 11 ... Deodorizing tank 12 ... Photocatalyst coating material 13 ... Ultraviolet lamp
DESCRIPTION OF SYMBOLS 14 ... Suction fan 15 ... Processing gas introduction pipe 16 ... Processing gas discharge pipe 17 ... Garbage disposal tank 20 ... Air purification device 21 ... Photocatalyst panel 22 ... Photocatalyst coating material 23 ... Ultraviolet lamp 24 ... Quartz glass window 25 ... Wafer storage box DESCRIPTION OF SYMBOLS 26 ... Silicon wafer 27 ... Sample stand 30 ... Water purification apparatus 31 ... Photocatalyst filter tank 32 ... Photocatalyst coating material 33 ... Ultraviolet lamp 34 ... Water supply pump 35 ... Treated water introduction pipe 36 ... Treated water discharge pipe 37 ... Appreciation fish breeding tank 40 ... Volatile pollutant removal device 41 ... Reactor 42 ... Photocatalyst coating material 43 ... UV lamp 44 ... Suction fan
45 ... Processing gas introduction pipe 46 ... Stripping tank

Claims (8)

チタン基合金基材上に、アナターゼ型及び/又はルチル型の酸化チタン結晶を90体積%以上含有する光触媒膜が形成されてなる光触媒被覆材であって、前記チタン基合金基材のチタン含有量が70質量%以上であり、前記光触媒膜の厚みが0.1μm以上であり、前記チタン基合金基材と前記光触媒膜の間に存在し、酸化チタン結晶、チタン基合金結晶とも異なる不可避的薄膜の厚みが0.05μm以下であることを特徴とする光触媒被覆材。A photocatalyst coating material in which a photocatalyst film containing 90% by volume or more of anatase type and / or rutile type titanium oxide crystals is formed on a titanium base alloy base material, and the titanium content of the titanium base alloy base material 70 mass% or more, the thickness of the photocatalyst film is 0.1 μm or more, is present between the titanium-based alloy base material and the photocatalyst film, and is inevitable from the titanium oxide crystal and the titanium-based alloy crystal. The photocatalyst coating material is characterized by having a thickness of 0.05 μm or less. 前記光触媒膜中の全酸化チタン結晶に対するアナターゼ型酸化チタン結晶の体積比が80%以上である請求項1記載の光触媒被覆材。The photocatalyst coating material according to claim 1, wherein the volume ratio of anatase-type titanium oxide crystals to all titanium oxide crystals in the photocatalyst film is 80% or more. チタン含有量が70質量%以上であるチタン基合金からなる基材をその表面酸化膜を除去すべく酸洗処理し、しかる後、表面に形成される、酸化チタン結晶、チタン基合金結晶とも異なる不可避的薄膜の膜厚が0.05μm以下である該チタン基合金基材にチタン化合物を塗布し、このものを酸素含有雰囲気下で温度400℃以上で焼成し、この塗布・焼成を1回、あるいは2回以上繰り返し行うことにより、当該チタン基合金基材上に酸化チタン結晶を90体積%以上含有し厚みが0.1μm以上の光触媒膜を形成することを特徴とする光触媒被覆材の製造方法。A substrate made of a titanium-based alloy having a titanium content of 70% by mass or more is pickled to remove the surface oxide film, and then different from the titanium oxide crystal and the titanium-based alloy crystal formed on the surface. A titanium compound is applied to the titanium-based alloy base material having an inevitable film thickness of 0.05 μm or less , and this is baked at a temperature of 400 ° C. or higher in an oxygen-containing atmosphere. Alternatively by repeating twice or more, the production method of the photocatalytic coating material, characterized in that the thickness containing the titanium base alloy onto a substrate of titanium oxide crystals least 90% by volume to form a more photocatalyst film 0.1μm . 請求項1又は2記載の光触媒被覆材の表面に、紫外線を照射するとともに汚染物質を含有する気体又は液体を接触させることにより、前記汚染物質を分解・除去することを特徴とする光触媒による汚染物質含有物浄化方法。3. A photocatalyst-contaminated contaminant, wherein the contaminant is decomposed and removed by irradiating the surface of the photocatalyst coating material according to claim 1 or 2 with ultraviolet rays and contacting a gas or liquid containing the contaminant. Containment purification method. 請求項1又は2記載の光触媒被覆材を用いて構成された光触媒部と、該光触媒部を構成する前記光触媒被覆材の表面に紫外線を照射する紫外線照射部と、汚染物質を含有する気体又は液体を前記光触媒部に導き、前記紫外線が照射されている前記光触媒被覆材の表面に接触させるための汚染物質含有物導入手段とを備えていることを特徴とする光触媒による汚染物質含有物浄化装置。A photocatalyst part configured using the photocatalyst coating material according to claim 1, an ultraviolet irradiation part for irradiating ultraviolet light onto the surface of the photocatalyst coating material constituting the photocatalyst part, and a gas or liquid containing a contaminant A contaminant-containing material purification apparatus using a photocatalyst, comprising: a contaminant-containing material introduction means for guiding the catalyst to the photocatalyst portion and bringing it into contact with the surface of the photocatalyst coating material irradiated with the ultraviolet rays. 前記汚染物質が悪臭物質であり、生ゴミ処理に用いられるものであることを特徴とする請求項5記載の光触媒による汚染物質含有物浄化装置。6. The contaminant-containing material purification apparatus using a photocatalyst according to claim 5, wherein the contaminant is a malodorous substance and is used for garbage disposal. 前記汚染物質が有機性ガスであり、クリーンルーム又はクリーンルーム内の局所空間の気体浄化に用いられるものであることを特徴とする請求項5記載の光触媒による汚染物質含有物浄化装置。6. The contaminant-containing material purification apparatus using a photocatalyst according to claim 5, wherein the contaminant is an organic gas and is used for gas purification in a clean room or a local space in a clean room. 前記汚染物質が揮発性汚染物質であり、前記汚染物質含有物導入手段が、液体中に含まれる揮発性汚染物質を気体中に移行させ、この移行させた揮発性汚染物質を含む気体を前記紫外線が照射されている前記光触媒被覆材の表面に導き接触させるように構成されてなることを特徴とする請求項5記載の光触媒による汚染物質含有物浄化装置。The pollutant is a volatile pollutant, and the pollutant-containing material introducing means transfers the volatile pollutant contained in the liquid into the gas, and the gas containing the transferred volatile pollutant is transferred to the ultraviolet ray. 6. The apparatus for purifying contaminant-containing substances using a photocatalyst according to claim 5, wherein the apparatus is configured to guide and contact the surface of the photocatalyst coating material that has been irradiated.
JP2000305917A 1999-10-21 2000-10-05 Photocatalyst coating material, method for producing the same, pollutant-containing material purification method and contaminant-containing material purification device using the photocatalyst coating material Expired - Fee Related JP4689809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000305917A JP4689809B2 (en) 1999-10-21 2000-10-05 Photocatalyst coating material, method for producing the same, pollutant-containing material purification method and contaminant-containing material purification device using the photocatalyst coating material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1999299978 1999-10-21
JP11-299978 1999-10-21
JP29997899 1999-10-21
JP2000305917A JP4689809B2 (en) 1999-10-21 2000-10-05 Photocatalyst coating material, method for producing the same, pollutant-containing material purification method and contaminant-containing material purification device using the photocatalyst coating material

Publications (2)

Publication Number Publication Date
JP2001187346A JP2001187346A (en) 2001-07-10
JP4689809B2 true JP4689809B2 (en) 2011-05-25

Family

ID=26562162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000305917A Expired - Fee Related JP4689809B2 (en) 1999-10-21 2000-10-05 Photocatalyst coating material, method for producing the same, pollutant-containing material purification method and contaminant-containing material purification device using the photocatalyst coating material

Country Status (1)

Country Link
JP (1) JP4689809B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055821A (en) * 2004-08-24 2006-03-02 Osada Giken Co Ltd Method and apparatus for treating gas from waste water tank
JP2006082287A (en) * 2004-09-14 2006-03-30 Fuji Xerox Co Ltd Inkjet recorder
JP4923435B2 (en) * 2005-04-25 2012-04-25 岩崎電気株式会社 Hazardous substance treatment equipment
JP4986174B2 (en) * 2008-10-30 2012-07-25 独立行政法人産業技術総合研究所 Reaction tube for microreactor and manufacturing method thereof
JP5697075B2 (en) * 2010-08-05 2015-04-08 公益財団法人神奈川科学技術アカデミー Air cleaner
JP6160584B2 (en) * 2014-09-19 2017-07-12 トヨタ自動車株式会社 Manufacturing method of fuel cell separator
JP6160877B2 (en) 2015-04-13 2017-07-12 トヨタ自動車株式会社 Manufacturing method of fuel cell separator and fuel cell separator
KR101872291B1 (en) * 2016-05-24 2018-07-02 순천대학교 산학협력단 The way of production Photocatalytic filter which use of Titanium scrap

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06205977A (en) * 1992-09-01 1994-07-26 Toto Ltd Production of photocatalystic composition and photocatalystic composition
JPH08246192A (en) * 1995-03-03 1996-09-24 Kobe Steel Ltd Oxidation-treated titanium or titanium-based alloy material having photocatalytic activity and its production
JPH10121266A (en) * 1996-08-22 1998-05-12 Takenaka Komuten Co Ltd Metallic material having photocatalytic activity and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06205977A (en) * 1992-09-01 1994-07-26 Toto Ltd Production of photocatalystic composition and photocatalystic composition
JPH08246192A (en) * 1995-03-03 1996-09-24 Kobe Steel Ltd Oxidation-treated titanium or titanium-based alloy material having photocatalytic activity and its production
JPH10121266A (en) * 1996-08-22 1998-05-12 Takenaka Komuten Co Ltd Metallic material having photocatalytic activity and its production

Also Published As

Publication number Publication date
JP2001187346A (en) 2001-07-10

Similar Documents

Publication Publication Date Title
Abidi et al. Photocatalytic indoor/outdoor air treatment and bacterial inactivation on CuxO/TiO2 prepared by HiPIMS on polyester cloth under low intensity visible light
JP2636158B2 (en) Titanium oxide porous thin film photocatalyst and method for producing the same
US6180548B1 (en) Environment-purifying material and its manufacturing method
JP2775399B2 (en) Porous photocatalyst and method for producing the same
KR100687560B1 (en) Cleaning agent and cleaning method
KR100518956B1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
JP2517874B2 (en) Method for producing titanium oxide thin film photocatalyst
JP2600103B2 (en) Photocatalytic filter and method for producing the same
KR102184694B1 (en) Air Cleaning Filter Using Visible Light Excitation Photocatalyst and Manufacturing Method Thereof
JP4689809B2 (en) Photocatalyst coating material, method for producing the same, pollutant-containing material purification method and contaminant-containing material purification device using the photocatalyst coating material
WO2017192057A1 (en) Modified porous coatings and a modular device for air treatment containing modified porous coatings.
JP2001300326A (en) Coating material for photocatalyst film, method of manufacturing the coating material, and cleaning method and cleaning device using the coating material
CN1872405A (en) Active carbon of carrying catalyst in titanium series and preparation method
JP2000287544A (en) Controlling agent for tree and controlling of tree
JP3567693B2 (en) Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances
US7638555B2 (en) Photocatalytic nano-crystalline TiO2 thin films, method for preparing the same and use thereof
KR100367522B1 (en) Photocatalyst coating material, production thereof, and method and apparatus for removing pollutant using thereof
JP2001232206A (en) Porous photocatalyst and method of manufacturing the same
JP4692987B2 (en) Antiseptic equipment
JP4534144B2 (en) Purification device
JP4587302B2 (en) Antibacterial products for doctors
Farah et al. Synthesis of CuO-TiO2 nano-composite for Escherichia coli disinfection and toluene degradation
JP5041392B2 (en) Oil treatment equipment
JP2010029859A (en) Purification device
JP2006263497A (en) Water treatment method and apparatus using photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees