JPH061027B2 - Electric control unit for vehicle door opening and closing system - Google Patents

Electric control unit for vehicle door opening and closing system

Info

Publication number
JPH061027B2
JPH061027B2 JP60130492A JP13049285A JPH061027B2 JP H061027 B2 JPH061027 B2 JP H061027B2 JP 60130492 A JP60130492 A JP 60130492A JP 13049285 A JP13049285 A JP 13049285A JP H061027 B2 JPH061027 B2 JP H061027B2
Authority
JP
Japan
Prior art keywords
signal
door
load
time
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60130492A
Other languages
Japanese (ja)
Other versions
JPS61290182A (en
Inventor
真一 内藤
利夫 安井
克己 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arako KK
Original Assignee
Arako KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arako KK filed Critical Arako KK
Priority to JP60130492A priority Critical patent/JPH061027B2/en
Publication of JPS61290182A publication Critical patent/JPS61290182A/en
Publication of JPH061027B2 publication Critical patent/JPH061027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Power-Operated Mechanisms For Wings (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両用扉開閉システムに係り、特にワゴン
車、バス等の車両の乗降口にこの乗降口に沿って横方向
へ開閉可能に設けた扉を回転電動機により開閉制御する
に適した車両用扉開閉システムのための電気制御装置に
関する。
Description: TECHNICAL FIELD The present invention relates to a vehicle door opening / closing system, and more particularly, to an opening / closing opening of a vehicle such as a wagon or a bus, which can be opened / closed laterally along the opening / closing opening. The present invention relates to an electric control device for a vehicle door opening / closing system suitable for opening / closing control of a provided door by a rotary electric motor.

〔従来技術〕[Prior art]

従来、この種の車両用扉開閉システムのための電気制御
装置においては、例えば、特開昭58−69980号公
報に開示されているように、回転電動機に抵抗を直列接
続して、前記回転電動機の回転速度が所定回転速度より
低下する毎に一定時間だけ前記抵抗を短絡して回転電動
機に対する給電電圧を前記抵抗短絡分だけ増加させるよ
うにしたものがある。
Conventionally, in an electric control device for a vehicle door opening / closing system of this type, a resistance is serially connected to a rotary electric motor as disclosed in Japanese Patent Laid-Open No. 58-69980, and the rotary electric motor is used. There is a method in which the resistor is short-circuited for a certain period of time every time the rotation speed becomes lower than a predetermined rotation speed, and the power supply voltage to the rotary motor is increased by the resistance short circuit.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、このような構成においては、車両の停止
路面の傾斜角の有無に関係なく、前記抵抗の各短絡時間
が上述のごとく常に一定時間に限られてしまうため、車
両が傾斜路面に停止しているとき扉の開成過程(又は閉
成過程)において同扉の自重が回転電動機の負荷を増大
させるような状態では前記抵抗の各短絡時間の長さが前
記傾斜路面の傾斜角によっては不足して回転電動機の出
力が十分に出ず、扉の開成時間(或いは閉成時間)が長
くなってしまうという問題がある。
However, in such a configuration, the short-circuit time of each of the resistors is always limited to the fixed time as described above regardless of the presence or absence of the inclination angle of the stopped road surface of the vehicle, so that the vehicle stops on the inclined road surface. If the door's own weight increases the load on the rotary motor during the door opening process (or closing process), the length of each short circuit time of the resistance is insufficient depending on the inclination angle of the inclined road surface. There is a problem that the output of the rotary motor is not sufficient and the opening time (or closing time) of the door becomes long.

そこで、本発明は、このような問題に対処すべく、車両
用扉開閉システムのための電気制御装置において、回転
電動機への給電電圧を抵抗の短絡により増大させるにあ
たり、前記抵抗の短絡時間を車両の停止路面の傾斜角に
応じて変化させるようにしようとするものである。
Therefore, in order to address such a problem, the present invention relates to an electric control device for a vehicle door opening / closing system, in which the short circuit time of the resistor is increased when the power supply voltage to the rotary motor is increased by the short circuit of the resistor. It is intended to change the stop angle according to the inclination angle of the road surface.

〔問題点を解決するための手段〕[Means for solving problems]

車両の乗降口にこの乗降口に沿い横方向へ開閉可能に配
設した扉を一方向回転(又は他方向回転)により開く
(又は閉じる)回転電動機を備えた扉開閉システムに適
用され、前記扉を開く(又は閉じる)とき操作されて第
1(又は第2)の操作信号を生じる操作手段と、前記第
1(又は第2)の操作信号に応答して第1(又は第2)
の駆動状態となり前記回転電動機を一方向回転(又は他
方向回転)させるように抵抗を介する電源から前記回転
電動機への給電を許容する駆動手段と、前記回転電動機
の負荷状態を検出し負荷検出信号として発生する負荷検
出手段と、前記負荷検出信号の値が所定負荷値より大き
い毎に所定信号幅にて負荷判断信号を生じる負荷判断手
段と、前記負荷判断信号が生じる毎にこの信号に応答し
て前記抵抗を短絡する短絡手段とを備えた電気制御装置
において、前記負荷判断信号が生じる毎にこの信号に応
答してこの信号の発生後の経過時間について積分し積分
信号を生じる積分手段と、前記負荷判断信号が生じる毎
にこの信号に応答して出力信号を発生し、前記積分信号
のレベルがホールド信号のレベルに達したとき前記出力
信号を消滅させる信号発生手段と、前記出力信号の消滅
に応答して所定レベルから経時的に緩低下してレベル低
下信号を生じるレベル低下手段と、前記負荷判断信号が
生じる毎にこの信号に応答して前記レベル低下信号のレ
ベルを前記ホールド信号としてホールドするホールド手
段とを設けて、前記短絡手段が前記出力信号に応答して
この信号の発生毎にこの信号の発生中前記抵抗を短絡す
るようにし、扉の開成時間(又は閉成時間)を路面の傾
斜角に係わりなくほぼ一定にしたことにある。
The present invention is applied to a door opening / closing system equipped with a rotary electric motor that opens (or closes) a door that is opened and closed laterally along the entrance and exit of a vehicle by rotating in one direction (or rotating in the other direction). An operating means that is operated when opening (or closing) the first (or second) operation signal, and a first (or second) operation signal in response to the first (or second) operation signal.
Drive means for permitting power supply to the rotary motor from a power source through a resistor so that the rotary motor is driven in one direction (or the other direction), and a load detection signal for detecting the load state of the rotary motor. Generated by the load detection means, a load determination means that generates a load determination signal with a predetermined signal width each time the value of the load detection signal is greater than a predetermined load value, and a response to this signal when the load determination signal occurs. In an electric control device comprising a short circuit means for short-circuiting the resistor, an integrating means which responds to this signal every time the load determination signal occurs and integrates the elapsed time after the generation of this signal to generate an integrated signal, An output signal is generated in response to each of the load determination signals, and the output signal is extinguished when the level of the integrated signal reaches the level of the hold signal. Signal generating means, level lowering means for gradually lowering a predetermined level in response to disappearance of the output signal to generate a level lowering signal, and each time the load judgment signal occurs, the level lowering means in response to this signal Hold means for holding the level of the lowered signal as the hold signal is provided, and the short-circuit means short-circuits the resistor during generation of this signal in response to the output signal in response to the output signal. The opening time (or closing time) is made almost constant regardless of the inclination angle of the road surface.

〔作用効果〕[Action effect]

しかして、このように本発明を構成したことにより、扉
の開成過程(又は閉成過程)にて扉の自重が回転電動機
の負荷を増大させる方向に作用するように当該車両を傾
斜路面上に停止させても、扉の回転電動機の回転に基く
開成過程(又は閉成過程)において、前記負荷判断手段
が前記負荷検出手段との協働により負荷判断信号を生じ
る毎に前記積分手段が積分信号を生じるとともに前記信
号発生手段が出力信号を発生しこの出力信号を前記積分
信号のレベルの前記ホールド信号のレベルへの到達時に
消滅させ、これに応答して前記レベル低下手段がそのレ
ベル低下信号のレベルを緩低下させ、然る後前記負荷判
断手段から負荷判断信号が生じたとき前記ホールド手段
が前記ホールド信号を発生する。
By configuring the present invention as described above, the vehicle is placed on the sloped road surface so that the weight of the door acts in the direction of increasing the load of the rotary motor during the opening process (or closing process) of the door. Even if it is stopped, in the opening process (or closing process) based on the rotation of the rotary electric motor of the door, the integrating means causes the integral signal to be generated every time the load determining means cooperates with the load detecting means to generate a load determining signal. And the signal generating means generates an output signal and extinguishes the output signal when the level of the integrated signal reaches the level of the hold signal, and in response to this, the level reducing means outputs the level reduced signal The level is gradually lowered, and when the load determination signal is subsequently generated from the load determination means, the hold means generates the hold signal.

換言すれば、前記レベル低下信号のレベル低下時間が前
記出力信号の消滅時期と前記負荷判断信号の発生時期と
により決定され、かつ前記ホールド信号のホールド時期
が、前記傾斜路面の傾斜角の大小、即ち前記ホールド信
号のレベルの高低との関連にて前記レベル低下時間に反
比例して変化する。従って、前記傾斜角が大きい程(即
ち、前記出力信号の発生時間が長い程)前記短絡手段に
よる前記抵抗に対する短絡時間が長くなり、回転電動機
の円滑な回転のもとに扉の開成時間(又は閉成時間)を
前記傾斜角の大小にかかわりなく常にほぼ一定にし得
る。
In other words, the level decrease time of the level decrease signal is determined by the extinction time of the output signal and the generation time of the load determination signal, and the hold time of the hold signal is the magnitude of the inclination angle of the inclined road surface, That is, it changes in inverse proportion to the level decrease time in relation to the level of the hold signal. Therefore, the larger the inclination angle is (that is, the longer the generation time of the output signal is), the longer the short-circuit time for the resistance by the short-circuiting means is, and the opening time of the door (or The closing time) can always be made almost constant regardless of the magnitude of the inclination angle.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面により説明すると、第1
図及び第2図は、バス用扉10の開閉機構20に本発明
に係る電気制御装置が適用された例を示しており、扉1
0は、当該バスの側壁に設けた乗降口にこの乗降口に沿
って前後方向へ開閉可能に配設されている。開閉機構2
0は、当該バス内にてその床面の一部に垂設した段付駆
動軸21を備えており、この駆動軸21は、当該バスの
内壁の一部から水平状に延出する支持アーム22と前記
床面の一部との間にて水平方向に回転可能に軸支されて
いる。駆動軸21の大径部から水平状に延出する上下一
対の連結アーム21a,21aは各先端にて扉10の内
壁部分にこの内壁部分に対し水平方向に相対的に回動可
能に連結されており、これによって、駆動軸21が第2
図にて反時計方向に回転したとき扉10が、駆動軸21
の回転に伴う連結アーム21a,21aの作用により当
該バスの後方(第2図にて図示左方)へ向けて開き、か
かる状態にて駆動軸21が時計方向へ回転すると扉10
が連結アーム21a,21aの作用により当該バスの前
方(第2図にて図示右方)へ向けて閉じる。また、開閉
機構20は、駆動軸21の大径部下端に軸支した大径の
平歯車23と、この平歯車23に噛合する小径の平歯車
24を備えており、平歯車24は、当該バスの床面上に
装着した直流モータMの出力軸に一体的に軸支されてい
る。なお、扉10は、その全開時(又は全閉時)に、前
記乗降口の周縁部分に設けた全開ロック機構(又は全閉
ロック機構)との係脱可能な係合により全開状態(又は
全閉状態)に維持される。また、直流モータMの正転
(又は逆転)は扉10の開成(又は閉成)に対応する。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 2 and FIG. 2 show an example in which the electric control device according to the present invention is applied to the opening / closing mechanism 20 of the bus door 10.
No. 0 is arranged at an entrance / exit provided on the side wall of the bus so as to be openable / closable in the front-rear direction along the entrance / exit. Opening / closing mechanism 2
No. 0 is provided with a stepped drive shaft 21 suspended from a part of the floor in the bus. The drive shaft 21 extends horizontally from a part of the inner wall of the bus. A shaft is rotatably supported horizontally between 22 and a part of the floor surface. A pair of upper and lower connecting arms 21a, 21a extending horizontally from the large-diameter portion of the drive shaft 21 are connected to the inner wall portion of the door 10 at their tips so as to be rotatable relative to the inner wall portion in the horizontal direction. The drive shaft 21 has a second
When the door 10 rotates counterclockwise in the figure, the door 10
When the drive shaft 21 rotates clockwise in this state, the door 10 is opened by the action of the connecting arms 21a, 21a accompanying the rotation of the bus.
Is closed toward the front of the bus (rightward in FIG. 2) by the action of the connecting arms 21a, 21a. Further, the opening / closing mechanism 20 includes a large-diameter spur gear 23 pivotally supported on the lower end of the large-diameter portion of the drive shaft 21, and a small-diameter spur gear 24 that meshes with the spur gear 23. It is integrally supported by the output shaft of a DC motor M mounted on the floor of the bus. When the door 10 is fully opened (or fully closed), the door 10 is in a fully opened state (or fully opened) due to engagement / disengagement with a fully opened lock mechanism (or fully closed lock mechanism) provided at a peripheral portion of the entrance / exit. Closed). Further, the forward rotation (or reverse rotation) of the DC motor M corresponds to the opening (or closing) of the door 10.

電気制御装置は、第1図に示すごとく、操作スイッチ3
0と、全開検出スイッチ40aと、全閉検出スイッチ4
0bと、補助検出スイッチ40cと、操作スイッチ30
に接続したリレー50,60,70を有しており、操作
スイッチ30は、当該バスの運転席近傍に配置されて、
同バスのイグニッションスイッチIGを介し直流電源B
の正側端子に接続した双投接点31と、一対の固定接点
32,33を備えている。しかして、操作スイッチ30
は、双投接点31の固定接点32との接続に応答して、
扉10を開くに必要な第1操作信号をハイレベルにて発
生し、双投接点31の固定接点33との接続に応答し
て、扉10を閉じるに必要な第2操作信号をハイレベル
にて発生し、かつ双投接点31の両固定接点32,33
からの遮断状態、即ち中立状態のとき第1及び第2の操
作信号の発生を停止する。
As shown in FIG. 1, the electric control device includes an operation switch 3
0, fully open detection switch 40a, fully closed detection switch 4
0b, the auxiliary detection switch 40c, and the operation switch 30
Has the relays 50, 60, 70 connected to, and the operation switch 30 is arranged near the driver's seat of the bus,
DC power supply B via the ignition switch IG of the same bus
It has a double throw contact 31 connected to the positive side terminal and a pair of fixed contacts 32 and 33. Then, the operation switch 30
Responds to the connection of the double throw contact 31 with the fixed contact 32,
The first operation signal required to open the door 10 is generated at a high level, and the second operation signal required to close the door 10 is set to a high level in response to the connection of the double throw contact 31 with the fixed contact 33. Both fixed contacts 32, 33 of the double throw contact 31
The generation of the first and second operation signals is stopped in the cutoff state, that is, in the neutral state.

全開検出スイッチ40aは常閉型のもので、扉10の全
開時にのみ開成されてハイレベルにて全開検出信号を発
生する。全閉検出スイッチ40bは常閉型のもので、扉
10の全閉時にのみ開成されてハイレベルにて全閉検出
信号を発生する。補助検出スイッチ40cは常開型のも
ので、扉10がその全閉直前位置まで閉成したとき閉成
されてローレベルにて全閉直前位置検出信号を発生す
る。リレー50は、電磁コイル51と、双投スイッチ5
2とを有しており、双投スイッチ52は、電磁コイル5
1の励磁(又は消磁)により双投接点52aを固定接点
52b(又は52c)に投入する。かかる場合、双投接
点52aは直流モータMの第1入力端子に接続されてお
り、固定接点52bは負荷抵抗80を介し直流電源Bの
正側端子に接続され、一方固定接点52cは接地されて
いる。
The full-open detection switch 40a is of a normally closed type and is opened only when the door 10 is fully opened to generate a full-open detection signal at a high level. The fully closed detection switch 40b is of a normally closed type and is opened only when the door 10 is fully closed to generate a fully closed detection signal at a high level. The auxiliary detection switch 40c is of a normally open type, and is closed when the door 10 is closed to the position just before the fully closed position, and generates a position detection signal immediately before the fully closed position at a low level. The relay 50 includes an electromagnetic coil 51 and a double throw switch 5
2 and the double throw switch 52 includes the electromagnetic coil 5
The double throw contact 52a is made into the fixed contact 52b (or 52c) by the excitation (or demagnetization) of 1. In such a case, the double throw contact 52a is connected to the first input terminal of the DC motor M, the fixed contact 52b is connected to the positive terminal of the DC power source B via the load resistor 80, while the fixed contact 52c is grounded. There is.

リレー60は、電磁コイル61と、双投スイッチ62と
を有しており、双投スイッチ62は、電磁コイル61の
励磁(又は消磁)により双投接点62aを固定接点62
b(または62c)に投入する。かかる場合、双投接点
62aは直流モータMの第2入力端子に接続されてお
り、固定接点62bは負荷抵抗80を介し直流電源Bの
正側端子に接続され、一方固定接点62cは接地されて
いる。リレー70は、電磁コイル71と、この電磁コイ
ル71の励磁(又は消磁)により閉成(又は開成)され
る常開型スイッチ72とを有しており、スイッチ72は
負荷抵抗80に並列接続されている。
The relay 60 has an electromagnetic coil 61 and a double throw switch 62. The double throw switch 62 energizes (or demagnetizes) the electromagnetic coil 61 to change the double throw contact 62 a to a fixed contact 62.
b (or 62c). In such a case, the double throw contact 62a is connected to the second input terminal of the DC motor M, the fixed contact 62b is connected to the positive terminal of the DC power supply B via the load resistor 80, while the fixed contact 62c is grounded. There is. The relay 70 has an electromagnetic coil 71 and a normally open type switch 72 that is closed (or opened) by exciting (or demagnetizing) the electromagnetic coil 71, and the switch 72 is connected in parallel to the load resistor 80. ing.

また、電気制御装置は、一対のインバータ90a,90
bと、一対の負論理のNANDゲート100a,100
bを有しており、負論理のNANDゲート100aはそ
の第1反転入力端子にてインバータ90aを介し操作ス
イッチ30の固定接点32に接続され、一方負論理のN
ANDゲート100aの第2反転入力端子は全開検出ス
イッチ40aを介し接地されている。しかして、負論理
のNANDゲート100aは、操作スイッチ30からの
第1操作信号の発生に応答するインバータ90aの反転
作用のもとに全開検出スイッチ40aからの全開検出信
号の消滅(又は発生)に応答してローレベル信号(又は
ハイレベル信号)を発生する。また、操作スイッチ30
からの第1操作信号が消滅すると、負論理のNANDゲ
ート100aがハイレベル信号を生じる。このことは、
リレー50の電磁コイル51が負論理のNANDゲート
100aからのローレベル信号(又はハイレベル信号)
に応答して励磁(又は消磁)されることを意味する。
In addition, the electric control device includes a pair of inverters 90a, 90a.
b and a pair of negative logic NAND gates 100a, 100
The negative logic NAND gate 100a is connected to the fixed contact 32 of the operation switch 30 via the inverter 90a at its first inverting input terminal, while the negative logic NAND gate 100a has negative logic N.
The second inverting input terminal of the AND gate 100a is grounded via the full open detection switch 40a. Then, the NAND gate 100a of negative logic causes the full-open detection signal from the full-open detection switch 40a to disappear (or generate) under the inverting action of the inverter 90a in response to the generation of the first operation signal from the operation switch 30. In response, a low level signal (or a high level signal) is generated. In addition, the operation switch 30
When the first operation signal from the NAND gate disappears, the NAND gate 100a of negative logic produces a high level signal. This is
The electromagnetic coil 51 of the relay 50 is a low-level signal (or high-level signal) from the NAND gate 100a of negative logic.
It means that it is excited (or demagnetized) in response to.

負論理のNANDゲート100bは、その第1反転入力
端子にてインバータ90bを介し操作スイッチ30の固
定接点33に接続されており、この負論理のNANDゲ
ート100bの第2反転入力端子は全閉検出スイッチ4
0bを介し接地されている。しかして、負論理のNAN
Dゲート100bは、操作スイッチ30からの第2操作
信号の発生に応答するインバータ90bの反転作用のも
とに全閉検出スイッチ40bからの全閉検出信号の消滅
(又は発生)に応答してローレベル信号(又はハイレベ
ル信号)を発生する。また、操作スイッチ30からの第
2操作信号が消滅すると、負論理のNANDゲート10
0bがハイレベル信号を生じる。このことは、リレー6
0の電磁コイル61が負論理のNANDゲート100b
からのローレベル信号(又はハイレベル信号)に応答し
て励磁(又は消磁)されることを意味する。
The NAND gate 100b of negative logic is connected to the fixed contact 33 of the operation switch 30 via the inverter 90b at the first inverting input terminal thereof, and the second inverting input terminal of the NAND gate 100b of negative logic is fully closed. Switch 4
It is grounded through 0b. Then, NAN of negative logic
The D gate 100b is turned on in response to the disappearance (or generation) of the fully closed detection signal from the fully closed detection switch 40b under the inverting action of the inverter 90b in response to the generation of the second operation signal from the operation switch 30. A level signal (or high level signal) is generated. When the second operation signal from the operation switch 30 disappears, the NAND gate 10 of negative logic is
0b produces a high level signal. This is relay 6
The electromagnetic coil 61 of 0 is a negative logic NAND gate 100b
Means to be excited (or degaussed) in response to a low level signal (or a high level signal).

また、電気制御装置は、負論理のANDゲート110
と、速度センサ120と、この速度センサ120に接続
した速度判断回路130と、この速度判断回路130に
接続した出力信号発生回路140と、負論理のANDゲ
ート110及び出力信号発生回路140に接続した正論
理のNORゲート150とを有しており、負論理のAN
Dゲート110はその第1反転入力端子にて負論理のN
ANDゲート100bの出力端子に接続され、一方、こ
の負論理のANDゲート110の第2反転入力端子は補
助検出スイッチ40cを介し接地されている。しかし
て、負論理のANDゲート110は負論理のNANDゲ
ート100bからのローレベル信号の発生中にて補助検
出スイッチ40cからの全閉直前位置検出信号の消滅
(又は発生)に応答しハイレベル信号(又はローレベル
信号)を生じる。また、負論理のANDゲート110は
負論理のNANDゲート100bからのハイレベル信号
に応答してローレベル信号を生じる。
In addition, the electrical control unit uses a negative logic AND gate 110.
Connected to the speed sensor 120, the speed determination circuit 130 connected to the speed sensor 120, the output signal generation circuit 140 connected to the speed determination circuit 130, the negative logic AND gate 110 and the output signal generation circuit 140. A positive logic NOR gate 150, and a negative logic AN
The D gate 110 has a negative logic N at its first inverting input terminal.
It is connected to the output terminal of the AND gate 100b, while the second inverting input terminal of the negative logic AND gate 110 is grounded via the auxiliary detection switch 40c. Then, the negative logic AND gate 110 responds to the disappearance (or generation) of the position detection signal immediately before the full closing from the auxiliary detection switch 40c during the generation of the low level signal from the negative logic NAND gate 100b. (Or a low level signal). Further, the negative logic AND gate 110 generates a low level signal in response to the high level signal from the negative logic NAND gate 100b.

速度センサ120は直流モータMの回転速度Nを検出し
これに比例した周波数を有する一連のパルス信号を発生
する。速度判断回路130は、速度センサ120からの
各パルス信号の周波数をこれに比例するレベルの速度電
圧に変換し、この速度電圧のレベルが、直流モータMの
許容回転速度下限値に相当する基準電圧レベルより低く
なったとき所定信号幅を有するハイレベル信号a(第1
図、第3図及び第4図参照)を発生する。
The speed sensor 120 detects the rotation speed N of the DC motor M and generates a series of pulse signals having a frequency proportional to this. The speed determination circuit 130 converts the frequency of each pulse signal from the speed sensor 120 into a speed voltage of a level proportional to this, and the level of this speed voltage is a reference voltage corresponding to the lower limit of the allowable rotation speed of the DC motor M. When it becomes lower than the level, a high level signal a (first
(See FIGS. 3, 3 and 4).

出力信号発生回路140は、第3図に示すごとく、速度
判断回路130に接続した比較回路140aと、この比
較回路140aに接続した充放電回路140bと、比較
回路140aと充放電回路140bとの間に接続したサ
ンプルホールド回路140cと、比較回路140aに接
続したインバータ回路140dとにより構成されてい
る。比較回路140aはトランジスタ141を有してお
り、このトランジスタ141はそのベースにて抵抗14
1a及び負論理のインバータ141bを介し速度判断回
路130の出力端子に接続されている。また、このトラ
ンジスタ141はそのエミッタにて接地されており、同
トランジスタ141のコレクタはプルアップ抵抗141
cを介し直流電源の正側端子Vcに接続されている。し
かして、トランジスタ141は速度判断回路130から
のハイレベル信号aに応答するインバータ141b及び
抵抗141aの作用を受けて導通する。また、このトラ
ンジスタ141は速度判断回路130からのハイレベル
信号aの消滅に応答して非導通となる。
As shown in FIG. 3, the output signal generation circuit 140 includes a comparison circuit 140a connected to the speed determination circuit 130, a charge / discharge circuit 140b connected to the comparison circuit 140a, and a comparison circuit 140a and a charge / discharge circuit 140b. The sample and hold circuit 140c connected to the comparator circuit 140a and the inverter circuit 140d connected to the comparison circuit 140a. The comparison circuit 140a has a transistor 141, and the transistor 141 has a resistor 14 at its base.
It is connected to the output terminal of the speed determination circuit 130 via 1a and the negative logic inverter 141b. The transistor 141 is grounded at its emitter, and the collector of the transistor 141 has a pull-up resistor 141.
It is connected to the positive side terminal Vc of the DC power supply via c. Then, the transistor 141 is rendered conductive by the action of the inverter 141b and the resistor 141a in response to the high level signal a from the speed determination circuit 130. The transistor 141 becomes non-conductive in response to the disappearance of the high level signal a from the speed judgment circuit 130.

コンパレータ142はオープンコレクタ型のものでその
反転入力端子にてサンプルホールド回路140cの出力
端子に接続されており、このコンパレータ142の非反
転入力端子はプルアップ抵抗142aを介し前記直流電
源の正側端子に接続されている。また、このコンパレー
タ142の出力端子は、トランジスタ141のコレクタ
に接続されるとともに、コンデンサ143を介しコンパ
レータ142の非反転入力端子に接続されている。しか
して、トランジスタ141の導通に応答して充電され始
めるコンデンサ143の端子電圧b(第4図参照)が、
サンプルホールド回路140cから後述のごとく生じる
ホールド電圧C(第4図参照)より低いときコンパレー
タ142は比較電圧d(第4図参照)をローレベルにて
発生する。また、コンデンサ143の端子電圧bがホー
ルド電圧Cまで上昇すると、コンパレータ142からの
比較電圧dがハイレベルになる。なお、コンデンサ14
3の端子電圧bはコンパレータ142からの比較電圧d
のローレベルからハイレベルへの反転時にほぼハイレベ
ルになる。
The comparator 142 is of an open collector type, and its inverting input terminal is connected to the output terminal of the sample hold circuit 140c. The non-inverting input terminal of the comparator 142 is a positive side terminal of the DC power source via a pull-up resistor 142a. It is connected to the. The output terminal of the comparator 142 is connected to the collector of the transistor 141, and is also connected to the non-inverting input terminal of the comparator 142 via the capacitor 143. Then, the terminal voltage b (see FIG. 4) of the capacitor 143 which starts to be charged in response to the conduction of the transistor 141 is
When the voltage is lower than the hold voltage C (see FIG. 4) generated from the sample and hold circuit 140c as described later, the comparator 142 generates the comparison voltage d (see FIG. 4) at a low level. When the terminal voltage b of the capacitor 143 rises to the hold voltage C, the comparison voltage d from the comparator 142 becomes high level. The capacitor 14
The terminal voltage b of 3 is the comparison voltage d from the comparator 142.
It becomes almost high level when it is inverted from low level to high level.

充放電回路140bにおいては、比較回路140aから
の比較電圧dのローレベルへの変化に応答するインバー
タ144aの反転作用のもとに分圧器144bから生じ
る分圧電圧V1に応じて演算増幅器145aがダイオー
ド145bの順方向抵抗とコンデンサ146aの静電容
量とにより決まる時定数に基きコンデンサ146aを充
電しこの充電電圧eを分圧電圧V1まで急速に上昇させ
る。然る後、比較電圧dがハイレベルになると、これに
応答するインバータ144aの反転作用のもとに演算増
幅器145cがコンデンサ146aの静電容量と抵抗1
46bの抵抗値とにより決まる時定数に基きコンデンサ
146aを緩放電させ充電電圧eを分圧器144cから
の分圧電圧V2(<V1)に向けて低下させる(第4図
参照)。
In the charging / discharging circuit 140b, the operational amplifier 145a operates as a diode according to the divided voltage V1 generated from the voltage divider 144b under the inversion action of the inverter 144a in response to the change of the comparison voltage d from the comparison circuit 140a to the low level. The capacitor 146a is charged based on the time constant determined by the forward resistance of 145b and the electrostatic capacitance of the capacitor 146a, and the charging voltage e is rapidly increased to the divided voltage V1. After that, when the comparison voltage d becomes high level, the operational amplifier 145c causes the capacitance of the capacitor 146a and the resistance 1 to be generated under the inverting action of the inverter 144a in response to this.
Based on the time constant determined by the resistance value of 46b, the capacitor 146a is slowly discharged to decrease the charging voltage e toward the divided voltage V2 (<V1) from the voltage divider 144c (see FIG. 4).

サンプルホールド回路140cにおいては、コンデンサ
149からのホールド電圧Cが一定にあるとき比較回路
140aからの比較電圧dがハイレベルに変化すると、
演算増幅器147が電界効果型トランジスタ148の導
通下にてコンデンサ149を緩放電させてホールド電圧
Cを低下させ、然る後比較電圧dがローレベルに変化す
ると、演算増幅器147がトランジスタ148の非導通
に応答してコンデンサ149の放電を停止する。このこ
とは、コンデンサ149がトランジスタ148の非導通
に応答してホールド電圧Cを一定に保持することを意味
する(第4図参照)。かかる場合、コンデンサ146a
の放電時間、即ちコンデンサ149からのホールド電圧
Cの低下時間Tl(第4図参照)は、その後のホールド
電圧のホールド時間TRに反比例する。すなわち、低下
時間T1が短く(又は長く)なると、ホールド時間TR中の
ホールド電圧Cが高く(又は低く)なり、ホールド時間
TRが長く(又は短く)なる。
In the sample hold circuit 140c, when the hold voltage C from the capacitor 149 is constant and the comparison voltage d from the comparison circuit 140a changes to a high level,
When the operational amplifier 147 slowly discharges the capacitor 149 while the field effect transistor 148 is conducting to reduce the hold voltage C, and then the comparison voltage d changes to a low level, the operational amplifier 147 causes the transistor 148 to be non-conductive. In response to, the discharge of the capacitor 149 is stopped. This means that the capacitor 149 holds the hold voltage C constant in response to the non-conduction of the transistor 148 (see FIG. 4). In such a case, the capacitor 146a
Discharge time, that is, the fall time Tl of the hold voltage C from the capacitor 149 (see FIG. 4) is inversely proportional to the hold time TR of the subsequent hold voltage. That is, when the decrease time T1 becomes shorter (or longer), the hold voltage C during the hold time TR becomes higher (or lower), and the hold time
TR becomes longer (or shorter).

インバータ回路140dは比較回路140aからの比較
電圧dのローレベル(又はハイレベル)への変化に応答
してハイレベル(又はローレベル)にて出力信号を発生
する。正論理のNORゲート150は負論理のANDゲ
ート110からのハイレベル信号又はインバータ回路1
40dからハイレベルにて生じる出力信号に応答してロ
ーレベル信号を発生し、負論理のANDゲート110か
らのローレベル信号及びインバータ回路140dからロ
ーレベルにて生じる出力信号に応答してハイレベル信号
を発生する。このことは、リレー70の電磁コイル71
が正論理のNORゲート150からのローレベル信号
(又はハイレベル信号)に応答して励磁(又は消磁)さ
れることを意味する。なお、第1図にて二点鎖線により
包囲される各電気素子はイグニッションスイッチIGの
閉成下にて直流電源Bから給電される。
The inverter circuit 140d generates an output signal at a high level (or a low level) in response to a change in the comparison voltage d from the comparison circuit 140a to a low level (or a high level). The positive logic NOR gate 150 is a high level signal from the negative logic AND gate 110 or the inverter circuit 1.
A low level signal is generated in response to an output signal generated at a high level from 40d, and a high level signal is generated in response to a low level signal from a negative logic AND gate 110 and an output signal generated at a low level from the inverter circuit 140d. To occur. This means that the electromagnetic coil 71 of the relay 70
Is excited (or demagnetized) in response to the low level signal (or high level signal) from the positive logic NOR gate 150. Each electric element surrounded by a chain double-dashed line in FIG. 1 is supplied with power from a DC power source B while the ignition switch IG is closed.

以上のように構成した本実施例において、扉10の全閉
状態にて当該バスが平坦な走行路面上にて停止している
ものとする。かかる状態にて、イグニッションスイッチ
IGの閉成のもとに扉10を開成すべく操作スイッチ3
0からその操作により第1操作信号を発生させると、負
論理のNANDゲート100aが全開検出スイッチ40
aからの全開検出信号の消滅下にて操作スイッチ30か
らの第1操作信号に応答するインバータ90aの反転作
用を受けてローレベル信号を発生する。このとき、負論
理のNANDゲート100bが操作スイッチ30からの
第2操作信号の消滅に伴うインバータ90bの反転作用
のもとにハイレベル信号を発生し、負論理のANDゲー
ト110が負論理のNANDゲート100bからのハイ
レベル信号及び補助検出スイッチ40cからの全閉直前
位置検出信号に基きローレベル信号を発生する。
In the present embodiment configured as described above, it is assumed that the bus is stopped on a flat traveling road surface with the door 10 fully closed. In such a state, the operation switch 3 is used to open the door 10 under the closing of the ignition switch IG.
When the first operation signal is generated from 0 by the operation, the NAND gate 100a of the negative logic causes the full-open detection switch 40
Under the disappearance of the fully open detection signal from a, the inverter 90a responds to the first operation signal from the operation switch 30 to generate a low level signal in response to the inverting action of the inverter 90a. At this time, the NAND gate 100b of negative logic generates a high level signal under the inversion action of the inverter 90b accompanying the disappearance of the second operation signal from the operation switch 30, and the AND gate 110 of negative logic outputs the NAND of negative logic. A low level signal is generated based on the high level signal from the gate 100b and the position detection signal from the auxiliary detection switch 40c immediately before full closing.

また、速度判断回路130が速度センサ120との協働
によりハイレベル信号aを発生するため、サンプルホー
ルド回路140cからのホールド電圧Cが一定値にホー
ルドされているものとすれば、比較回路140aのトラ
ンジスタ141がハイレベル信号に応答するインバータ
141b及び抵抗141aの作用のもと導通し、コンデ
ンサ143の端子電圧bが上昇し始め、コンパレータ1
42がローレベルにて比較電圧dを発生し、インバータ
回路140dがハイレベルにて出力信号を発生し正論理
のNORゲート150からローレベル信号を発生させ
る。また、このとき、充放電回路140bが比較回路1
40aからの比較電圧dのローレベルに基き充電電圧e
を急上昇させ、サンプルホールド回路140cが比較電
圧dのローレベルのもとにホールド電圧Cを一定に保持
する。
Further, since the speed determination circuit 130 generates the high level signal a in cooperation with the speed sensor 120, assuming that the hold voltage C from the sample hold circuit 140c is held at a constant value, the comparison circuit 140a outputs The transistor 141 becomes conductive under the action of the inverter 141b and the resistor 141a which respond to the high level signal, the terminal voltage b of the capacitor 143 starts to rise, and the comparator 1
42 generates a comparison voltage d at a low level, the inverter circuit 140d generates an output signal at a high level, and causes the positive logic NOR gate 150 to generate a low level signal. At this time, the charging / discharging circuit 140b is changed to the comparison circuit 1
Based on the low level of the comparison voltage d from 40a, the charging voltage e
Is rapidly raised, and the sample-and-hold circuit 140c holds the hold voltage C constant under the low level of the comparison voltage d.

しかして、リレー50が負論理のNANDゲート100
aからのローレベル信号に応答する電磁コイル51の励
磁により双投スイッチ52の双投接点52aを固定接点
52bに投入する。このとき、リレー60の電磁コイル
61が消磁状態にあり、またリレー70が正論理のNO
Rゲート150からのローレベル信号に応答する電磁コ
イル71の励磁によりスイッチ72を閉成して負荷抵抗
80を短絡させている。従って、直流電源Bからの給電
電流がリレー70のスイッチ72、リレー50の固定接
点52b及び双投接点52aを通り直流モータMにその
第1入力端子から流入し同直流モータMの第2入力端子
から流出しリレー60の双投接点62aを通り固定接点
62cに流入する。換言すれば、直流モータMが負荷抵
抗80の短絡のもとに直流電源Bからの給電電圧を直接
受けて正転し始める。すると、平歯車23が、直流モー
タMに連動する平歯車24により反時計方向に回転せら
れ、これに応じて駆動軸21がその連結アーム21a,
21aにより扉10を前記全閉ロック機構との係合力に
抗して第2図にて図示左方へ開き始める。
Then, the relay 50 is a negative logic NAND gate 100.
The double throw contact 52a of the double throw switch 52 is closed to the fixed contact 52b by exciting the electromagnetic coil 51 in response to the low level signal from a. At this time, the electromagnetic coil 61 of the relay 60 is in a demagnetized state, and the relay 70 has a positive logic NO.
The switch 72 is closed by exciting the electromagnetic coil 71 in response to the low level signal from the R gate 150, and the load resistor 80 is short-circuited. Therefore, the power supply current from the DC power source B flows through the switch 72 of the relay 70, the fixed contact 52b and the double throw contact 52a of the relay 50 into the DC motor M from its first input terminal, and the second input terminal of the same DC motor M. Flow through the double throw contact 62a of the relay 60 and flow into the fixed contact 62c. In other words, the DC motor M directly receives the power supply voltage from the DC power supply B and starts to rotate in the forward direction when the load resistor 80 is short-circuited. Then, the spur gear 23 is rotated counterclockwise by the spur gear 24 that is interlocked with the direct-current motor M, and the drive shaft 21 correspondingly rotates the drive shaft 21.
21a starts opening the door 10 leftward in FIG. 2 against the engaging force with the fully closed lock mechanism.

このような扉10の開成動作初期後コンパレータ142
からの比較電圧dがサンプルホールド回路140cから
のホールド電圧Cへのコンデンサ143の端子電圧bの
一致によりハイレベルに変化すると、インバータ140
dからの出力信号がローレベルになり、正論理のNOR
ゲート150からのローレベル信号がハイレベルにな
り、リレー70が電磁コイル71の消磁によりスイッチ
72を開成し負荷抵抗80の短絡を解除する。すると、
直流モータMが、直流電源Bからの給電電圧から負荷抵
抗80による電圧降下分を減じた電圧を受けて正転し続
け扉10を開成させて行く。また、上述のようなコンパ
レータ142からの比較電圧dのハイレベルへの変化に
より充放電回路140bからの充電電圧eが低下し初
め、サンプルホールド回路140cからのホールド電圧
Cがトランジスタ148の導通のもとに低下し始める。
なお、当該バスが平坦路面上に停止しているため、扉1
0の開成初期動作後の開成過程において負荷抵抗80が
短絡されることはない。
After the initial opening operation of the door 10 as described above, the comparator 142
When the comparison voltage d from 1 changes to the high level due to the matching of the terminal voltage b of the capacitor 143 to the hold voltage C from the sample hold circuit 140c, the inverter 140
The output signal from d becomes low level, and NOR of positive logic
The low level signal from the gate 150 becomes high level, and the relay 70 deactivates the electromagnetic coil 71 to open the switch 72 and release the short circuit of the load resistor 80. Then,
The DC motor M receives the voltage obtained by subtracting the voltage drop due to the load resistance 80 from the power supply voltage from the DC power supply B, continues to rotate in the forward direction, and opens the door 10. Further, the charge voltage e from the charge / discharge circuit 140b starts to decrease due to the change of the comparison voltage d from the comparator 142 to the high level as described above, and the hold voltage C from the sample hold circuit 140c causes the transistor 148 to be conductive. And begins to decline.
Since the bus stops on a flat road surface, the door 1
The load resistance 80 is not short-circuited during the opening process after the initial opening operation of 0.

然る後、扉10が全開になると、全開検出スイッチ40
aが全開検出信号を発生し、負論理のNANDゲート1
00aがハイレベル信号を発生し、リレー50が電磁コ
イル51の消磁により双投接点52aを固定接点52c
に投入し直流モータMを直流電源Bから遮断する。これ
により、直流モータMが正転停止により駆動機構20の
扉10に対する開成作用を停止させる。この場合、扉1
0がその開成速度による慣性のため前記全開ロック機構
と容易に係合して全開状態に維持される。なお、扉10
が全開となった後は、操作スイッチ30を中立状態にし
ておく。
After that, when the door 10 is fully opened, the fully open detection switch 40
a generates a full open detection signal, and NAND gate 1 of negative logic
00a generates a high level signal, and the relay 50 demagnetizes the electromagnetic coil 51 so that the double throw contact 52a is fixed to the fixed contact 52c.
To disconnect the DC motor M from the DC power supply B. As a result, the direct current motor M stops the forward rotation and stops the opening operation of the drive mechanism 20 for the door 10. In this case, door 1
0 easily engages with the full-open lock mechanism due to inertia due to its opening speed, and is maintained in the full-open state. The door 10
After is fully opened, the operation switch 30 is set to the neutral state.

このような状態にて扉10を閉成すべく操作スイッチ3
0からその操作により第2操作信号を発生させると、負
論理のNANDゲート100bが全閉検出スイッチ40
bから全閉検出信号の消滅下にて前記第2操作信号に応
答するインバータ90bの反転作用を受けてローレベル
信号を発生する。このとき、負論理のANDゲート11
0が、負論理のNANDゲート100bからのローレベ
ル信号、及び補助検出スイッチ40cからの全閉直前位
置検出信号の消滅下にてローレベル信号を発生し、正論
理のNORゲート150が扉10の開成動作初期と同様
に出力信号発生回路140からのハイレベルの出力信号
に応答してローレベル信号を発生する。このとき、出力
信号発生回路140においては扉10の開成動作初期と
同様の作用がなされる。
In this state, the operation switch 3 is used to close the door 10.
When the second operation signal is generated from 0 by the operation, the NAND gate 100b of the negative logic causes the fully closed detection switch 40
Under the disappearance of the fully closed detection signal from b, the inverter 90b responds to the second operation signal to generate a low level signal. At this time, the AND gate 11 of negative logic
0 generates a low level signal under the disappearance of the low level signal from the NAND gate 100b of negative logic and the position detection signal immediately before the full closing from the auxiliary detection switch 40c, and the NOR gate 150 of positive logic causes the NOR gate 150 of the door 10 to operate. Similarly to the initial stage of the opening operation, the low level signal is generated in response to the high level output signal from the output signal generating circuit 140. At this time, in the output signal generating circuit 140, the same operation as in the initial opening operation of the door 10 is performed.

しかして、リレー60が負論理のNANDゲート100
bからのローレベル信号に応答する電磁コイル61の励
磁により双投接点62aを固定接点62bに投入する。
このとき、リレー50の電磁コイル51が消磁状態にあ
り、また、リレー70が正論理のNORゲート150か
らのローレベル信号に応答してスイッチ72の閉成によ
り負荷抵抗80を短絡している。従って、直流電源Bか
らの給電電流がリレー70のスイッチ72、リレー60
の固定接点62b及び双投接点62aを通り直流モータ
Mにその第2入力端子から流入し同直流モータMの第1
入力端子から流出しリレー50の双投接点52aを通り
固定接点52cに流入する。換言すれば、直流モータM
が負荷抵抗80の短絡のもとに直流電源Bからの給電電
圧を直接受けて逆転し始める。すると、平歯車23が、
直流モータMに連動する平歯車24により時計方向へ回
転せられ、これに応じて駆動機構20がその連結アーム
21a,21aにより扉10を前記全開ロック機構との
係合力に抗して前方へ閉じ始める。
Then, the relay 60 has the NAND gate 100 of the negative logic.
The double throw contact 62a is closed to the fixed contact 62b by exciting the electromagnetic coil 61 in response to the low level signal from b.
At this time, the electromagnetic coil 51 of the relay 50 is in the demagnetized state, and the relay 70 short-circuits the load resistor 80 by closing the switch 72 in response to the low level signal from the NOR gate 150 of positive logic. Therefore, the power supply current from the DC power source B is the switch 72 of the relay 70 and the relay 60.
Of the direct current motor M through the fixed contact 62b and the double throw contact 62a of the first direct current motor M from the second input terminal thereof.
It flows out from the input terminal, passes through the double throw contact 52a of the relay 50, and flows into the fixed contact 52c. In other words, the DC motor M
Under the condition that the load resistor 80 is short-circuited, it directly receives the power supply voltage from the DC power supply B and starts reversing. Then, the spur gear 23
It is rotated clockwise by a spur gear 24 that is interlocked with the DC motor M, and in response to this, the drive mechanism 20 closes the door 10 forward by the connecting arms 21a and 21a thereof against the engaging force with the fully open lock mechanism. start.

このような扉10の閉成動作初期後コンパレータ142
からの比較電圧dが扉10の開成動作初期後の場合と同
様にハイレベルに変化すると、正論理のNORゲート1
50からのローレベル信号がインバータ回路140dか
らの出力信号のローレベルへの変化に応答してハイレベ
ルになり、リレー70が負荷抵抗80の短絡を解除し、
直流モータMが直流電源Bからの給電電圧から負荷抵抗
80による電圧降下分を減じた電圧を受けて逆転し続け
扉10を閉成させて行く。なお、扉10の閉成初期動作
後の閉成過程においては、同扉10の開成初期動作後の
開成過程における場合と同様に負荷抵抗80が短絡され
ることはない。
After the initial closing operation of the door 10 as described above, the comparator 142
When the comparison voltage d from 1 changes to the high level as in the case after the initial opening operation of the door 10, the NOR gate 1 of the positive logic
The low level signal from 50 becomes high level in response to the change of the output signal from the inverter circuit 140d to low level, and the relay 70 releases the short circuit of the load resistor 80,
The direct current motor M receives the voltage obtained by subtracting the voltage drop due to the load resistance 80 from the power supply voltage from the direct current power supply B and continues to rotate in the reverse direction to close the door 10. In the closing process of the door 10 after the initial closing operation, the load resistor 80 is not short-circuited as in the opening process of the door 10 after the initial opening operation.

扉10が全閉直前位置に達し補助検出スイッチ40cか
ら全閉直前位置検出信号が生じると、負論理のANDゲ
ート110がハイレベル信号を発生し、正論理のNOR
ゲート150がローレベル信号を発生し、リレー70が
スイッチ72の閉成により負荷抵抗80を短絡する。す
ると、直流モータMへの印加電圧が負荷抵抗80の短絡
分だけ上昇し、同直流モータMの逆転速度が上昇し扉1
0への閉成力を増大させる。このことは、扉10が駆動
機構20の作用のもとに前記全閉ロック機構と容易に係
合しつつ全閉状態となることを意味する。
When the door 10 reaches the position immediately before the fully closed position and a position detection signal immediately before the fully closed position is generated from the auxiliary detection switch 40c, the AND gate 110 of the negative logic generates a high level signal, and the NOR of the positive logic.
The gate 150 generates a low level signal, and the relay 70 short-circuits the load resistor 80 by closing the switch 72. Then, the voltage applied to the DC motor M rises by the short circuit of the load resistor 80, the reverse rotation speed of the DC motor M rises, and the door 1
Increase closing force to zero. This means that the door 10 is brought into the fully closed state while being easily engaged with the fully closed lock mechanism under the action of the drive mechanism 20.

このように扉10が全閉になると、全閉検出スイッチ4
0bが全閉検出信号を発生し、負論理のNANDゲート
100bがハイレベル信号を発生し、リレー60が電磁
コイル61の消磁により双投接点62aを固定接点62
cに投入し直流モータMを直流電源Bから遮断する。こ
れにより、直流モータMが逆転停止により駆動機構20
の扉10に対する閉成作用を停止させる。この場合、扉
10がその閉成速度による慣性のため、前記全閉ロック
機構と容易に係合して全閉状態に維持される。なお、扉
10が全閉となった後は、操作スイッチ30を中立状態
にしておく。
Thus, when the door 10 is fully closed, the fully closed detection switch 4
0b generates a fully closed detection signal, a negative logic NAND gate 100b generates a high level signal, and the relay 60 demagnetizes the electromagnetic coil 61 to cause the double throw contact 62a to become a fixed contact 62.
Then, the DC motor M is cut off from the DC power source B. As a result, the DC motor M stops rotating in the reverse direction and the drive mechanism 20
The closing action for the door 10 is stopped. In this case, due to the inertia of the door 10 due to its closing speed, the door 10 is easily engaged with the fully closed lock mechanism and maintained in the fully closed state. After the door 10 is fully closed, the operation switch 30 is kept in the neutral state.

また、上述の作用において、当該バスを傾斜路面上にて
その前進方向を傾斜路面の頂部に向けて停止させた場合
には、扉10の開成作用は、この扉10の自重が直流モ
ータMの負荷を軽減させる方向に作用するため、上述と
同様に円滑に終了する。このような状態にて扉10を閉
成過程におけば、扉10の閉成後初期動作が上述と同様
に行なわれる。然る後、扉10の閉成過程において、前
記傾斜路面の傾斜角に基く扉10の自重に起因して直流
モータMの回転速度Nが低下し速度判断回路130が速
度センサ120との協働により時刻t=t1(第4図参
照)にてハイレベル信号aを発生すると、比較回路14
0aがトランジスタ141の導通に応答してコンデンサ
143の端子電圧bを上昇させ始めると同時に比較電圧
dをローレベルにて発生し、これに応答してインバータ
回路140dがハイレベルにて出力信号を発生し正論理
のNORゲート150からローレベル信号を発生させ
る。このとき、充放電回路140bが比較回路140a
からのローレベルの比較電圧dのもとに充電電圧eを急
上昇させ、またサンプルホールド回路140cが比較電
圧dのローレベルに基き時刻t=t1のときのホールド
信号Cを保持する。
Further, in the above-described operation, when the bus is stopped on the sloped road with its forward direction directed toward the top of the sloped road, the opening operation of the door 10 is such that the dead weight of the door 10 causes the direct current motor M to move. Since it acts in the direction of reducing the load, it ends smoothly as in the above. When the door 10 is closed in this state, the initial operation after the door 10 is closed is performed in the same manner as described above. Then, in the closing process of the door 10, the rotation speed N of the DC motor M decreases due to the weight of the door 10 based on the inclination angle of the inclined road surface, and the speed determination circuit 130 cooperates with the speed sensor 120. Therefore, when the high level signal a is generated at time t = t1 (see FIG. 4), the comparison circuit 14
0a starts increasing the terminal voltage b of the capacitor 143 in response to the conduction of the transistor 141, and at the same time generates the comparison voltage d at a low level, and in response, the inverter circuit 140d generates an output signal at a high level. Then, a low level signal is generated from the positive logic NOR gate 150. At this time, the charge / discharge circuit 140b changes to the comparison circuit 140a.
The charging voltage e is rapidly increased based on the low level comparison voltage d from, and the sample hold circuit 140c holds the hold signal C at time t = t1 based on the low level of the comparison voltage d.

上述のように正論理のNORゲート150がローレベル
信号を生じると、リレー70がスイッチ72の閉成によ
り負荷抵抗80を短絡する。これにより、負荷抵抗80
の短絡下における直流電源Bから直流モータMへの給電
電圧の付与が維持されて直流モータMがその回転速度を
上昇させて扉10の閉成速度の低下を抑制する。然る
後、時刻t=t2にてコンデンサ143の端子電圧bが
サンプルホールド回路140cからのホールド電圧Cに
達すると、比較回路140aからの比較電圧dがハイレ
ベルになり、インバータ回路140dからの出力信号が
ローレベルになり、正論理のNORゲート150からの
ローレベル信号がハイレベルになり、リレー70がスイ
ッチ72の開成により負荷抵抗80の短絡を解除する。
これにより、直流モータMが上述と同様に負荷抵抗80
の短絡解除による電圧を受けて扉10を閉成させてゆ
く。
When the positive logic NOR gate 150 produces a low level signal as described above, the relay 70 shorts the load resistor 80 by closing the switch 72. As a result, the load resistance 80
The application of the power supply voltage from the DC power supply B to the DC motor M is maintained under the short-circuit condition, and the DC motor M increases its rotation speed to suppress the decrease in the closing speed of the door 10. After that, when the terminal voltage b of the capacitor 143 reaches the hold voltage C from the sample hold circuit 140c at time t = t2, the comparison voltage d from the comparison circuit 140a becomes high level and the output from the inverter circuit 140d is output. The signal becomes low level, the low level signal from the positive logic NOR gate 150 becomes high level, and the relay 70 releases the short circuit of the load resistor 80 by opening the switch 72.
As a result, the DC motor M causes the load resistance 80 to be the same as described above.
The door 10 is closed by receiving the voltage generated by releasing the short circuit.

また、上述のように比較電圧dがハイレベルになると、
充放電回路140bからの充電電圧eが低下し始め、サ
ンプルホールド回路140cからのホールド電圧Cが低
下し始める。以後、上述の作用が速度判断回路130か
らのハイレベル信号aの発生毎に繰返されて扉10を円
滑に閉成させてゆく。
Further, when the comparison voltage d becomes high level as described above,
The charge voltage e from the charge / discharge circuit 140b starts to decrease, and the hold voltage C from the sample hold circuit 140c starts to decrease. After that, the above-described operation is repeated every time the high-level signal a is generated from the speed determination circuit 130, and the door 10 is smoothly closed.

以上述べたことから理解されるとおり、充電電圧eの低
下時間Tlが、比較電圧dのハイレベルへの変化時期と
ハイレベル信号aの発生時とにより決定され、かつホー
ルド電圧Cのホールド時間TRが、前記傾斜路面の傾斜
角の大小、即ち、ホールド電圧Cの一定レベルの高低と
の関連にて低下時間Tlに反比例して変化する。従っ
て、前記傾斜路面の傾斜角が大きい(又は小さい)程、
低下時間Tlが短かく(又は長く)なり、ホールド時間
TR中のホールド電圧Cが高く(又は低く)なり、ホー
ルド時間TRが長く(又は短かく)なる。換言すれば、
前記傾斜角が大きい程負荷抵抗80のハイレベル信号a
の発生毎の短絡時間が長くなって直流モータMの回転速
度の低下を抑制して扉10の閉成時間と前記傾斜角とは
かかわりなくほぼ一定にし得る。
As can be understood from the above description, the decrease time Tl of the charging voltage e is determined by the change timing of the comparison voltage d to the high level and the generation time of the high level signal a, and the hold time TR of the hold voltage C is determined. However, in relation to the magnitude of the inclination angle of the inclined road surface, that is, the level of the hold voltage C at a constant level, it changes in inverse proportion to the decrease time Tl. Therefore, the larger (or smaller) the inclination angle of the inclined road surface is,
The fall time Tl becomes shorter (or longer), the hold voltage C during the hold time TR becomes higher (or lower), and the hold time TR becomes longer (or shorter). In other words,
The larger the inclination angle, the higher the level signal a of the load resistor 80.
It is possible to suppress a decrease in the rotation speed of the DC motor M by increasing the short-circuit time for each occurrence of the above condition, and to make the closing time of the door 10 and the tilt angle substantially constant regardless of the closing time.

なお、上述の作用においては、当該バスを傾斜路面上に
てその前進方向を傾斜路面の頂部に向けて停止させた場
合について述べたが、これに限らず、当該バスを傾斜路
面上にてその後進方向を傾斜路面の頂部に向けて停止さ
せた場合にも、上述と実質的に同様の作用効果を達成し
得る。
In the above operation, the case where the bus is stopped on the sloped road with its forward direction directed toward the top of the sloped road has been described. Even when the advancing direction is stopped toward the top of the slope road surface, the same effect as the above can be achieved.

また、前記実施例においては、当該バスの側壁に設けた
乗降口にこの乗降口に沿い前後方向へ開閉可能に配設し
た扉10に対して本発明を適用した例について説明した
が、これに限らず、当該バスの後壁に位置する乗降口に
これに沿い左右方向に開閉可能に設けた扉に対して本発
明を実施してもよく、この場合、適用対象はバスに限ら
ず例えばワゴン車であってもよい。
Further, in the above-mentioned embodiment, an example in which the present invention is applied to the door 10 which is arranged at the entrance / exit provided on the side wall of the bus so as to be openable / closable in the front-rear direction along the entrance / exit is explained. Not limited to this, the present invention may be applied to a door that can be opened / closed in the left / right direction along the entrance / exit located on the rear wall of the bus. It may be a car.

また、本発明の実施にあたっては、扉10に代えて、バ
ス等に前後方向へ折たたみ可能に設けた扉に本発明を適
用して実施してもよい。
Further, in carrying out the present invention, instead of the door 10, the present invention may be applied to a door provided on a bus or the like so as to be foldable in the front-rear direction.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明の一実施例を示す全体構成
図、第3図は第1図の出力信号発生回路の詳細回路図、
及び第4図は同回路の各電気素子の入出力波形図であ
る。 符号の説明 B・・・直流電源、M・・・直流モータ、10・・・
扉、20・・・駆動機構、30・・・操作スイッチ、5
0,60,70・・・リレー、80・・・負荷抵抗、9
0a,90b・・・インバータ、100a,100b・
・・負論理のNANDゲート、110・・・負論理のA
NDゲート、120・・・速度センサ、130・・・速
度判断回路、140・・・出力信号発生回路、140a
・・・比較回路、140b・・・充放電回路、140c
・・・サンプルホールド回路、150・・・正論理のN
ORゲート。
1 and 2 are overall configuration diagrams showing an embodiment of the present invention, FIG. 3 is a detailed circuit diagram of the output signal generating circuit of FIG. 1,
4 and FIG. 4 are input / output waveform diagrams of each electric element of the same circuit. Explanation of symbols B ... DC power supply, M ... DC motor, 10 ...
Door, 20 ... Drive mechanism, 30 ... Operation switch, 5
0, 60, 70 ... Relay, 80 ... Load resistance, 9
0a, 90b ... Inverter, 100a, 100b
..Negative logic NAND gate, 110 ... Negative logic A
ND gate, 120 ... Speed sensor, 130 ... Speed judgment circuit, 140 ... Output signal generation circuit, 140a
... Comparison circuit, 140b ... Charging / discharging circuit, 140c
... Sample and hold circuit, 150 ... Positive logic N
OR gate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】車両の乗降口にこの乗降口に沿い横方向へ
開閉可能に配設した扉を一方向回転(又は他方向回転)
により開く(又は閉じる)回転電動機を備えた扉開閉シ
ステムに適用されて、前記扉を開く(又は閉じる)とき
操作されて第1(又は第2)の操作信号を生じる操作手
段と、前記第1(又は第2)の操作信号に応答して第1
(又は第2)の駆動状態となり前記回転電動機を一方向
回転(又は他方向回転)させるように抵抗を介する電源
から前記回転電動機への給電を許容する駆動手段と、前
記回転電動機の負荷状態を検出し負荷検出信号として発
生する負荷検出手段と、前記負荷検出信号の値が所定負
荷値より大きい毎に所定信号幅にて負荷判断信号を生じ
る負荷判断手段と、前記負荷判断信号が生じる毎にこの
信号に応答して前記抵抗を短絡する短絡手段とを備えた
電気制御装置において、前記負荷判断信号が生じる毎に
この信号に応答してこの信号の発生後の経過時間につい
て積分し積分信号を生じる積分手段と、前記負荷判断信
号が生じる毎にこの信号に応答して出力信号を発生し、
前記積分信号のレベルがホールド信号のレベルに達した
とき前記出力信号を消滅させる信号発生手段と、前記出
力信号の消滅に応答して所定レベルから経時的に緩低下
してレベル低下信号を生じるレベル低下手段と、前記負
荷判断信号が生じる毎にこの信号に応答して前記レベル
低下信号のレベルを前記ホールド信号としてホールドす
るホールド手段とを設けて、前記短絡手段が前記出力信
号に応答してこの信号の発生毎にこの信号の発生中前記
抵抗を短絡するようにし、扉の開成時間(又は閉成時
間)を路面の傾斜角に係わりなくほぼ一定にしたことを
特徴とする車両用扉開閉システムのための電気制御装
置。
1. A door which is installed at an entrance / exit of a vehicle so as to be openable / closable laterally along the entrance / exit of the vehicle, rotates in one direction (or rotates in the other direction).
The first and second operation signals are applied to a door opening / closing system having a rotary electric motor that opens (or closes) by means of which the first (or second) operation signal is generated when the door is opened (or closed); The first signal in response to the (or second) operation signal
(Or a second) drive state, a drive means for allowing power supply to the rotary motor from a power source via a resistor so as to rotate the rotary motor in one direction (or in the other direction), and a load state of the rotary motor. Load detection means for detecting and generating as a load detection signal; load determination means for generating a load determination signal with a predetermined signal width each time the value of the load detection signal is greater than a predetermined load value; and for each generation of the load determination signal In an electric control device provided with a short-circuit means for short-circuiting the resistance in response to this signal, every time the load judgment signal occurs, in response to this signal, the elapsed time after the generation of this signal is integrated and an integrated signal is obtained. An integrator which is generated, and each time the load judgment signal is generated, an output signal is generated in response to this signal,
Signal generating means for extinguishing the output signal when the level of the integrated signal reaches the level of the hold signal; and a level for slowly decreasing from a predetermined level in response to the extinction of the output signal to generate a level-decreasing signal. Degrading means and holding means for holding the level of the level reduction signal as the hold signal in response to the load determination signal are provided, and the short-circuiting means responds to the output signal by the holding means. The vehicle door opening / closing system characterized in that the resistance is short-circuited each time a signal is generated, and the door opening time (or closing time) is made substantially constant irrespective of the inclination angle of the road surface. Control device for the.
JP60130492A 1985-06-14 1985-06-14 Electric control unit for vehicle door opening and closing system Expired - Fee Related JPH061027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60130492A JPH061027B2 (en) 1985-06-14 1985-06-14 Electric control unit for vehicle door opening and closing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60130492A JPH061027B2 (en) 1985-06-14 1985-06-14 Electric control unit for vehicle door opening and closing system

Publications (2)

Publication Number Publication Date
JPS61290182A JPS61290182A (en) 1986-12-20
JPH061027B2 true JPH061027B2 (en) 1994-01-05

Family

ID=15035556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60130492A Expired - Fee Related JPH061027B2 (en) 1985-06-14 1985-06-14 Electric control unit for vehicle door opening and closing system

Country Status (1)

Country Link
JP (1) JPH061027B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644515B2 (en) * 2005-04-13 2011-03-02 三井金属アクト株式会社 Semi-open holding device for vehicle opening / closing body

Also Published As

Publication number Publication date
JPS61290182A (en) 1986-12-20

Similar Documents

Publication Publication Date Title
KR0171240B1 (en) Vehicle-mounted motor drive apparatus
JPH02142388A (en) Controller for compartment panel pull-down mechanism
KR950008903A (en) Car power window control system
JPH09323547A (en) Opening and closing control device of slide door
JP2000510926A (en) Circuit devices for control of electrically operated automotive door locks, etc.
JPH061027B2 (en) Electric control unit for vehicle door opening and closing system
JP3948043B2 (en) Motor controller for opening / closing mechanism
JPH0379515B2 (en)
JPS61290183A (en) Electric controller for door open-close system for car
JPH047437B2 (en)
JPS61261590A (en) Electric controller for door opening and closing system for vehicle
JPS61269691A (en) Electric controller for door opening and closing system for vehicle
JPS61286484A (en) Electric controller for door open-close system for car
JP6722046B2 (en) Automatic seat opening and closing device for vehicle packing boxes
JP2830543B2 (en) Switchgear for vehicles
JPH061025B2 (en) Electric control unit for vehicle door opening and closing system
JPS61202919A (en) Electric control unit for door opening/closing system for car
JPS61203884A (en) Electric controller for door opening/closing system for vehicle
JPH066850B2 (en) Electric control unit for vehicle door opening and closing system
JP6722045B2 (en) Automatic seat opening and closing device for vehicle packing boxes
JP3133818B2 (en) Electric control device for vehicle door device
JPS61229085A (en) Electronic controller for door opening and closing system for vehicle
JPH047435B2 (en)
KR920004870Y1 (en) Control device for auto door of vehicle
JPH04190601A (en) Electric automobile

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

LAPS Cancellation because of no payment of annual fees
R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350