JPH0568067B2 - - Google Patents

Info

Publication number
JPH0568067B2
JPH0568067B2 JP61164022A JP16402286A JPH0568067B2 JP H0568067 B2 JPH0568067 B2 JP H0568067B2 JP 61164022 A JP61164022 A JP 61164022A JP 16402286 A JP16402286 A JP 16402286A JP H0568067 B2 JPH0568067 B2 JP H0568067B2
Authority
JP
Japan
Prior art keywords
nickel
active material
support
positive electrode
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61164022A
Other languages
Japanese (ja)
Other versions
JPS6319762A (en
Inventor
Isao Matsumoto
Shoichi Ikeyama
Munehisa Ikoma
Yasuko Ito
Hiroshi Kawano
Nobuyuki Yanagihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61164022A priority Critical patent/JPS6319762A/en
Publication of JPS6319762A publication Critical patent/JPS6319762A/en
Publication of JPH0568067B2 publication Critical patent/JPH0568067B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池のニツケル正極、と
くに、その金属支持体の改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement of a nickel positive electrode for an alkaline storage battery, particularly its metal support.

従来の技術 従来この種のアルカリ蓄電池を代表する系はニ
ツケル・カドミウム蓄電池であり、その大半は円
筒状の密閉式電池である。そこで、以下この円筒
密閉形ニツケル・カドミウム蓄電池を取り上げて
説明する。
BACKGROUND TECHNOLOGY Conventionally, a typical system of this type of alkaline storage battery is a nickel-cadmium storage battery, most of which are cylindrical sealed batteries. Therefore, this cylindrical sealed nickel cadmium storage battery will be explained below.

この電池は、一般に優れた充放電特性と高信頼
性を有しており、高率充放電特性にも本来優れた
電池である。しかし、最近は高エネルギー密度化
の要望が強まり、とくにニツケル正極のエネルギ
ー密度の向上がはかられている。すなわち正極中
の活物質充填密度が著しく高められている。この
ため、従来の高率放電特性に優れるニツケル正極
は、その活物質全体の電子伝導度が低下し、従来
の長所であつた高率放電特性が低下する傾向にあ
る。
This battery generally has excellent charge/discharge characteristics and high reliability, and is also inherently excellent in high rate charge/discharge characteristics. However, recently there has been a growing demand for higher energy density, and efforts are being made to improve the energy density of nickel positive electrodes in particular. That is, the packing density of the active material in the positive electrode is significantly increased. For this reason, the conventional nickel positive electrode, which has excellent high rate discharge characteristics, has a tendency for the electronic conductivity of the entire active material to decrease, and the high rate discharge characteristics, which was a conventional advantage, to deteriorate.

そこで、この電子伝導度の低下を改善するた
め、以下に示す改善策が施されたり、提案されて
いる。
Therefore, in order to improve this decrease in electronic conductivity, the following improvement measures have been taken or proposed.

(1) 金属支持体、たとえばニツケル粉末による焼
結基板の表面を希酸で溶解し、表面層の酸化物
を除去する。
(1) The surface of a metal support, such as a sintered substrate made of nickel powder, is dissolved with dilute acid to remove the oxide on the surface layer.

(2) 金属支持体をアルカリ溶液中で充放電し、こ
の表面を活物質に変える。すなわち、活物質層
と金属との接触面積を増大させる。
(2) Charge and discharge the metal support in an alkaline solution, converting this surface into an active material. That is, the contact area between the active material layer and the metal is increased.

(3) 非焼結式電極においては、活物質粉末間に導
電性にすぐれる金属もしくはカーボン粉末を混
入する。
(3) In non-sintered electrodes, metal or carbon powder with excellent conductivity is mixed between active material powders.

発明が解決しようとする問題点 このような従来の対策のうち、上記(1)の方法
は、ニツケル金属自身、通常の状態ではほとんど
酸化されず、たんに接触するだけでも電子伝導度
に優れるので、若干の効果を有するだけである。
(3)の方法は、金属もしくはカーボン粉末の粒径が
大きいため、焼結式ニツケル正極には適用できな
いが、非焼結式ニツケル正極では、活物質と支持
体の間に導電性物質が多く存在し、電子伝導度の
改善には比較的有効な手段である。しかし、この
ような導電性粉末の量を増加させると活物質の充
填密度が低下し、エネルギー密度の減少をきたす
不利がある。したがつて、添加量にも自ずと限界
があり、高率放電特性の改善にも限界がある。(2)
の方法は、支持体と活物質化された支持体表面と
の接触は極めて優れ、しかもその後に充填される
活物質は、活物質化された支持体表面全体の凹凸
面上に析出したり、凹凸部と多くの接点を有し、
その結果活物質全体の電子伝導度を向上させる効
果を有している。ところが、単に支持体表面を活
物質化しただけでは、その活物質層の電子伝導
度、正確にはニツケル酸化物中のプロトンの固相
内拡散速度が遅く、電極全体の電子伝導のための
ネツトワークが充分生かされないという欠点を有
していた。
Problems to be Solved by the Invention Among these conventional measures, method (1) above is because nickel metal itself is hardly oxidized under normal conditions and has excellent electronic conductivity even when it comes in contact with it. , only has some effect.
Method (3) cannot be applied to sintered nickel positive electrodes because the particle size of the metal or carbon powder is large; however, in non-sintered nickel positive electrodes, there is a large amount of conductive material between the active material and the support. exists and is a relatively effective means for improving electronic conductivity. However, increasing the amount of such conductive powder has the disadvantage that the packing density of the active material decreases, resulting in a decrease in energy density. Therefore, there is naturally a limit to the amount added, and there is also a limit to the improvement of high rate discharge characteristics. (2)
In this method, the contact between the support and the surface of the support made into an active material is extremely good, and the active material filled after that is deposited on the uneven surface of the entire surface of the support made into an active material. Has many contact points with uneven parts,
As a result, it has the effect of improving the electronic conductivity of the entire active material. However, if the surface of the support is simply made into an active material, the electronic conductivity of the active material layer, more precisely, the diffusion rate of protons in the solid phase of nickel oxide, is slow, and the net for electron conduction throughout the electrode is slow. This has the disadvantage that the workpiece is not fully utilized.

問題点を解決するための手段 この問題点を解決するために、本発明は支持体
表面の活物質化されたニツケル酸化物層の内部に
コバルトまたはカドミウムを単独あるいは混合物
を混在させたものである。
Means for Solving the Problem In order to solve this problem, the present invention includes cobalt or cadmium alone or a mixture thereof inside the nickel oxide layer which is made into an active material on the surface of the support. .

作 用 この構成によれば、支持体とこの中に充填され
る大量の活物質との間に介在した、ニツケル酸化
物層は両者の接触面積を広げるとともに、電子伝
導度(プロトンの拡散速度)が改善されるため、
電極全体の電子伝導度が向上し、高率放電特性、
すなわち放電電位と活物質利用率が改善される。
プロトンの拡散速度が向上する原因はコバルトや
カドミウムをこのニツケル酸化物層、すなわち
Ni(OH)2とNiOOHの混合物中に混在させると、
コバルトやカドミウムがニツケル酸化物層でニツ
ケルとの間に固溶体を形成する結果、結晶に歪み
を生じさせ、その中をプロトンが通過しやすくな
るためと考えられる。
Effects According to this configuration, the nickel oxide layer interposed between the support and the large amount of active material filled therein increases the contact area between the two and increases the electronic conductivity (proton diffusion rate). is improved, so
The electronic conductivity of the entire electrode is improved, resulting in high rate discharge characteristics,
That is, the discharge potential and active material utilization rate are improved.
The reason why the proton diffusion rate increases is that cobalt and cadmium are absorbed into this nickel oxide layer, i.e.
When mixed in a mixture of Ni(OH) 2 and NiOOH,
This is thought to be because cobalt and cadmium form a solid solution with nickel in the nickel oxide layer, causing distortion in the crystal, making it easier for protons to pass through it.

なお、この構成では、(3)の方法のような活物質
の充填密度の低下、すなわちエネルギー密度の低
下をきたすこともない。
Note that this configuration does not cause a decrease in the packing density of the active material, that is, a decrease in energy density, as in the method (3).

実施例 以下本発明の実施例を第1図から第3図を参照
して説明する。
Embodiments Embodiments of the present invention will be described below with reference to FIGS. 1 to 3.

多孔度約80%、厚さ約0.7mmの孔あき板を芯材
として厚みの中央に配したニツケル焼結基板を、
無水の硝酸コバルト100gを1の水に溶解した
硝酸コバルト水溶液中に5分間浸漬したのち乾燥
する。ついで、この基板30wt%のか性カリ水溶
液中で電流密度5mA/cm2で約20分間アノード酸
化したのち、同条件で放電する。この基板を取り
出し、水洗し乾燥したのち通常の化学含浸法を用
いて、活物質Ni(OH)2の充填を施し、焼結式ニ
ツケル正極を得る。なお、通常の化学含浸法に
は、4mol-1の硝酸ニツケルと03mol-1の硝酸
コバルトの両者を溶解した水溶液を約80℃に加熱
し、その中に上記した焼結基板を5分間浸漬した
のち25wt%のか性カリ水溶液に浸漬後水洗乾燥
を施す一連の操作を7回繰返すものである。
A nickel sintered substrate with a perforated plate with a porosity of approximately 80% and a thickness of approximately 0.7 mm is placed in the center of the thickness as a core material.
100 g of anhydrous cobalt nitrate was immersed in an aqueous solution of cobalt nitrate dissolved in 1 part water for 5 minutes, and then dried. Next, this substrate was anodized in a 30 wt % caustic potassium aqueous solution at a current density of 5 mA/cm 2 for about 20 minutes, and then discharged under the same conditions. This substrate is taken out, washed with water, dried, and then filled with the active material Ni(OH) 2 using a conventional chemical impregnation method to obtain a sintered nickel positive electrode. In addition, the usual chemical impregnation method involves heating an aqueous solution containing both 4 mol -1 nickel nitrate and 03 mol -1 cobalt nitrate to about 80°C, and immersing the above-mentioned sintered substrate in it for 5 minutes. Afterwards, a series of operations including immersion in a 25 wt % caustic potassium aqueous solution followed by washing and drying was repeated seven times.

得られた焼結式ニツケル正極の断面の一部を拡
大した概略図を第1図に示す。図中2のニツケル
支持体は、1で示す如くその表面の大半が、焼結
基板だけの充放電で活物質化され、その表面に付
着されていた硝酸コバルト中のコバルトの一部を
内部に固溶体として有するニツケル酸化物で被覆
されている。このニツケル酸化物は、大部分が
Ni(OH)2であるが、若干NiOOH等の高次酸化物
を形成している。また化学含浸法により充填され
たNi(OH)2を主体とする活物質層は3で示され
る。4は支持体2間に形成された空間部分で、約
40%の多孔度である。本発明による焼結基板表面
の酸化物の√/φは、25℃充電状態で約8min
1/2であり、コバルトを添加しない場合のそれは、
約4.5min1/2であり、約1.7信のプロトンの拡散速
度を有していた。ここでDはプロトンの拡散速
度、φは単位面積当りのプロトンの欠陥生成量を
示す。
FIG. 1 shows an enlarged schematic view of a part of the cross section of the obtained sintered nickel positive electrode. As shown in 1 in the figure, most of the surface of the nickel support shown in 2 has been made into an active material by charging and discharging only the sintered substrate, and some of the cobalt in the cobalt nitrate that was attached to the surface has been converted into an active material. Coated with nickel oxide in solid solution. This nickel oxide is mostly
Although it is Ni(OH) 2 , higher order oxides such as NiOOH are formed to some extent. Further, the active material layer mainly composed of Ni(OH) 2 filled by a chemical impregnation method is indicated by 3. 4 is the space formed between the supports 2, which is approximately
It has a porosity of 40%. The √/φ of the oxide on the surface of the sintered substrate according to the present invention is approximately 8 min in a charged state at 25°C.
1/2, and when no cobalt is added, it is
It was about 4.5 min1/2, and had a proton diffusion rate of about 1.7 min. Here, D represents the proton diffusion rate, and φ represents the amount of proton defects generated per unit area.

なお、この実施例では焼結基板にあらかじめ付
着させる塩として硝酸コバルトを示したが、硝酸
ニツケルと硝酸コバルトとの混合物または硝酸カ
ドミウム単独か、さらには硝酸コバルトと硝酸カ
ドミウムとの混合物を用いても良い。
In this example, cobalt nitrate is shown as the salt to be pre-adhered to the sintered substrate, but a mixture of nickel nitrate and cobalt nitrate, cadmium nitrate alone, or a mixture of cobalt nitrate and cadmium nitrate may also be used. good.

焼結基板の充放電は、アノード酸化(充電)だ
けの状態でとどめてもよいが、放電を施した方
が、その後の活物質の析出と成長に優れるため、
高密度充填が容易である。
The charging and discharging of the sintered substrate may be limited to anodic oxidation (charging), but discharging is better for the subsequent precipitation and growth of the active material.
High density packing is easy.

また、前記した実施例に使用した支持体は、一
般の焼結基板を一例に上げたが、最近工業的に使
用されている発泡状ニツケル多孔体またはニツケ
ル繊維より成る金属の不織布を使用しても電極の
電子伝導度の改善に効果がとくに著しい。この理
由は、これら多孔体は焼結基板より高多孔度を有
するため、活物質が高密度に充填されるが、通常
粉末状態で充填されるため、支持体との接触面積
が極めて少ない。しかし、本発明による構成で
は、電子伝導度の改善された凹凸面を有するニツ
ケル酸化物がその接触面積を拡大する役割りを果
すことに起因している。なお、この凹凸面は、充
放電によるニツケル酸化物層の体積変化により形
成されるものと思われる。
The support used in the above examples is a general sintered substrate as an example, but a nonwoven metal fabric made of a foamed nickel porous material or nickel fiber, which has been recently used industrially, was used as the support. It is also particularly effective in improving the electronic conductivity of the electrode. The reason for this is that these porous bodies have a higher porosity than the sintered substrate, so they are filled with the active material at a higher density, but since they are usually filled in powder form, the contact area with the support is extremely small. However, in the structure according to the present invention, the nickel oxide having an uneven surface with improved electronic conductivity serves to expand the contact area. Note that this uneven surface is thought to be formed due to volume changes in the nickel oxide layer due to charging and discharging.

この高多孔度の支持体のうち、発泡状ニツケル
多孔体を取上げ、前記した実施例と同様な操作を
施してニツケル酸化物層を設け、これに水酸化ニ
ツケル粉末を主とする活物質粉末を充填した電極
の断面の拡大概略図を第2図に示す。活物質粉末
3と支持体2表面のニツケル酸化物層1との接触
が、後者の凹凸部により改善されることが明らか
である。この厚さ0.7mmのニツケル正極を幅39mm、
長さ55mmに切断し、この正極より充填容量の大き
い幅39mm、長さ80mm、厚さ0.55mmの一般に使用さ
れるペースト式カドミウム負極とを組み合わせた
円筒密閉形ニツケル・カドミウム蓄電池KR−
AAを10セル構成し、完全充電後0.15Aおよび
3.5Aで放電した結果の平均値を第3図のaに示
す。ここで比較例として発泡状ニツケル多孔体の
みを充放電した支持体を用いたニツケル正極の場
合6、および発泡状ニツケル多孔体に何ら表面処
理を施さない支持体を用いたニツケル正極の場合
Cの同数セルの平均値も合わせて示す。この結
果、とくに高率放電における放電電圧および活物
質利用率に本発明によるニツケル正極は特性向上
に著しい効果を有している。とくに活物質利用率
に関しては、終止電圧を通常使用される1.0Vに
すると、その効果が明らかである。
Among these highly porous supports, a foamed nickel porous body was taken up, and a nickel oxide layer was formed by the same operation as in the above-mentioned example, and an active material powder mainly composed of nickel hydroxide powder was applied to this. An enlarged schematic cross-section of the filled electrode is shown in FIG. It is clear that the contact between the active material powder 3 and the nickel oxide layer 1 on the surface of the support 2 is improved by the unevenness of the latter. This nickel cathode with a thickness of 0.7mm is connected to a nickel positive electrode with a width of 39mm.
A sealed cylindrical nickel cadmium storage battery KR-, which is cut into 55 mm long pieces and combined with a commonly used paste-type cadmium negative electrode of 39 mm width, 80 mm length, and 0.55 mm thickness, which has a larger filling capacity than the positive electrode.
10 cells configured with AA, 0.15A after fully charged and
The average value of the discharge results at 3.5A is shown in Figure 3a. Here, as comparative examples, case 6 is a nickel positive electrode using a support made of a foamed nickel porous material that has been charged and discharged, and case C is a nickel positive electrode using a support that is not subjected to any surface treatment on the foamed nickel porous material. The average value of the same number of cells is also shown. As a result, the nickel positive electrode according to the present invention has a remarkable effect on improving characteristics, particularly in terms of discharge voltage and active material utilization rate in high rate discharge. In particular, regarding the active material utilization rate, the effect is obvious when the final voltage is set to the commonly used 1.0V.

発明の効果 以上のように本発明によれば、コバルトを混在
したまま表面のニツケル層をニツケル酸化物層に
変えた支持体で構成されるニツケル正極を用いた
蓄電池は、電極全体の電子伝導度の向上により、
とくに高率放電における電圧、容量の向上に効果
が著しい。
Effects of the Invention As described above, according to the present invention, a storage battery using a nickel positive electrode composed of a support in which the nickel layer on the surface is changed to a nickel oxide layer while cobalt is mixed therein has a high electron conductivity of the entire electrode. With the improvement of
It is particularly effective in improving voltage and capacity during high rate discharge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は焼結基板を支持体に用いた本実施例に
おけるニツケル正極の断面概略図、第2図は発泡
状ニツケル多孔体を支持体に用いた場合の同様な
断面概略図、第3図は放電特性の比較を示す図で
ある。 1……コバルトが混在する支持体表面のニツケ
ル酸化物層、2……金属支持体、3……水酸化ニ
ツケルを主とする活物質、4……電極内の空間
部。
Fig. 1 is a schematic cross-sectional view of the nickel positive electrode in this example using a sintered substrate as a support, Fig. 2 is a similar cross-sectional view when a foamed nickel porous material is used as a support, and Fig. 3 FIG. 3 is a diagram showing a comparison of discharge characteristics. 1... Nickel oxide layer on the surface of the support mixed with cobalt, 2... Metal support, 3... Active material mainly composed of nickel hydroxide, 4... Space within the electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 表面層がニツケルよりなる金属支持体と、こ
の支持体の内部に充填されるか、または表面に塗
着された水酸化ニツケルを主体とする活物質とで
構成されるニツケル正極において、前記金属支持
体はその表面層に活物質化されたニツケル酸化物
を有し、かつその酸化物の内部にコバルトまたは
カドミウムの単独か、あるいは混合物が混在され
ていることを特徴とするアルカリ蓄電池用ニツケ
ル正極。
1. In a nickel positive electrode composed of a metal support whose surface layer is made of nickel and an active material mainly composed of nickel hydroxide that is filled inside the support or applied to the surface, the metal A nickel positive electrode for an alkaline storage battery, characterized in that the support has nickel oxide as an active material on its surface layer, and cobalt or cadmium alone or a mixture is mixed inside the oxide. .
JP61164022A 1986-07-11 1986-07-11 Nickel positive electrode for alkaline storage battery Granted JPS6319762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61164022A JPS6319762A (en) 1986-07-11 1986-07-11 Nickel positive electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61164022A JPS6319762A (en) 1986-07-11 1986-07-11 Nickel positive electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6319762A JPS6319762A (en) 1988-01-27
JPH0568067B2 true JPH0568067B2 (en) 1993-09-28

Family

ID=15785301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61164022A Granted JPS6319762A (en) 1986-07-11 1986-07-11 Nickel positive electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS6319762A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191752B2 (en) * 1996-12-26 2001-07-23 松下電器産業株式会社 Nickel-hydrogen secondary battery and method for manufacturing electrode thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837178A (en) * 1971-09-11 1973-06-01
JPS52124140A (en) * 1976-04-09 1977-10-18 Matsushita Electric Ind Co Ltd Method of manufacturing electrode plate for alkaline storage battery
JPS53126131A (en) * 1977-04-12 1978-11-04 Matsushita Electric Ind Co Ltd Method of manufacturing positive electrode for alkaline battery
JPS575018A (en) * 1980-06-13 1982-01-11 Olympus Optical Co Ltd Focus controller
JPS5730269A (en) * 1980-07-29 1982-02-18 Shin Kobe Electric Mach Co Ltd Manufacture of base for cell
JPS6237875A (en) * 1985-08-10 1987-02-18 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode of alkaline storage battery
JPH0568067A (en) * 1991-03-08 1993-03-19 Nec Corp Decoder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837178A (en) * 1971-09-11 1973-06-01
JPS52124140A (en) * 1976-04-09 1977-10-18 Matsushita Electric Ind Co Ltd Method of manufacturing electrode plate for alkaline storage battery
JPS53126131A (en) * 1977-04-12 1978-11-04 Matsushita Electric Ind Co Ltd Method of manufacturing positive electrode for alkaline battery
JPS575018A (en) * 1980-06-13 1982-01-11 Olympus Optical Co Ltd Focus controller
JPS5730269A (en) * 1980-07-29 1982-02-18 Shin Kobe Electric Mach Co Ltd Manufacture of base for cell
JPS6237875A (en) * 1985-08-10 1987-02-18 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode of alkaline storage battery
JPH0568067A (en) * 1991-03-08 1993-03-19 Nec Corp Decoder

Also Published As

Publication number Publication date
JPS6319762A (en) 1988-01-27

Similar Documents

Publication Publication Date Title
US3642539A (en) Secondary battery with indate ion in the electrolyte
KR100373724B1 (en) Cathode and anode electrode plates for alkali storage battery and production thereof
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JPH0568067B2 (en)
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP2987873B2 (en) Alkaline storage battery
JP4147748B2 (en) Nickel positive electrode and nickel-hydrogen storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPH0410181B2 (en)
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP2689598B2 (en) Cylindrical sealed nickel-cadmium storage battery and its manufacturing method
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JPS5838459A (en) Manufacture of plate for enclosed alkaline battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPH0582027B2 (en)
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JPS6269465A (en) Cathode plate for nickel-cadmium alkaline storage battery
JPH0326501B2 (en)
JPS60216449A (en) Manufacture of paste type cadmium negative plate
JPH0139192B2 (en)
JPH09320631A (en) Nickel-cadmium storage battery and manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term