JPH0578862A - Electric conductive composition - Google Patents

Electric conductive composition

Info

Publication number
JPH0578862A
JPH0578862A JP3273490A JP27349091A JPH0578862A JP H0578862 A JPH0578862 A JP H0578862A JP 3273490 A JP3273490 A JP 3273490A JP 27349091 A JP27349091 A JP 27349091A JP H0578862 A JPH0578862 A JP H0578862A
Authority
JP
Japan
Prior art keywords
fine particles
silver
copper
conductive composition
production example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3273490A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Mizukami
義勝 水上
Hiroshi Tamemasa
博史 為政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Kanebo Ltd
Original Assignee
Tanaka Kikinzoku Kogyo KK
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Kanebo Ltd filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP3273490A priority Critical patent/JPH0578862A/en
Publication of JPH0578862A publication Critical patent/JPH0578862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain high electric conductivity by uniformly forming a specified wt.% of electric conductive coating films of a metal on the surfaces of inorg. fine particles. CONSTITUTION:Electric conductive coating films of a metal are uniformly formed on the surfaces of inorg. fine particles by 8-<15wt.%. The metal is at least one among Au, Ag, Pt, Cu, Sn and Al. The inorg. fine particles have >=4 aspect ratio and 0.2-<2mum average diameter and are made of at least one among potassium titanate, titanium oxide, silicon carbide, aluminum oxide and aluminum borate. The amt. of the metal used is reduced and an electric conductive compsn. can be supplied at a relatively low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性組成物に係り、
繊維製品、フィルム、プラスチック成形品、ペイント等
の製造に際して添加され、これらの製品に導電性をもた
らすために利用される導電性微粒子に関するものであ
る。
FIELD OF THE INVENTION The present invention relates to a conductive composition,
The present invention relates to electroconductive fine particles which are added during the production of textile products, films, plastic molded products, paints, etc. and are used to impart electroconductivity to these products.

【0002】[0002]

【従来の技術】上記のような導電性の繊維製品等を製造
するために添加される従来の導電性微粒子としては、種
々の金属粒子、カーボンブラックなどが知られている。
そしてこれらの粒子は、一般に球状に近くアスペクト比
が1前後のものである。また、酸化チタンの微粒子に酸
化亜鉛または酸化錫皮膜を形成させた微粒子により最高
10-2Ω・cmが得られている(特公平1−22365
号)。
2. Description of the Related Art Various metal particles, carbon black and the like are known as conventional conductive fine particles to be added for producing the above-mentioned conductive fiber products and the like.
These particles are generally spherical and have an aspect ratio of about 1. In addition, a maximum of 10 -2 Ω · cm is obtained with fine particles of titanium oxide having a zinc oxide or tin oxide film formed thereon (Japanese Patent Publication No. 1-22365).
issue).

【0003】[0003]

【発明が解決しようとする課題】上記の金属粒子は高価
であり、比重が大であるため、マトリックスとの比重差
が大であり、混練時に沈降しやすいという欠点がある。
またカーボンブラックを導電性組成物として使用すると
混練成形品が黒色のものしか得られないという問題があ
る。さらにこれらの粒子は、一般に球状に近くアスペク
ト比が1前後であるので、高い導電性を得るためにはマ
トリックス中で粒子相互を接触させるのに多量の粒子を
混練しなければならないという問題がある。
Since the above metal particles are expensive and have a large specific gravity, there is a large difference in specific gravity from the matrix and there is a drawback that they tend to settle during kneading.
Further, when carbon black is used as the conductive composition, there is a problem that only a black kneaded molded product can be obtained. Furthermore, since these particles are generally spherical and have an aspect ratio of about 1, a large amount of particles must be kneaded in order to bring them into contact with each other in the matrix in order to obtain high conductivity. ..

【0004】そして上記の特公平1−22365号によ
り提案されているものがあるが、さらに優れた導電性の
ものが待望されている。本発明は上記の現状に鑑みてな
されたものであり、その目的は、導電性組成物を混練し
た成形品の着色が少なく、高導電性でありかつ製造が容
易で廉価な導電性組成物を提供することである。
[0004] There are those proposed by Japanese Patent Publication No. 1-22365 mentioned above, and more excellent ones are desired. The present invention has been made in view of the above situation, and an object thereof is to provide a low-cost electrically conductive composition which is less colored in a molded product obtained by kneading the electrically conductive composition, has high electrical conductivity, and is easily manufactured. Is to provide.

【0005】[0005]

【課題を解決するための手段および作用】本発明者等
は、上記の目的を達成せんとして種々研究したところ、
アスペクト比が大な無機質微粒子の表面に導電性金属皮
膜を形成することに着目した。
[Means and Actions for Solving the Problems] The inventors of the present invention have conducted various studies to achieve the above object,
We focused on forming a conductive metal film on the surface of inorganic particles with a large aspect ratio.

【0006】本発明は上記の知見に基づくものであり、
その要旨は、無機質の微粒子の表面に導電性金属皮膜が
8重量%以上15重量%未満均斉に形成せしめられてい
ることを特徴とする導電性組成物である。
The present invention is based on the above findings,
The gist thereof is a conductive composition characterized in that a conductive metal film is uniformly formed on the surface of inorganic fine particles in an amount of 8% by weight or more and less than 15% by weight.

【0007】本発明に用いる導電性金属皮膜の金属とし
ては金、銀、白金、銅、錫、アルミニウム等の金属を用
いることができる。導電性の点では銀、銅、金、白金、
アルミニウム、錫の順に好ましいが、金、銀、白金は高
価であるため、第1層として銅、錫あるいはアルミニウ
ムの皮膜を形成させた後に、さらに第2層として金、銀
あるいは白金の皮膜を形成させてもよい。金属皮膜が酸
化され易い条件下にある場合には、第2層に金、銀ある
いは白金を使用することが望ましい。また着色度の点で
3層以上の組み合せでもよい。そして導電性金属皮膜が
8重量%未満の場合は、導電性が充分でないため、8重
量%以上の導電性金属皮膜の形成が必要であり、15重
量%以上の場合はその増加分に見合った導電性の向上が
見られなくなる。
Metals such as gold, silver, platinum, copper, tin and aluminum can be used as the metal of the conductive metal film used in the present invention. In terms of conductivity, silver, copper, gold, platinum,
Aluminum and tin are preferred in that order, but gold, silver and platinum are expensive, so after forming a copper, tin or aluminum film as the first layer, a gold, silver or platinum film is further formed as the second layer. You may let me. When the metal film is in a condition where it is easily oxidized, it is desirable to use gold, silver or platinum for the second layer. A combination of three or more layers may be used in terms of coloring degree. If the conductive metal film is less than 8% by weight, the conductivity is not sufficient, so it is necessary to form the conductive metal film in an amount of 8% by weight or more, and in the case of 15% by weight or more, the increase is commensurate. No improvement in conductivity can be seen.

【0008】担体としての微粒子の表面に導電性金属を
付着させて、本発明による導電性組成物を製造するため
には、周知の真空蒸着法や還元析出法を用いることがで
きる。 これらのうちで真空蒸着法は、担体微粒子を蒸
着装置のチャンバー内にセットし、さらに蒸着源をタン
グステン製バスケットに乗せて上記のチャンバー内にセ
ットし、該チャンバー内を減圧し(約2×10-4Torr程
度まで)、次いで上記の担体微粒子を振動させながら、
上記のタングステンバスケットを加熱して上記の蒸発源
金属を蒸発せしめることにより実施することができる。
一方、還元析出法は担体微粒子を純水中に分散させ、こ
の分散液とめっき液とを混合し、次いで、攪拌しながら
この混合液にめっき用還元液を添加することにより実施
することができる。
To deposit a conductive metal on the surface of fine particles as a carrier to produce the conductive composition of the present invention, a well-known vacuum vapor deposition method or reduction deposition method can be used. Among them, in the vacuum vapor deposition method, carrier fine particles are set in a chamber of a vapor deposition apparatus, a vapor deposition source is placed on a tungsten basket and set in the above chamber, and the pressure in the chamber is reduced (about 2 × 10 5 -4 Torr), then while vibrating the above carrier fine particles,
It can be carried out by heating the tungsten basket to evaporate the evaporation source metal.
On the other hand, the reduction precipitation method can be carried out by dispersing carrier fine particles in pure water, mixing the dispersion with a plating solution, and then adding a reducing solution for plating to the mixed solution with stirring. ..

【0009】これらの両方法のうちで、真空蒸着法は蒸
着金属の照射方向が限定されるために、導電性金属を担
体微粒子上に均斉に付着させる目的で担体微粒子に振動
を与えて転動させる必要がある。従って、担体微粒子の
粒径が揃っていないと導電性金属の付着量に差が生じる
が、一方、還元析出法によれば分散した状態の担体微粒
子上に導電性金属が析出するので均斉な付着が可能であ
り、付着量の制御も容易なので前者よりも後者の方法が
望ましい。
Of these two methods, the vacuum vapor deposition method limits the irradiation direction of the vapor-deposited metal. Therefore, the carrier fine particles are vibrated and rolled for the purpose of uniformly depositing the conductive metal on the carrier fine particles. Need to let. Therefore, if the particle size of the carrier fine particles is not uniform, the amount of the conductive metal adhered differs, but on the other hand, according to the reduction precipitation method, the conductive metal is deposited on the dispersed carrier fine particles, so that the uniform adhesion is achieved. The latter method is preferable to the former method because it is possible to control the amount of adhesion.

【0010】本発明に用いる担体となる無機質の微粒子
は、アスペクト比4以上であり(本発明におけるアスペ
クト比は、微粒子の分散液を乾燥したものをSEMで測
定した)、平均直径が0.2μm以上であって2.0μm
未満であればマトリックスに混練が可能であり、粒子を
マトリックス中に配向させた場合はより高い導電性が得
られる。そして担体微粒子としては、無電解めっきをす
る際に変化しない物であれば何でもよく、チタン酸カリ
ウム、酸化チタン、炭化珪素、酸化アルミニウム、ホウ
酸アルミニウム等を使用することができる。
The inorganic fine particles used as the carrier in the present invention have an aspect ratio of 4 or more (the aspect ratio in the present invention is a dispersion of fine particles dried by SEM) and has an average diameter of 0.2 μm. More than 2.0 μm
When it is less than the above value, the matrix can be kneaded, and when the particles are oriented in the matrix, higher conductivity can be obtained. As the carrier fine particles, any substance that does not change during electroless plating may be used, and potassium titanate, titanium oxide, silicon carbide, aluminum oxide, aluminum borate or the like can be used.

【0011】本発明の導電性組成物は、各種ポリマー
(ポリエステル、ナイロン、アクリル)、繊維、フィル
ム、プラスチック成形品、ペイント等に添加され静電気
防止、電磁波シールド、低温発熱体等に使用することが
できる。
The conductive composition of the present invention is added to various polymers (polyester, nylon, acrylic), fibers, films, plastic moldings, paints and the like, and can be used for antistatic, electromagnetic wave shielding, low temperature heating elements and the like. it can.

【0012】[0012]

【実施例等】次に、本発明による導電性組成物の製造例
および使用例により、本発明をさらに詳細に説明する。
なお、下記における%および部は、別段の記載がない限
り重量基準によるものである。 製造例1 (1)下記の3種類の液を調製した。 (A)担体微粒子分散液 担体微粒子100gを純水500ミリリットルに分散させたも
の。 (B)銀めっき液 硝酸銀18.0gを純水に溶解して1,000ミリリットルとし
た後に、水酸化アンモニウムを添加してpHを11に調
整したもの。 (C)銀めっき用還元液 酒石酸カリウムナトリウム(4水和物)62gを純水によ
り溶解して500ミリリットルとなし、液温を30℃に保
ったもの。 (2)操作 担体微粒子としてチタン酸カリウム(アスペクト比5、
平均直径0.5μm)を用い、上記の分散液(A)に銀めっ
き液(B)を添加して混合し、液温を30℃で攪拌しなが
ら、上記の銀めっき用還元液(C)を添加して攪拌するこ
とにより、銀イオンを完全に還元させ、さらに1時間攪
拌を継続した。その後に攪拌を中止し、No.5C濾紙
を用いて吸引濾過し、純水で充分に洗浄し、80℃の空
気乾燥機内で12時間乾燥することにより、所望の導電
性組成物を得た。この導電性組成物における銀の付着状
態をEPMAにて観察したところ、チタン酸カリウム粉
末の表面に銀が均斉に付着していることが判明した。化
学分析によれば、銀の付着量は10.0%であった。
EXAMPLES Next, the present invention will be described in more detail with reference to production examples and use examples of the conductive composition according to the present invention.
The% and parts in the following are based on weight unless otherwise specified. Production Example 1 (1) The following three types of liquid were prepared. (A) Carrier fine particle dispersion A dispersion of 100 g of carrier fine particles in 500 ml of pure water. (B) Silver plating solution 18.0 g of silver nitrate was dissolved in pure water to make 1,000 ml, and ammonium hydroxide was added to adjust the pH to 11. (C) Reducing solution for silver plating A solution in which 62 g of potassium sodium tartrate (tetrahydrate) was dissolved in pure water to make 500 ml and the solution temperature was kept at 30 ° C. (2) Operation Potassium titanate (aspect ratio 5,
Using an average diameter of 0.5 μm), the silver plating solution (B) was added to and mixed with the above dispersion liquid (A), and the reducing solution for silver plating (C) was added while stirring at a liquid temperature of 30 ° C. By adding and stirring, the silver ion was completely reduced, and the stirring was further continued for 1 hour. Thereafter, the stirring was stopped, suction filtration was performed using No. 5C filter paper, the mixture was thoroughly washed with pure water, and dried in an air dryer at 80 ° C. for 12 hours to obtain a desired conductive composition. When the state of silver adhesion in this conductive composition was observed by EPMA, it was found that silver was uniformly adhered to the surface of the potassium titanate powder. According to chemical analysis, the amount of silver deposited was 10.0%.

【0013】製造例2 銀めっき液中の硝酸銀溶解量を27.9gとし、銀めっき用
還元液中の酒石酸カリウムナトリウム(4水和物)量を10
0gとしたこと以外は、製造例1と全く同様にして導電
性組成物を得た。この導電性組成物における銀の付着状
態をEPMAにて観察したところ、チタン酸カリウム粉
末の表面に銀が均斉に付着していることが判明した。化
学分析によれば、銀の付着量は14.0%であった
Production Example 2 The amount of silver nitrate dissolved in the silver plating solution was 27.9 g, and the amount of potassium sodium tartrate (tetrahydrate) in the reducing solution for silver plating was 10%.
A conductive composition was obtained in exactly the same manner as in Production Example 1, except that the amount was 0 g. When the state of silver adhesion in this conductive composition was observed by EPMA, it was found that silver was uniformly adhered to the surface of the potassium titanate powder. Chemical analysis showed a silver deposit of 14.0%

【0014】製造例3 担体微粒子として酸化チタン(アスペクト比4、平均直
径0.7μm)を用いたこと以外は、製造例1と全く同様に
して導電性組成物を得た。この導電性組成物における銀
の付着状態をEPMAにて観察したところ、酸化チタン
粉末の表面に銀が均斉に付着していることが判明した。
化学分析によれば、銀の付着量は10.0%であった。
Production Example 3 A conductive composition was obtained in exactly the same manner as in Production Example 1 except that titanium oxide (aspect ratio 4, average diameter 0.7 μm) was used as the carrier fine particles. When the state of silver adhesion in this conductive composition was observed by EPMA, it was found that silver was uniformly adhered to the surface of the titanium oxide powder.
According to chemical analysis, the amount of silver deposited was 10.0%.

【0015】製造例4 担体微粒子として前記の酸化チタンを用いたこと以外
は、製造例2と全く同様にして導電性組成物を得た。こ
の導電性組成物における銀の付着状態をEPMAにて観
察したところ、酸化チタン粉末の表面に銀が均斉に付着
していることが判明した。化学分析によれば、銀の付着
量は14.0%であった。
Production Example 4 A conductive composition was obtained in exactly the same manner as in Production Example 2 except that the above titanium oxide was used as the carrier fine particles. When the state of silver adhesion in this conductive composition was observed by EPMA, it was found that silver was uniformly adhered to the surface of the titanium oxide powder. According to chemical analysis, the amount of deposited silver was 14.0%.

【0016】製造例5 担体微粒子として炭化珪素(アスペクト比4.5、平均直
径1.5μm)を用いたこと以外は、製造例1と全く同様に
して導電性組成物を得た。この導電性組成物における銀
の付着状態をEPMAにて観察したところ、炭化珪素粉
末の表面に銀が均斉に付着していることが判明した。化
学分析によれば、銀の付着量は10.0%であった。
Production Example 5 A conductive composition was obtained in exactly the same manner as in Production Example 1 except that silicon carbide (aspect ratio 4.5, average diameter 1.5 μm) was used as the carrier fine particles. When the state of silver adhesion in this conductive composition was observed by EPMA, it was found that silver was uniformly adhered to the surface of the silicon carbide powder. According to chemical analysis, the amount of silver deposited was 10.0%.

【0017】製造例6 担体微粒子として前記の炭化珪素を用いたこと以外は、
製造例2と全く同様にして導電性組成物を得た。この導
電性組成物における銀の付着状態をEPMAにて観察し
たところ、炭化珪素粉末の表面に銀が均斉に付着してい
ることが判明した。化学分析によれば、銀の付着量は1
4.0%であった。
Production Example 6 Except that the above-mentioned silicon carbide was used as the carrier fine particles,
A conductive composition was obtained in exactly the same manner as in Production Example 2. When the state of silver adhesion in this conductive composition was observed by EPMA, it was found that silver was uniformly adhered to the surface of the silicon carbide powder. Chemical analysis shows a silver deposit of 1
It was 4.0%.

【0018】製造例7 担体微粒子として酸化アルミニウム(アスペクト比5.
5、平均直径1.2μm)を用いたこと以外は、製造例1と
全く同様にして導電性組成物を得た。この導電性組成物
における銀の付着状態をEPMAにて観察したところ、
酸化アルミニウム粉末の表面に銀が均斉に付着している
ことが判明した。化学分析によれば、銀の付着量は10.0
%であった。
Production Example 7 Aluminum oxide (aspect ratio 5.
5, an average diameter of 1.2 μm) was used, and a conductive composition was obtained in exactly the same manner as in Production Example 1. When the adhesion state of silver in this conductive composition was observed by EPMA,
It was found that silver was uniformly attached to the surface of the aluminum oxide powder. According to chemical analysis, the amount of silver deposited is 10.0.
%Met.

【0019】製造例8 担体微粒子として前記の酸化アルミニウムを用いたこと
以外は、製造例2と全く同様にして導電性組成物を得
た。この導電性組成物における銀の付着状態をEPMA
にて観察したところ、酸化アルミニウム粉末の表面に銀
が均斉に付着していることが判明した。化学分析によれ
ば、銀の付着量は14.0%であった。
Production Example 8 A conductive composition was obtained in exactly the same manner as in Production Example 2 except that the above aluminum oxide was used as the carrier fine particles. The state of adhesion of silver in this conductive composition is determined by EPMA.
As a result, it was found that silver was uniformly attached to the surface of the aluminum oxide powder. According to chemical analysis, the amount of deposited silver was 14.0%.

【0020】製造例9 (1)次の銅めっき液および銅めっき用還元液を調整し
た。 (D)銅めっき液 硫酸銅(5水和物)45.0g、酒石酸カリウムナトリウム
(4水和物)90gおよび水酸化ナトリウム25gを純水によ
り溶解して550ミリリットルとなしたもの。 (E)銅めっき用還元液 37%のホルムアルデヒド溶液240ミリリットルであっ
て、液温30℃に保たれたもの。 (2)操作 担体微粒子として前記のチタン酸カリウムを用い製造例
1と同様に調整した分散液(A)に銅めっき液(D)を添加
して混合し、液温を30℃で攪拌しながら上記の銅めっき
用還元液(E)を添加して攪拌することにより銅イオンを
完全に還元させ、さらに1時間攪拌を継続した。その後
に攪拌を中止し、No.5C濾紙を用いて吸引濾過し、
純水で充分に洗浄し、80℃の空気乾燥機内で12時間
乾燥することにより、所望の導電性組成物を得た。この
導電性組成物における銅の付着状態をEPMAにて観察
したところ、チタン酸カリウム粉末の表面に銅が均斉に
付着していることが判明した。化学分析によれば、銅の
付着量は10.0%であった。
Production Example 9 (1) The following copper plating solutions and copper plating reducing solutions were prepared. (D) Copper plating solution Copper sulfate (pentahydrate) 45.0 g, potassium sodium tartrate
(Tetrahydrate) 90 g and 25 g of sodium hydroxide were dissolved in pure water to make 550 ml. (E) Copper plating reducing solution 240 ml of 37% formaldehyde solution kept at a liquid temperature of 30 ° C. (2) Operation The copper plating solution (D) was added to and mixed with the dispersion solution (A) prepared in the same manner as in Production Example 1 using the above-mentioned potassium titanate as the carrier fine particles, while stirring at a liquid temperature of 30 ° C. The copper ion was completely reduced by adding the above reducing solution (E) for copper plating and stirring, and stirring was further continued for 1 hour. After that, the stirring is stopped, suction filtration is performed using No. 5C filter paper,
It was thoroughly washed with pure water and dried in an air dryer at 80 ° C. for 12 hours to obtain a desired conductive composition. When the state of copper adhesion in this conductive composition was observed by EPMA, it was found that copper was uniformly adhered to the surface of the potassium titanate powder. According to chemical analysis, the amount of copper deposited was 10.0%.

【0021】製造例10 銅めっき液中の硫酸銅溶解量を69.6gとし、銅めっき用
還元液中の酒石酸カリウムナトリウム(4水和物)量を19
1gとしたこと以外は、製造例9と全く同様にして導電
性組成物を得た。この導電性組成物における導の付着状
態をEPMAにて観察したところ、チタン酸カリウム粉
末の表面に銅が均斉に付着していることが判明した。化
学分析によれば、銅の付着量は14.0%であった。
Production Example 10 The amount of copper sulfate dissolved in the copper plating solution was 69.6 g, and the amount of potassium sodium tartrate (tetrahydrate) in the copper plating reducing solution was 19
A conductive composition was obtained in exactly the same manner as in Production Example 9 except that the amount was 1 g. Observation of the conductive adhesion state in this conductive composition by EPMA revealed that copper was uniformly adhered to the surface of the potassium titanate powder. According to chemical analysis, the amount of copper deposited was 14.0%.

【0022】製造例11 担体微粒子として前記の酸化チタンを用いたこと以外
は、製造例9と全く同様にして導電性組成物を得た。こ
の導電性組成物における銅の付着状態をEPMAにて観
察したところ、酸化チタン粉末の表面に銅が均斉に付着
していることが判明した。化学分析によれば、銅の付着
量は10.0%であった。
Production Example 11 A conductive composition was obtained in exactly the same manner as Production Example 9 except that the above titanium oxide was used as the carrier fine particles. When the state of copper adhesion in this conductive composition was observed with EPMA, it was found that copper was uniformly adhered to the surface of the titanium oxide powder. According to chemical analysis, the amount of copper deposited was 10.0%.

【0023】製造例12 担体微粒子として前記の酸化チタンを用いたこと以外
は、製造例10と全く同様にして導電性組成物を得た。
この導電性組成物における銅の付着状態をEPMAにて
観察したところ、酸化チタン粉末の表面に銅が均斉に付
着していることが判明した。化学分析によれば、銅の付
着量は14.0%であった。
Production Example 12 A conductive composition was obtained in exactly the same manner as in Production Example 10 except that the above titanium oxide was used as the carrier fine particles.
When the state of copper adhesion in this conductive composition was observed with EPMA, it was found that copper was uniformly adhered to the surface of the titanium oxide powder. According to chemical analysis, the amount of copper deposited was 14.0%.

【0024】製造例13 担体微粒子として前記の炭化珪素を用いたこと以外は、
製造例9と全く同様にして導電性組成物を得た。この導
電性組成物における銅の付着状態をEPMAにて観察し
たところ、炭化珪素粉末の表面に銅が均斉に付着してい
ることが判明した。化学分析によれば、銅の付着量は1
0.0%であった。
Production Example 13 Except that the above-mentioned silicon carbide was used as the carrier fine particles,
A conductive composition was obtained in exactly the same manner as in Production Example 9. When the state of copper adhesion in this conductive composition was observed with EPMA, it was found that copper was uniformly adhered to the surface of the silicon carbide powder. Chemical analysis shows a copper deposit of 1
It was 0.0%.

【0025】製造例14 担体微粒子として前記の炭化珪素を用いたこと以外は、
製造例10と全く同様にして導電性組成物を得た。この
導電性組成物における銅の付着状態をEPMAにて観察
したところ、炭化珪素粉末の表面に銅が均斉に付着して
いることが判明した。化学分析によれば、銅の付着量は
14.0%であった。
Production Example 14 Except that the above-mentioned silicon carbide was used as the carrier fine particles,
A conductive composition was obtained in exactly the same manner as in Production Example 10. When the state of copper adhesion in this conductive composition was observed with EPMA, it was found that copper was uniformly adhered to the surface of the silicon carbide powder. According to chemical analysis, the amount of copper deposited is
It was 14.0%.

【0026】製造例15 担体微粒子として前記の酸化アルミニウムを用いたこと
以外は、製造例9と全く同様にして導電性組成物を得
た。この導電性組成物における銅の付着状態をEPMA
にて観察したところ、酸化アルミニウム粉末の表面に銅
が均斉に付着していることが判明した。化学分析によれ
ば銅の付着量は10.0%であった。
Production Example 15 A conductive composition was obtained in exactly the same manner as in Production Example 9 except that the above aluminum oxide was used as the carrier fine particles. The state of adhesion of copper in this conductive composition is measured by EPMA.
As a result, it was found that copper was uniformly attached to the surface of the aluminum oxide powder. According to the chemical analysis, the amount of copper deposited was 10.0%.

【0027】製造例16 担体微粒子として前記の酸化アルミニウムを用いたこと
以外は、製造例10と全く同様にして導電性組成物を得
た。この導電性組成物における銅の付着状態をEPMA
にて観察したところ、酸化アルミニウム粉末の表面に銅
が均斉に付着していることが判明した。化学分析によれ
ば、銅の付着量は14.0%であった。
Production Example 16 A conductive composition was obtained in exactly the same manner as in Production Example 10 except that the above aluminum oxide was used as the carrier fine particles. The state of adhesion of copper in this conductive composition is measured by EPMA.
As a result, it was found that copper was uniformly attached to the surface of the aluminum oxide powder. According to chemical analysis, the amount of copper deposited was 14.0%.

【0028】製造例17 製造例9で得られた、銅を10.0%付着させたチタン酸カ
リウム微粒子114.0gに製造例1と同様の方法で、銀め
っき液の硝酸銀を9.6gとして、銀めっき用還元液の酒
石酸カリウムナトリウム(4水和物)を50gとして操作し
た後に攪拌を中止し、No.5C濾紙を用いて吸引濾過
し、純水で充分に洗浄し、さらにこの粉末を純水中に分
散させ、攪拌しながらヒドラジンヒドラードを加えて液
温を80℃にして10分間処理したところ、暗銀灰色の
微粒子を得た。この微粒子を化学分析により、銅および
銀の含有率を調べたところ、銅は9.5%、銀は5.1%であ
った。
Production Example 17 114.0 g of potassium titanate fine particles to which 10.0% of copper was adhered, which was obtained in Production Example 9, was used in the same manner as in Production Example 1 to adjust the silver nitrate of the silver plating solution to 9.6 g for silver plating. After operating 50 g of potassium sodium tartrate (tetrahydrate) as a reducing solution, the stirring was stopped, suction filtration was performed using No. 5C filter paper, and the powder was thoroughly washed with pure water. When dispersed, hydrazine hydrado was added while stirring and the temperature was adjusted to 80 ° C. for 10 minutes to obtain dark silver gray fine particles. When the contents of copper and silver were examined by chemical analysis for these fine particles, copper was 9.5% and silver was 5.1%.

【0029】製造例18 製造例13で得られた、銅を10.0%付着させた炭化珪素
微粒子114.0gに製造例1と同様の方法で、銀めっき液
の硝酸銀を19gとして、銀めっき用還元液の酒石酸カリ
ウムナトリウム(4水和物)を100gとして操作した後に
攪拌を中止し、No5C濾紙を用いて吸引濾過し、純水
で充分に洗浄し、さらにこの粉末を純水中に分散させ、
攪拌しながらSBHを加えて液温を80℃にして10分
間処理したところ、銀灰色の微粒子を得た。この微粒子
を化学分析により、銅および銀の含有率を調べたとこ
ろ、銅は8.9%、銀は9.6%であった。
Production Example 18 114.0 g of the silicon carbide fine particles to which 10.0% of copper was adhered, which was obtained in Production Example 13, was changed to 19 g of silver nitrate in the silver plating solution in the same manner as in Production Example 1 to obtain a reducing solution for silver plating. After operating as 100 g of potassium sodium tartrate (tetrahydrate) of 100 g, the stirring was stopped, suction filtration was performed using No5C filter paper, thoroughly washed with pure water, and this powder was further dispersed in pure water.
SBH was added while stirring and the temperature of the solution was adjusted to 80 ° C. for 10 minutes to obtain silver gray fine particles. When the contents of copper and silver were examined by chemical analysis of these fine particles, copper was 8.9% and silver was 9.6%.

【0030】製造例19 製造例17で得られた、銅を9.5%、銀を5.1%付着させ
たチタン酸カリウム微粒子120.0gを純水500ミリリット
ル中に分散させ、ついで塩化金酸16.3gを純水1000ミリ
リットルに溶解しアンモニア水を加えてpHを11に調
整した溶液を加えて約60℃に加温しながら、攪拌下で
ヒドラジンヒドラード5%水溶液150ミリリットルを加え
て反応させたところ、褐色の微粒子を得た。この微粒子
について化学分析により、銅、銀および金の含有率を調
べたところ、銅9.1%、銀4.9%、金4.0%であった。
Production Example 19 120.0 g of potassium titanate fine particles having 9.5% of copper and 5.1% of silver obtained in Production Example 17 were dispersed in 500 ml of pure water, and 16.3 g of chloroauric acid was purified. A solution was prepared by dissolving it in 1000 ml of water, adding ammonia water to adjust the pH to 11, and heating to about 60 ° C., and adding 150 ml of a 5% aqueous solution of hydrazine hydrate while stirring to cause a reaction. The fine particles of When the contents of copper, silver and gold were examined by chemical analysis for these fine particles, they were 9.1% for copper, 4.9% for silver and 4.0% for gold.

【0031】製造例20 チタン酸カリウム微粒子(アスペクト比5、平均直径0.
5μm)200gを蒸着装置のチャンバー内にセットし、蒸
着源(アルミニウム切片)をタングステン製バスケット
に乗せて上記のチャンバー内にセットし、該チャンバー
内を減圧し(2×10-4Torr)、次いで上記のチタン酸カ
リウム微粒子を振動させながら上記のタングステンバス
ケットを加熱して、上記の蒸着源金属を25g分蒸発した
ところ、灰白色の微粒子を得た。この微粒子について化
学分析により、アルミニウムの含有率を調べたところ、
アルミニウム12%であった。
Production Example 20 Fine particles of potassium titanate (aspect ratio: 5, average diameter: 0.
5 μm) 200 g was set in the chamber of the vapor deposition apparatus, the vapor deposition source (aluminum slice) was placed on the tungsten basket and set in the above chamber, and the pressure inside the chamber was reduced (2 × 10 −4 Torr), and then The above tungsten basket was heated while vibrating the above potassium titanate fine particles to evaporate 25 g of the above vapor deposition source metal, whereby grayish white fine particles were obtained. When the content of aluminum was examined by chemical analysis for these fine particles,
It was 12% aluminum.

【0032】上記で得たアルミニウムを付着したチタン
酸カリウム微粒子を65gずつ2個取り、それぞれ純水50
0ミリリットルに分散させて、一方には製造例17と同
様に銀を付着させ、他方は製造例19と同様の方法で塩
化金酸を22.9gとし、ヒドラジンヒドラード5%水溶液
を215ミリリットルとした以外は同一として金を付着さ
せた。上記で得た、銀を付着させた微粒子の銀とアルミ
ニウムの含有率は、銀8.6%、アルミニウム11.0%であ
った。また、金を付着させた微粒子の金とアルミニウム
の含有率は、金9.7%、アルミニウム10.8%であった。
そして製造例1〜20で調整した種々の微粒子の比抵抗
は、0.8×10-2Ωcm〜1.2×10-2Ωcmに入る
ものであった。
Two pieces of 65 g each of the aluminum titanate fine particles to which aluminum had been obtained were taken, and each of them was diluted with pure water 50
Dispersed in 0 ml, silver was attached to one of them in the same manner as in Production Example 17, and the other was made to have 22.9 g of chloroauric acid and 215 ml of a 5% hydrazine hydrate solution in the same manner as in Production Example 19. Other than that, gold was attached as the same. The content ratio of silver and aluminum in the fine particles to which silver was attached was 8.6% for silver and 11.0% for aluminum. Further, the content ratio of gold and aluminum of the fine particles to which gold was adhered was 9.7% gold and 10.8% aluminum.
The specific resistance of the various particles prepared in Production Example 1-20 was intended to fall 0.8 × 10 -2 Ωcm~1.2 × 10 -2 Ωcm.

【0033】使用例1 上記の製造例にて調製した比抵抗0.8×10-2Ωcm
〜1.2×10-2Ωcmの導電性組成物を40%、50
%それぞれ分子量約17,000、融点215℃のナイロン26
に混練したポリマーを芯に、同じナイロン6ポリマーを
鞘に用い、複合比1:10で複合し、直径0.3mmのオ
リフィスから280℃で押し出し、1,000m/minの
速度で巻き取った。このナイロン繊維ををホットピンを
用い3倍に延伸し、20デニールのナイロンフィラメン
トを得た。得られたフィラメントの比抵抗は全て、10
2Ωcm以下の優れた導電性を示した。
Use Example 1 Specific resistance prepared in the above production example 0.8 × 10 -2 Ωcm
~ 1.2 x 10 -2 Ωcm conductive composition 40%, 50
% Nylon 26 with a molecular weight of about 17,000 and a melting point of 215 ° C
The kneaded polymer was used as the core, and the same nylon 6 polymer was used as the sheath, and the mixture was compounded at a compounding ratio of 1:10, extruded from an orifice having a diameter of 0.3 mm at 280 ° C., and wound at a speed of 1,000 m / min. This nylon fiber was stretched 3 times using a hot pin to obtain a 20 denier nylon filament. The specific resistance of all the obtained filaments is 10
It showed excellent conductivity of 2 Ωcm or less.

【0034】参考例1 製造例1と同様の方法にて銀皮膜5%を形成せしめた球
状の酸化チタン微粒子(比抵抗5×105Ωcm)を70
%混練したナイロン6を芯にしたフィラメントの比抵抗
は106Ωcmとなり、好ましい導電性を示さなかっ
た。
Reference Example 1 Spherical titanium oxide fine particles (specific resistance: 5 × 10 5 Ωcm) having a silver film of 5% formed by the same method as in Production Example 1 were used.
%, The specific resistance of the filament having the nylon 6 core kneaded was 10 6 Ωcm, which did not show preferable conductivity.

【0035】[0035]

【発明の効果】上述のことから、本発明により次の効果
がもたらされる。 (1)アスペクト比が4以上の無機質導電性微粒子を用い
ることにより、高い導電性を得ることができる。 (2)導電性が優れ、かつ銀や銅の使用量が従来品に比較
して少なくてすむので相対的に廉価に供給することがで
きる。 (3)無機質微粒子に銅や銀の皮膜を形成せしめるもので
あるから、従来品に比べて比重が小であるので混練時の
沈降性も軽減される。 (4)また混練成型品の着色が少なく、かつ製造が容易で
ある。さらに無機質の微粒子の表面に銀や銅の皮膜が形
成されるので、従来品の銀粉や銅粉のみの粒子に比較し
て表面積が大である。
From the above, the following effects are brought about by the present invention. (1) High conductivity can be obtained by using the inorganic conductive fine particles having an aspect ratio of 4 or more. (2) Since it has excellent conductivity and the amount of silver or copper used is smaller than that of conventional products, it can be supplied relatively inexpensively. (3) Since the inorganic fine particles form a film of copper or silver, the specific gravity is smaller than that of the conventional product, and the sedimentation property during kneading is also reduced. (4) Further, the kneading-molded product has little coloring and is easy to manufacture. Furthermore, since a film of silver or copper is formed on the surface of the inorganic fine particles, the surface area is larger than that of conventional particles containing only silver powder or copper powder.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 無機質の微粒子の表面に導電性金属皮膜
が8重量%以上15重量%未満均斉に形成せしめられて
いることを特徴とする導電性組成物。
1. A conductive composition, wherein a conductive metal film is uniformly formed on the surface of the inorganic fine particles in an amount of 8% by weight or more and less than 15% by weight.
【請求項2】 導電性金属皮膜が金、銀、白金、銅、
錫、アルミニウムのうちの少なくとも一つよりなる請求
項1記載の導電性組成物。
2. The conductive metal film is gold, silver, platinum, copper,
The conductive composition according to claim 1, comprising at least one of tin and aluminum.
【請求項3】 無機質の微粒子が、アスペクト比4以上
であり、平均直径が0.2μm以上2μm未満のチタン
酸カリウム、酸化チタン、炭化珪素、酸化アルミニウ
ム、ホウ酸アルミニウムのうち少なくとも一つよりなる
請求項1記載の導電性組成物。
3. The inorganic fine particles are made of at least one of potassium titanate, titanium oxide, silicon carbide, aluminum oxide and aluminum borate having an aspect ratio of 4 or more and an average diameter of 0.2 μm or more and less than 2 μm. The conductive composition according to claim 1.
JP3273490A 1991-09-26 1991-09-26 Electric conductive composition Pending JPH0578862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3273490A JPH0578862A (en) 1991-09-26 1991-09-26 Electric conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3273490A JPH0578862A (en) 1991-09-26 1991-09-26 Electric conductive composition

Publications (1)

Publication Number Publication Date
JPH0578862A true JPH0578862A (en) 1993-03-30

Family

ID=17528633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3273490A Pending JPH0578862A (en) 1991-09-26 1991-09-26 Electric conductive composition

Country Status (1)

Country Link
JP (1) JPH0578862A (en)

Similar Documents

Publication Publication Date Title
US5945158A (en) Process for the production of silver coated particles
JP6789129B2 (en) Conductive polymer composite
KR101082932B1 (en) method for manufacturing metal coated carbon nano tube and metal coated carbon nano tube manufactured by the method
CN108728835B (en) Preparation method of material with silver-plated surface
US20060073335A1 (en) Conductive electrolessly plated powder and method for making same
TW200904565A (en) Metal-nanoparticle dispersion solution, production method thereof, and method of synthesizing metal-nanoparticle
CN109423637B (en) Preparation method of high-conductivity material
CN111318689B (en) Silver-coated copper powder with shell-core structure and preparation method and application thereof
CN114260450B (en) Silver-plated micron-sized particles and preparation method and application thereof
CN110330678B (en) Antibacterial flame-retardant polycaprolactone film and preparation method thereof
JPH02225402A (en) Antibacterial composition
JP3766161B2 (en) Coated powder, silver-coated copper powder and method for producing the same, conductive paste and conductive film
JPH0578862A (en) Electric conductive composition
JPH02268104A (en) Antimicrobial composition
JPH02168698A (en) Conductive resin film and manufacture thereof
WO1994002660A1 (en) Phosphorus-containing, crystalline, nickel-coated fabric
JPH02268103A (en) Antimicrobial composition
JPH0494009A (en) Conductive compound
JP6076249B2 (en) Coated fibrous copper fine particles, and conductive coating agent and conductive film containing the coated fibrous copper fine particles
CN114164510A (en) Preparation method of polypropylene fiber
JPH0347850A (en) Electrically conductive composition
KR20160099513A (en) Method of Preapring Silver Coated Copper Nanowire
TWI516364B (en) Method of manufacturing silver miniwire films
JPS6241238A (en) Electroconductive filler
CN114226725B (en) Silver-modified micron-sized particles, and preparation method and application thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081022

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091022

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11