JPH0568655B2 - - Google Patents

Info

Publication number
JPH0568655B2
JPH0568655B2 JP59010493A JP1049384A JPH0568655B2 JP H0568655 B2 JPH0568655 B2 JP H0568655B2 JP 59010493 A JP59010493 A JP 59010493A JP 1049384 A JP1049384 A JP 1049384A JP H0568655 B2 JPH0568655 B2 JP H0568655B2
Authority
JP
Japan
Prior art keywords
value
concentration
calibration curve
standard solution
log
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59010493A
Other languages
Japanese (ja)
Other versions
JPS60154161A (en
Inventor
Hideki Yamamoto
Kazuo Furusawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP59010493A priority Critical patent/JPS60154161A/en
Publication of JPS60154161A publication Critical patent/JPS60154161A/en
Publication of JPH0568655B2 publication Critical patent/JPH0568655B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明は、免疫反応測定装置を用いて免疫反応
測定の際に使用する検量線の作成方法に関するも
のである。 (ロ) 従来技術 免疫反応の測定においては、抗原抗体反応液に
光を照射し、光の吸光度又は散乱光強度を測定
し、濃度測定を行なうのであるが、濃度未知の測
定対象を検出するものであるから、測定開始前に
反応容器に所定量の抗原の標準品(血清)と所定
量の抗体(抗血清)とを加え、所定時間反応させ
た後に光を照射し、光の吸光度又は散乱光強度を
分光光度計又はネフエロメータにより測定し、標
準品の濃度と吸光度又は散乱光強度との関係をグ
ラフにプロツトし、検量線を作成していた。 この種の検量線を作成するにあたつて、後述す
る所であるが免疫反応の場合、測定範囲が高濃度
域から低濃度域までの広い範囲にわたるもので、
かつ測定項目により濃度範囲が異なるため検量線
が曲線となり、測定項目によつて曲線の形状が変
るため、いろいろな曲線の近似式(例えば、2次
式、3次式、log,logit−log1次式、logit−log2
次式など)をもつており、測定項目毎に使い分け
をするため、操作が面倒になるという欠点があつ
た。 (ハ) 目的 本発明は、前記した従来技術の有する欠点を解
消するもので、標準液の濃度値の低い方から2番
目の標準液を基準にしてlogの多項式を用いて検
量線を作成することにより、標準液の濃度値に対
するlogをとつたものの分散度合が均等となり、
測定項目に拘わらず高濃度領域から低濃度領域に
わたる測定範囲に適用しうる近似式を用いての検
量線の作成方法を提供することを目的とする。 (ニ) 構成 本発明は、複数の標準液の濃度値xiをXi=log
(1+xi/k)(kは測定項目により変更する)か
ら求め、前記した標準液に光を照射し、吸光度値
又は散乱光強度値yiにより決定される点(Xi,yi
を用いて、2次式y=aX2+bX+c、又は3次
式y=aX3+bX2+cX+dによる最小自乗法近似
により係数a,b,c,d又はa,b,cを求
め、Xiの分散がほぼ均等な検量線を作成するもの
である。 (ホ) 実施例 以下において、説明の便宜上、従来技術と本発
明の実施例とを比較しながら説明する。 第1図は免疫反応の濃度xiと測定値yiとの関係
を示し、第2図と第3図では実線により従来の検
量線作成方法により作成された検量線と、点線は
本発明により作成し、修正された検量線とを示
し、第4図はXi=log(1+xi)により得られたも
のでXiの分散が不均等なためうまく適合しない場
合の検量線を示し、第5図は本発明の検量線作成
方法により作成されたもので、最適のkを用いて
Xiの分散が均等になつた検量線を示し、第6図は
kの値を自動的に標準液の濃度値の最低値std1
決めた場合のXiの分散例を、第7図はkの値を自
動的に標準液の濃度値の2番目に低い値std2に定
めた場合のXiの分散例を示す。 第1図に、3項目の免疫反応の測定において、
横軸に濃度xiを、縦軸に反応容器に光を照射した
ときの光の吸光度値又は光散乱強度yiをとり、濃
度xiと光の吸光度値又は光散乱強度値yiの関係を
近似式によらずに、単にその傾向を概念的に示し
たものである。 ところで、免疫反応の測定においては、前述し
たように測定項目の相違により高濃度域から低濃
度域にわたる広い範囲に及ぶ測定領域を測定する
必要があり、また測定項目によりその濃度範囲が
異なるものである。 そして、事前に検量線を作成する場合には、横
軸に濃度値xiを、縦軸に吸光度値又は光散乱強度
値yiをとり、標準液の入つている容器に光を照射
するが、標準液の濃度は既知であり、そしてその
ときに得られた吸光度値又は光散乱強度値との交
点をプロツトし、次に異なつた濃度を持つ標準液
の入つている容器に光を照射し、同様の手法によ
つてプロツトし、これらのプロツト点の値yiを適
当な近似式にあてはめて最小自乗近似法により検
量線を作成する。 従来は、標準液の数が3点以上に及ぶときは、
標準液の濃度値xiに対応する吸光度値又は光散乱
強度値yiを2次式y=ax2+bx+cにあてはめ、
最小自乗近似法により係数a,b,cを求めて検
量線を作成し、標準液の数が4点以上に及ぶとき
は3次式y=ax3+bx2+cx+dにあてはめ、最
小自乗近似法により検量線を作成する場合が多
い。 このようにして得られた検量線の例を第2図と
第3図に示す。 第2図において実線で示すものは標準液の数が
4点以上に及ぶ場合で、標準液の濃度値xiと、標
準液の入つている容器に光を照射し、得られた吸
光度値又は光散乱強度値yiを3次式y=ax3+bx2
+cx+dにあてはめ、最小自乗近似法により係
数a,b,c,dを求めて作成された検量線であ
る。この検量線によると、プロツトされた測定点
の数が低濃度側に多く存在し、高濃度側に少しし
か存在せず、特にこの場合のように3次式近似の
場合は検量線に変曲点が生じ、高濃度域における
測定には適用できなくなつてしまうという欠点が
ある。 なお、点線で示すものは本発明の検量線作成方
法により修正された検量線を参考的に示すもの
で、その作成方法については後述するが、標準液
の濃度値xiをX=log(1+x/k)に代入して濃
度値xiを求め、前記標準液の入つている容器に光
を照射して吸光度値は光散乱強度値yiを求め、Xi
とyiを用いて3次式y=aX3+bX2+cX+dによ
る最小自乗近似により係数a,b,c,dを求め
て検量線を作成したものである。そして、kの値
は測定項目により選定した適当な値である。 第3図において実線で示すものは標準液の数が
3点以上に及ぶ場合で、標準液の濃度値xiと、標
準液の入つている容器に光を照射し、得られた吸
光度値又は光散乱強度値yiを2次式y=ax2+bx
+cであてはめ、最小自乗近似法により係数a,
b,cを求めて作成された検量線である。この検
量線は高濃度域における測定には適合している
が、低濃度域側においては最小自乗近似法により
求めた近似曲線上に標準液により求めたプロツト
点が位置せず、従つて低濃度域における実際の測
定に適用できない欠点がある。なお、点線で示す
ものは、本発明の検量線作成方法により修正され
た検量線を示す。この点線で示す検量線は、標準
液の濃度値xiをX=log(1+x/k)に代入して
濃度値xiを求め、標準液の入つている容器に光を
照射し、吸光度値又は光散乱強度値yiを求め、Xi
とyiを用いて2次式y=aX2+bX+cによる最小
自乗近似により係数a,b,cを求めて作成され
たものである。また、kの値は測定項目により選
定した適当な値である。 そこで、前記した不都合な欠点を除くために、
最小自乗法による近似を行なう場合に、プロツト
点が高濃度域から低濃度奇異にわたつて見かけ上
均等に存在せしめるようにするため、第4図に示
すように標準液の濃度値xiをX=log(1+x)の
式(kの値が1となつている場合である。)に代
入して濃度Xを求め、これをグラフにプロツトす
ることが提案された。なお、log(1+x)とした
理由は、標準液の濃度xが零、即ちx=0のとき
に濃度Xが零、即ちX=log1=0となるように配
慮したからである。このように、標準液の濃度x
をX=log(1+x)をあてはめ、得られた濃度X
と、標準液に光を照射して得られた吸光度値又は
光散乱強度値yとを3次式y=aX3+bX2+cX+
dに代入し、最小自乗法により係数a,b,c,
dを求め、検量線を作成する。 なお、点線で示したものは、本発明の検量線作
成方法により作成し、修正された検量線を示す。 しかしながら、このようにして検量線を作成し
ても測定項目により濃度範囲が、濃度xがx=
10〜1000の範囲にわたる場合、濃度xがx=
0.5〜10の範囲にわたる場合において、の場合
は最小濃度のstd値(標準値)と濃度xがx=0
との間が離れ過ぎて均等にならないという欠点が
ある。 以下に、との場合を表1と表2に示す。
(a) Industrial Application Field The present invention relates to a method for preparing a calibration curve used in immune reaction measurement using an immune reaction measurement device. (b) Prior art In measuring immune reactions, the antigen-antibody reaction solution is irradiated with light and the absorbance or scattered light intensity is measured to measure the concentration, but there is no method that detects a target of unknown concentration. Therefore, before starting measurement, a predetermined amount of antigen standard (serum) and a predetermined amount of antibody (antiserum) are added to a reaction container, and after reacting for a predetermined time, light is irradiated and the absorbance or scattering of light is measured. The light intensity was measured using a spectrophotometer or nephelometer, and the relationship between the concentration of the standard product and the absorbance or scattered light intensity was plotted on a graph to create a calibration curve. When creating this type of calibration curve, as will be discussed later, in the case of immune reactions, the measurement range spans a wide range from high concentration to low concentration.
In addition, since the concentration range differs depending on the measurement item, the calibration curve becomes a curve, and the shape of the curve changes depending on the measurement item, so various curve approximations (for example, quadratic equation, cubic equation, log, log it - log1 The following equation, log it −log2
(e.g., the following formula), which has to be used for each measurement item, which has the disadvantage of making operation cumbersome. (c) Purpose The present invention solves the drawbacks of the prior art described above, and involves creating a calibration curve using a log polynomial based on the second standard solution from the lowest concentration value of the standard solution. By doing this, the degree of dispersion of the logarithm of the concentration value of the standard solution becomes equal,
It is an object of the present invention to provide a method for creating a calibration curve using an approximation formula that can be applied to a measurement range from a high concentration region to a low concentration region regardless of the measurement item. (d) Configuration The present invention provides concentration values x i of a plurality of standard solutions as X i = log
(1+x i /k) (k changes depending on the measurement item), irradiates the standard solution described above with light, and determines the point (X i , y i ) from the absorbance value or scattered light intensity value y i
, find the coefficients a, b, c, d or a, b, c by least squares approximation using the quadratic equation y=aX 2 +bX+c or the cubic equation y=aX 3 +bX 2 +cX+d, and calculate the coefficients a, b, c, d or a, b, c of X i. This creates a calibration curve with approximately equal variance. (e) Examples In the following, for convenience of explanation, a comparison will be made between the prior art and an example of the present invention. Figure 1 shows the relationship between the immune reaction concentration x i and the measured value y i , and in Figures 2 and 3, the solid line is the calibration curve created by the conventional calibration curve creation method, and the dotted line is the calibration curve created by the present invention. Figure 4 shows the calibration curve obtained by X i = log (1 + x i ) when the distribution of X i is uneven and does not fit well. Figure 5 was created using the calibration curve creation method of the present invention, using the optimal k.
Figure 6 shows an example of the distribution of X i when the value of k is automatically determined to the lowest concentration value std 1 of the standard solution, and Figure 7 shows an example of the distribution of X i . shows an example of the distribution of X i when the value of k is automatically set to the second lowest value std 2 of the concentration value of the standard solution. Figure 1 shows that in the measurement of three items of immune response,
The horizontal axis is the concentration x i , and the vertical axis is the light absorbance value or light scattering intensity y i when the reaction container is irradiated with light, and the relationship between the concentration x i and the light absorbance value or light scattering intensity value y i It simply shows the tendency conceptually, without using an approximation formula. By the way, in measuring immune reactions, as mentioned above, it is necessary to measure a wide range of measurement from high concentration to low concentration due to the difference in measurement items, and the concentration range differs depending on the measurement item. be. When creating a calibration curve in advance, take the concentration value x i on the horizontal axis and the absorbance value or light scattering intensity value y i on the vertical axis, and irradiate the container containing the standard solution with light. , the concentration of the standard solution is known, and the intersection with the absorbance value or light scattering intensity value obtained at that time is plotted, and then the containers containing standard solutions with different concentrations are irradiated with light. , using the same method, and applying the values y i of these plot points to an appropriate approximation formula to create a calibration curve using the least squares approximation method. Conventionally, when the number of standard solutions is three or more,
Applying the absorbance value or light scattering intensity value y i corresponding to the concentration value x i of the standard solution to the quadratic equation y = ax 2 + bx + c,
Create a calibration curve by determining the coefficients a, b, and c using the least squares approximation method, and when the number of standard solutions is 4 or more, apply the cubic equation y = ax 3 + bx 2 + cx + d and use the least squares approximation method. A calibration curve is often created. Examples of calibration curves obtained in this manner are shown in FIGS. 2 and 3. In Figure 2, the solid line indicates the case where there are four or more standard solutions, and the concentration value x i of the standard solution and the absorbance value obtained by irradiating the container containing the standard solution with light or The light scattering intensity value y i is calculated using the cubic formula y = ax 3 + bx 2
+cx+d, and the coefficients a, b, c, and d are calculated using the least squares approximation method. According to this calibration curve, there are many plotted measurement points on the low concentration side and only a few on the high concentration side, and especially in the case of cubic approximation as in this case, there is an inflection in the calibration curve. This method has the disadvantage that it causes dots and cannot be applied to measurements in high concentration ranges. Note that the dotted line indicates for reference the calibration curve corrected by the calibration curve creation method of the present invention, and the creation method will be described later. /k) to obtain the concentration value x i , irradiate the container containing the standard solution with light, obtain the absorbance value, and obtain the light scattering intensity value y i .
A calibration curve was created by calculating the coefficients a, b, c, and d by the least squares approximation using the cubic equation y=aX 3 +bX 2 +cX+d using and y i . The value of k is an appropriate value selected depending on the measurement item. In Figure 3, the solid line indicates the case where there are three or more standard solutions, and the concentration value x i of the standard solution and the absorbance value obtained by irradiating the container containing the standard solution with light or The light scattering intensity value y i is calculated using the quadratic formula y = ax 2 + bx
+c, coefficients a, by least squares approximation method
This is a calibration curve created by determining b and c. This calibration curve is suitable for measurements in the high concentration range, but in the low concentration range, the plot point determined using the standard solution is not located on the approximate curve determined by the least squares approximation method, and therefore It has the disadvantage that it cannot be applied to actual measurements in the area. Note that the dotted line indicates a calibration curve corrected by the calibration curve creation method of the present invention. The calibration curve shown by this dotted line is obtained by substituting the concentration value x i of the standard solution into X = log (1 + x / k) to obtain the concentration value x i , irradiating the container containing the standard solution with light, and calculating the absorbance value. Alternatively, find the light scattering intensity value y i and calculate X i
It was created by calculating the coefficients a, b, and c by the least squares approximation using the quadratic equation y=aX 2 +bX+c using and y i . Further, the value of k is an appropriate value selected depending on the measurement item. Therefore, in order to eliminate the above-mentioned disadvantages,
When performing approximation using the least squares method, in order to make the plot points appear evenly from the high concentration region to the low concentration region, the concentration value x i of the standard solution is changed to It has been proposed that the concentration Note that the reason for using log(1+x) is that consideration was given so that when the concentration x of the standard solution is zero, that is, x=0, the concentration X becomes zero, that is, X=log1=0. In this way, the concentration of the standard solution x
Applying X=log(1+x) to the obtained concentration
and the absorbance value or light scattering intensity value y obtained by irradiating the standard solution with light, using the cubic formula y=aX 3 +bX 2 +cX+
d and use the least squares method to find the coefficients a, b, c,
d and create a calibration curve. Note that the dotted line indicates a calibration curve created and corrected by the calibration curve creation method of the present invention. However, even if a calibration curve is created in this way, the concentration range may vary depending on the measurement item, and the concentration x may vary depending on the measurement item.
If the concentration x ranges from 10 to 1000, then x=
In cases ranging from 0.5 to 10, if the minimum concentration std value (standard value) and concentration x are x = 0
The disadvantage is that the distance between the two is too far and it is not even. The cases of and are shown below in Tables 1 and 2.

【表】【table】

【表】 表1、表2において、第2段に示すstd系列
とstd系列は高濃度域を測定すべき項目の標準
液と低濃度域を測定すべき項目の標準液であり、
それぞれの標準液の濃度xをlog(1+x)にあて
はめて求めた値を第3段に示し、第4段にはlog
(1+x)の差を示す。 さて、表1、表2を参照すると、std系列に
おいては標準液濃度31.3と0とのlog(1+x)の
差1.62と、std系列の標準液濃度0.63と0との
log(1+x)の差0.21と比較すると、std系列
のそれは!?かに大となり、第4図に点線で示す本
発明による検量線からはずれて実線で示すstd系
列の0から31.3の範囲が低下した近似曲線とな
つてしまい、低濃度域では実線に使用できないと
いう欠点がある。 第5図は、本発明の検量線作用方法により作成
されたもので、最適のkを用いXiの分散が均等に
なつた場合の検量線を示す。標準液の濃度値xi
X=log(1+x/k)の式に代入してXiを求め、
そして標準液の入つている容器に光を照射して吸
光度値又は散乱吸光度値yiを求め、得られたXi
yiを用いて3次式y=aX3+bX2+cX+dによる
最小自乗近似法により係数a,b,c,dを求め
て検量線を作成したものである。なお、kの値は
測定項目により最適のものを選定して使用する
が、表3に測定項目によるkの値を例示的に示
す。
[Table] In Tables 1 and 2, the std series and std series shown in the second row are the standard solutions for the items that should be measured in the high concentration range and the standard solutions for the items that should be measured in the low concentration range,
The third row shows the values obtained by applying the concentration x of each standard solution to log(1+x), and the fourth row shows the log
It shows the difference of (1+x). Now, referring to Tables 1 and 2, in the STD series, the difference in log (1 +
Compared to the difference of log(1+x) of 0.21, that of the standard series is much larger!, and the range from 0 to 31.3 of the standard series, shown as a solid line, deviates from the calibration curve according to the present invention, shown as a dotted line in Figure 4, and decreases. This has the disadvantage that it cannot be used as a solid line in the low concentration range. FIG. 5 shows a calibration curve created by the calibration curve operation method of the present invention when the optimal k is used and the variance of X i is made equal. Substitute the concentration value x i of the standard solution into the formula X = log (1 + x / k) to find X i ,
Then, the absorbance value or scattered absorbance value y i is determined by irradiating the container containing the standard solution with light, and the obtained X i and
A calibration curve was created by determining coefficients a, b, c, and d using yi using the cubic equation y=aX 3 +bX 2 +cX+d using the least squares approximation method. Note that the optimum value of k is selected and used depending on the measurement item, and Table 3 exemplarily shows the value of k depending on the measurement item.

【表】 第4図に示された従来技術により作成された検
量線の持つ不都合な点を除去するために、本発明
の検量線作成方法により検量線を作成した場合の
濃度値Xiの分散度合について第6図と第7図を参
照して説明する。 本発明においては、X=log(1+x/k)の式
を用いる。ここにおいて、kの値は表3に示すよ
うに測定項目によつて任意に選定し、変えること
ができるが、kの設定を自動的に行なえるように
する場合に、kの値として標準液の濃度値の最小
値から2番目の値をstd濃度値(標準濃度値)と
して用いることもできる。 一般に、市販されている試薬に添付されている
標準液は測定上限域と測定下限域との濃度値の標
準液を含んでいる場合があり、最小あるいは最大
のstd濃度値を用いることが不適当な場合がある。 即ち、X=log(1+x/k)の式において、最
小のstd濃度値を基準値とし、これを2倍にして
kの値とした場合に第4図に示す従来技術による
よりもより良好であるが、各標準液の濃度値stdi
に対し、Xi=log(1+stdi/2std1)の濃度値は表
4〜表6と第6図に示すように均等に分散しなく
なる。 以下に、表4〜表6において具体例により得ら
れた数値を示す。
[Table] Variance of concentration values X The degree will be explained with reference to FIGS. 6 and 7. In the present invention, the formula X=log(1+x/k) is used. Here, the value of k can be arbitrarily selected and changed depending on the measurement item as shown in Table 3, but when setting k automatically, The second value from the minimum density value can also be used as the standard density value (standard density value). Generally, the standard solution attached to a commercially available reagent may contain a standard solution with a concentration value between the upper measurement limit and the lower measurement limit, so it is inappropriate to use the minimum or maximum standard concentration value. There are cases where That is, in the equation of X=log(1+x/k), if the minimum standard density value is taken as the reference value and this is doubled to take the value of k, the result is better than that of the conventional technique shown in FIG. However, the concentration value of each standard solution std i
On the other hand, the density values of X i =log(1+std i /2std 1 ) are no longer evenly distributed as shown in Tables 4 to 6 and FIG. Below, numerical values obtained in specific examples in Tables 4 to 6 are shown.

【表】【table】

【表】【table】

【表】 ここで、表4〜表6に示す数値Xiを第6図にお
ける線a〜cで示すと、線aにおいては倍倍希釈
した標準液を8点、即ち表4に示す6.25〜800の
濃度液を用い、標準液の濃度値において最低の濃
度値6.25を基準値とし、Xi=log(1+stdi/2
(6.25))の式から求めたXiを順次プロツトしたも
のであり、線bにおいては標準液を5点、即ち表
5に示す50〜500の濃度液を用い、標準液の最低
の濃度値50を基準値とし、Xi=log(1+stdi/2
(50))の式からXiを順次プロツトしたものであ
り、線cにおいては標準液を5点、即ち表6に示
す5〜100の濃度液を用い、標準液の最低の濃度
値5を基準値とし、Xi=log(1+stdi/2(5))
の式からXiの値を求めてプロツトしたものを示
す。なお、点線pは、表4から表6に示す最低の
濃度値を基準としたときの基準線を示す。 そこで、標準液の濃度の低い方から2番目の標
準液の濃度値を基準に選んだ場合には、各標準液
の濃度値stdiに対するXi=log(1+stdi/std2)の
濃度値の分散は以下に示す表7〜9と第7図に示
するように均等に近くなる。
[Table] Here, when the numerical values X i shown in Tables 4 to 6 are shown by lines a to c in Fig. 6, in line a, the standard solutions diluted twice are measured at 8 points, that is, from 6.25 to 6.25 shown in Table 4. Using a concentration solution of 800, the lowest concentration value of 6.25 among the concentration values of the standard solution is used as the reference value, and X i = log (1 + std i /2
(6.25)) is plotted in sequence, and in line b, the standard solution is used at five points, that is, the concentration solutions of 50 to 500 shown in Table 5 are used, and the lowest concentration value of the standard solution is With 50 as the standard value, X i = log (1 + std i /2
The X As the standard value, X i = log (1 + std i /2 (5))
The value of X i calculated from the equation is shown and plotted. Note that the dotted line p indicates a reference line based on the lowest density values shown in Tables 4 to 6. Therefore, if the concentration value of the second standard solution from the one with the lowest concentration is selected as the standard, the concentration value of X i = log (1 + std i / std 2 ) for the concentration value std i of each standard solution The dispersion of is nearly equal as shown in Tables 7 to 9 below and FIG.

【表】【table】

【表】【table】

【表】 表7から表9に示す数値Xiを第7図の線d〜f
で示すと、線dにおいて倍倍希釈した標準液を8
点、即ち表7に示す6.25〜800の濃度液を用い、
標準液の最低から2番目の濃度値12.5を基準値と
し、Xi=log(1+stdi/12.5)の式から求めたXi
を順次プロツトしたものであり、線eにおいては
標準液を5点、即ち表8に示す50〜500の濃度液
を用い、標準液の最低から2番目の濃度値100を
基準値とし、Xi=log(1+stdi/100)の式から求
めたXiをプロツトしたものであり、線fにおいて
は標準液を5点、即ち表9に示す5〜100の濃度
液を用い、標準液の最低から2番目の濃度値25を
基準値とし、Xi=log(1+stdi/25)の式から求
めたXiを順次プロツトしたものである。なお、点
線qは標準液の濃度の最低から2番目のものを基
準値としたときの基準線を示す。 第6図および表4〜表6に示される差の値と、
第7図および表7〜表9に示される差の値とを比
較してみると、表5と表8に示すもの同志には差
異がないが、表4と表7、表6と表9においては
表7と表9の示すものの方が表4と表7に示すも
のよりも、ほぼ均等に分布していることがわか
る。 (ヘ) 効果 以上説明したように本発明によると、複数の標
準液の濃度値xi(i=1,2,3,…)に対しXi
=log(1+xi/k)を求め、それらの標準液の入
つている容器に光を照射し、得られた吸光度値又
は散乱光強度値yiにより決定されるXi,yiを用い
て3次式y=aX3+bX2+cX+d又はy=aX2
bX+cによる最小近似法により係数a,b,c,
d又はa,b,cを決定し、均等な分散度合を有
する実際の測定に適合した検量線を作成すること
ができる。
[Table] The values X i shown in Tables 7 to 9 are
In line d, the diluted standard solution is 8 times
Using a solution with a concentration of 6.25 to 800 shown in Table 7,
Using the second lowest concentration value of the standard solution, 12.5, as the reference value, X i was calculated from the formula X i = log (1 + std i /12.5)
In line e, standard solutions are used at 5 points, that is, solutions with concentrations of 50 to 500 shown in Table 8 are used, and the second concentration value from the lowest of the standard solutions, 100, is used as the reference value, and X i =log(1+std i /100).In line f , standard solutions were used at 5 points, that is, solutions with concentrations ranging from 5 to 100 shown in Table 9, and the lowest concentration of the standard solutions was plotted. Using the second density value 25 as the reference value, X i obtained from the formula X i =log(1+std i /25) is successively plotted. Note that the dotted line q indicates a reference line when the second lowest concentration of the standard solution is taken as the reference value. The difference values shown in FIG. 6 and Tables 4 to 6,
Comparing the difference values shown in Figure 7 and Tables 7 to 9, there is no difference between those shown in Tables 5 and 8, but Tables 4 and 7, and Tables 6 and 9. It can be seen that those shown in Tables 7 and 9 are more evenly distributed than those shown in Tables 4 and 7. (F) Effect As explained above, according to the present invention, for the concentration values x i (i=1, 2, 3,...) of a plurality of standard solutions,
=log(1+x i /k), irradiate the container containing these standard solutions with light, and use X i , y i determined from the obtained absorbance value or scattered light intensity value y i Cubic formula y=aX 3 +bX 2 +cX+d or y=aX 2 +
Coefficients a, b, c, by the minimum approximation method using bX + c,
By determining d or a, b, and c, it is possible to create a calibration curve that has an even degree of dispersion and is suitable for actual measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は免疫反応の濃度xiと測定値yiとの関係
を示すグラフ、第2図は従来技術による3次式近
似により作成れたもので、高濃度域がうまく適合
しない場合の検量線図、第3図は従来技術による
2次式近似により作成されたもので、低濃度域が
うまく適合しない場合の検量線図、第4図はXi
log(1+xi)により得られたもので、Xiの分散が
不均等なためうまく適合しない場合の検量線図、
第5図は本発明の検量線作成方法により作成され
たもので、最適のkを用いてXiの分散が均等にな
つた場合の検量線図、第6図は本発明の検量線作
成方法の実施例により検量線を作成する場合に、
標準液の最小濃度値を基準値とし、これを2倍に
した値をkとする場合のXiの分散度合いを示す
図、第7図は本発明の検量線作成方法の実施例に
より検量線を作成する場合に、標準液の最小濃度
値から2番目に低い値をkとした場合のXiの分散
度合いを示す図である。 図中、横軸のxは濃度値、縦軸のyは吸光度値
又は散乱光強度値を示す。
Figure 1 is a graph showing the relationship between the immune reaction concentration x i and the measured value y i , and Figure 2 is a graph created by cubic approximation using conventional technology. The diagram, Figure 3, was created by quadratic approximation using conventional technology, and the calibration curve in the case where the low concentration region does not fit well, and Figure 4 is the calibration curve when X i =
log(1+x i ), which is a calibration curve when the distribution of X i is uneven and does not fit well,
Figure 5 is a calibration curve created using the calibration curve creation method of the present invention, and is a calibration curve when the variance of X i is made equal using the optimal k.Figure 6 is a calibration curve created using the calibration curve creation method of the present invention. When creating a calibration curve according to the example of
Figure 7 is a diagram showing the degree of dispersion of X i when the minimum concentration value of the standard solution is the reference value and the value doubled is k. FIG. 3 is a diagram showing the degree of dispersion of X i when k is the second lowest value from the minimum concentration value of the standard solution when creating the standard solution. In the figure, x on the horizontal axis represents the concentration value, and y on the vertical axis represents the absorbance value or the scattered light intensity value.

Claims (1)

【特許請求の範囲】 1 複数の標準液の濃度値xi(i=1,2,3,
…)についてXi=log(1+xi/k)(kは測定項
目により変更する)から濃度値xiを求め、前記標
準液xiに光を照射して吸光度値又は散乱光強度値
yiから決定される(Xi,yi)を用いて2次式y=
aX2+bX+c又は3次式y=aX3+bX2+cX+d
による最小自乗法近似により係数a,b,c,d
又はa,b,cを求めて検量線を作成する免疫反
応測定に使用する検量線の作成方法。 2 前記したXi=log(1+xi/k)におけるkの
値を標準液の濃度値の低い方から2番目の濃度値
とする特許請求の範囲第1項記載の免疫反応測定
に使用する検量線の作成方法。
[Claims] 1. Concentration values x i (i=1, 2, 3,
...), calculate the concentration value x i from X i = log (1 + x i /k) (k changes depending on the measurement item), irradiate the standard solution x i with light, and calculate the absorbance value or scattered light intensity value.
Using (X i , y i ) determined from y i , the quadratic formula y=
aX 2 +bX+c or cubic formula y=aX 3 +bX 2 +cX+d
The coefficients a, b, c, d are calculated by least squares approximation by
Or, a method for creating a calibration curve for use in immunoreaction measurement, in which a, b, and c are determined and a calibration curve is created. 2. Calibration used for immune reaction measurement according to claim 1, in which the value of k in X i =log(1+x i /k) is the second concentration value from the lowest concentration value of the standard solution. How to create lines.
JP59010493A 1984-01-24 1984-01-24 Formation of calibration curve used for immunoreaction measurement Granted JPS60154161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59010493A JPS60154161A (en) 1984-01-24 1984-01-24 Formation of calibration curve used for immunoreaction measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59010493A JPS60154161A (en) 1984-01-24 1984-01-24 Formation of calibration curve used for immunoreaction measurement

Publications (2)

Publication Number Publication Date
JPS60154161A JPS60154161A (en) 1985-08-13
JPH0568655B2 true JPH0568655B2 (en) 1993-09-29

Family

ID=11751706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59010493A Granted JPS60154161A (en) 1984-01-24 1984-01-24 Formation of calibration curve used for immunoreaction measurement

Country Status (1)

Country Link
JP (1) JPS60154161A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692969B2 (en) * 1986-07-30 1994-11-16 株式会社シノテスト Immunological measurement method
JP2795403B2 (en) * 1986-07-30 1998-09-10 株式会社 シノテスト Immunoassay method and device
DE3842580A1 (en) * 1988-12-17 1990-06-21 Behringwerke Ag METHOD FOR IMPROVING THE ACCURACY AND REPRODUCIBILITY OF THE MEASURED DATA OF IMMUNOMETRIC TESTS
JP4648739B2 (en) * 2005-03-29 2011-03-09 株式会社堀場製作所 Analysis apparatus and calibration method
JP6104746B2 (en) * 2013-07-23 2017-03-29 株式会社日立ハイテクノロジーズ Automatic analyzer and analysis method
JP6309062B2 (en) * 2016-09-09 2018-04-11 新コスモス電機株式会社 Gas detector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518984A (en) * 1974-06-10 1976-01-24 Dokutooru Pee Kiraa Ag
JPS55154438A (en) * 1979-05-21 1980-12-02 Hitachi Ltd Method for absorptiometric analysis analyzing
JPS5638859B2 (en) * 1974-03-23 1981-09-09
JPS56151342A (en) * 1980-04-25 1981-11-24 Hitachi Ltd Analyzer utilizing light
JPS58109837A (en) * 1981-12-24 1983-06-30 Olympus Optical Co Ltd Compensating method of calibration curve
JPS58211663A (en) * 1982-06-02 1983-12-09 Hitachi Ltd Automatic analyzer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920665Y2 (en) * 1979-08-31 1984-06-15 株式会社島津製作所 Atomic absorption spectrometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638859B2 (en) * 1974-03-23 1981-09-09
JPS518984A (en) * 1974-06-10 1976-01-24 Dokutooru Pee Kiraa Ag
JPS55154438A (en) * 1979-05-21 1980-12-02 Hitachi Ltd Method for absorptiometric analysis analyzing
JPS56151342A (en) * 1980-04-25 1981-11-24 Hitachi Ltd Analyzer utilizing light
JPS58109837A (en) * 1981-12-24 1983-06-30 Olympus Optical Co Ltd Compensating method of calibration curve
JPS58211663A (en) * 1982-06-02 1983-12-09 Hitachi Ltd Automatic analyzer

Also Published As

Publication number Publication date
JPS60154161A (en) 1985-08-13

Similar Documents

Publication Publication Date Title
Marczak Water as a standard in the measurements of speed of sound in liquids
Pauw et al. Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison
US4160646A (en) Method of analyzing liquid samples and system for continuously automatically analyzing same
US4168431A (en) Multiple-level X-ray analysis for determining fat percentage
EP0928967B1 (en) Method and apparatus for the determination of a substance coexisting with another substance
US4109148A (en) Transparent plates with a radiograph thereon and process for the preparation thereof
US6281498B1 (en) Infrared measuring gauges
JPH0568655B2 (en)
EP0278747B1 (en) Determining reaction parameters or constants
US4377869A (en) Procedure for measuring coating rates
JPS58109837A (en) Compensating method of calibration curve
US5348889A (en) Method for correcting a calibration curve
US7272510B2 (en) Method and means for correcting measuring instruments
JP3027061B2 (en) Reaction measurement method
Paduano et al. Equilibrium and transport properties of aqueous pentaethyleneglycol-1-hexyl ether and sodium hexanesulfonate at 25° C
JPH0627116A (en) Method of determining specimen by slide element
US5400139A (en) Method and apparatus for estimating a mixing proportion of different powdery contents
FI81448B (en) PHOTOMETRIC FOLLOWING FOR THE PURPOSE OF CONTAINERS AND REACTORS, FOLLOWING AND UNDER IMPLEMENTATION OF SPRIDNING SCENTRALERS.
JPH09274041A (en) Method and apparatus for measuring antigen-antibody reaction material
JPH06208202A (en) Control method of photographic processing apparatus
JPS5829623B2 (en) Method for measuring semiconductor wafer characteristics
Jones et al. Scanning gel chromatography: determination of transport parameters from dynamic profiles measured at low solute concentration
JPH03122550A (en) Method and apparatus of measuring grain
JPH0233095B2 (en)
JPH09292387A (en) Method and apparatus for measuring amount of component to be measured