JPS6237875A - Manufacture of nickel hydroxide electrode of alkaline storage battery - Google Patents

Manufacture of nickel hydroxide electrode of alkaline storage battery

Info

Publication number
JPS6237875A
JPS6237875A JP60176550A JP17655085A JPS6237875A JP S6237875 A JPS6237875 A JP S6237875A JP 60176550 A JP60176550 A JP 60176550A JP 17655085 A JP17655085 A JP 17655085A JP S6237875 A JPS6237875 A JP S6237875A
Authority
JP
Japan
Prior art keywords
nickel
substrate
base plate
active material
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60176550A
Other languages
Japanese (ja)
Other versions
JPH0410178B2 (en
Inventor
Shinsuke Nakahori
中堀 真介
Hideki Matsui
秀樹 松井
Kazuhiro Oota
和宏 太田
Hiroyuki Isooka
磯岡 寛行
Harumi Fujiwara
藤原 治美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60176550A priority Critical patent/JPS6237875A/en
Publication of JPS6237875A publication Critical patent/JPS6237875A/en
Publication of JPH0410178B2 publication Critical patent/JPH0410178B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent weakening of a base plate due to corrosion by making filling operation with active material after generating cobalt hydroxide on the surface of sintered nickel base plate and performing positive pole oxidation to cover the base plate surface with a cobalt oxide layer. CONSTITUTION:Cobalt hydroxide is generated on the surface of a sintered nickel base plate and cobalt hydroxide is changed into cobalt oxide by positive pole oxidation to cover the base plate surface with cobalt oxide layer. The base plate is then impregnated with acid nickel salt and undergoes filling operation with active material accompanied by impregnation with acid nickel salt which is made active through alkali treatment or the like, to form a nickel hydroxide electrode for alkaline storage battery. The cobalt oxide layer is made to serve as a protective coat to prevent corrosion and weakening of the base plate caused by acid nickel salt of high temperature and high concentration. Thus discharge characteristics can be improved in addition to the improvement in the efficiency of the operation of filling with active material.

Description

【発明の詳細な説明】 ht(どの酸性ニッケル塩を含浸し、次いでアルカリ処
理などを行なうことによ〕、前記基板中に活物質を充填
するアルカリ蓄電池用焼結式水酸化ニッケル電極の製造
方法に関する。
[Detailed Description of the Invention] A method for manufacturing a sintered nickel hydroxide electrode for an alkaline storage battery in which the active material is filled into the substrate by impregnating it with any acidic nickel salt and then performing an alkali treatment. Regarding.

(01従来の技術 アルカリ蓄電池用水酸化ニッケル電極の製造方法として
は活物質保持体としての多孔性ニッケル焼結基板を硝酸
ニッケルなどの酸性=シケル塩含浸液に浸漬し該基板の
孔中にニッケル塩を含浸した後、該ニッケル塩をフルカ
リ中で水酸化ニーケルに変化させることで活物質化させ
るという活物質充填操作を行なって水酸化=yケル電極
を製造する方法がある。この活物質充填操作による工V
ケル焼結基板への活物質の充填量は1回の操作では充分
な充填量が得られないため数回繰シ返して行なうことで
所要の活物質量を充填しなければならない。そこで、活
物質充填の効率を上げ製造工程盛簡略化するために、含
浸液に高温高濃度硝酸二すクル水溶液などの溶融塩含浸
液を用い、少ない含浸回数で所要の活物質量を得ること
が行なわれているがこの場合当然のこととして含浸液の
腐食性は強くなり基板が侵食され−C基板を構成するニ
ッケルが溶解するため極板が脆誓旬化し、号イタル性能
の低下を招くという欠点があった。
(01 Conventional technology) A method for producing a nickel hydroxide electrode for an alkaline storage battery is to immerse a porous nickel sintered substrate as an active material holder in an acidic silica salt impregnating solution such as nickel nitrate, and fill the pores of the substrate with nickel salt. There is a method of manufacturing a hydroxide=yKel electrode by performing an active material filling operation in which the nickel salt is impregnated with nickel salt and then converted into an active material by converting the nickel salt into nickel hydroxide in Flukaline.This active material filling operation Work by V
Since a sufficient amount of active material cannot be filled into the Kel sintered substrate in one operation, the required amount of active material must be filled by repeating the process several times. Therefore, in order to increase the efficiency of filling the active material and simplify the manufacturing process, it is possible to obtain the required amount of active material with fewer impregnation times by using a molten salt impregnating solution such as a high-temperature, high-concentration nitric acid aqueous solution as the impregnating solution. However, in this case, as a matter of course, the corrosiveness of the impregnating liquid becomes strong and the substrate is eroded.The nickel that makes up the C substrate is dissolved, making the electrode plate brittle and causing a decline in the overall performance. There was a drawback.

これに対して特開昭59−78457号公報及び特開昭
59−96659号公報では、酸素存在下で高温にてニ
ッケル焼結基板の表面に耐酸化性の酸化ニッケルを生成
させ、基板の腐食を防止する方法が提案されている。し
かしながら、この方法に於いても酸化ニッケルの生成量
が少ないと基板の腐食を充分に抑えることができず、し
かも充分な効果を得んとして酸化ニッケルの生成量を増
やすと、酸化ニッケルは導電性の悪いものであるので、
活物質と基板との導il!性が著1.<損われ活物質利
用率が低下するという問題があった。
On the other hand, in JP-A-59-78457 and JP-A-59-96659, oxidation-resistant nickel oxide is generated on the surface of a nickel sintered substrate at high temperature in the presence of oxygen, thereby preventing corrosion of the substrate. Methods have been proposed to prevent this. However, even with this method, if the amount of nickel oxide produced is small, corrosion of the substrate cannot be sufficiently suppressed, and if the amount of nickel oxide produced is increased to obtain a sufficient effect, nickel oxide becomes conductive. Because it is a bad thing,
Direction between active material and substrate! The gender is outstanding 1. <There was a problem that the active material utilization rate decreased due to damage.

四 発明が解決しようとする問題点 本発明は高温の酸性含浸液中でのニッケル焼結基板の腐
食を確実に防止し、しかも放電特性の優れたアルカリ蓄
電池用水酸化ニッケル電極を得ようとするものである。
4. Problems to be Solved by the Invention The present invention aims to provide a nickel hydroxide electrode for alkaline storage batteries that reliably prevents corrosion of nickel sintered substrates in high-temperature acidic impregnating liquid and has excellent discharge characteristics. It is.

(ロ)問題点を解決するための手段 本発明のアルカリ蓄電池用水酸化ニッケル電極の製造方
法は、ニッケル焼結基板表面に水酸化コバルトを生成さ
せ、次いで陽極酸化を行なうことで前記水酸化コバルト
を酸化コバルトに変化させてニッケル焼結基板表面を酸
化コバルト層で被覆し走後、該基板に酸、はニッケル塩
の含浸を伴う活物質充填操作を行なうものである。
(b) Means for Solving the Problems The method of manufacturing a nickel hydroxide electrode for alkaline storage batteries of the present invention involves generating cobalt hydroxide on the surface of a sintered nickel substrate, and then anodizing the substrate to remove the cobalt hydroxide. After coating the surface of a nickel sintered substrate with a cobalt oxide layer by converting it into cobalt oxide, an active material filling operation involving impregnation of the substrate with an acid or nickel salt is performed.

(ホ)作 用 上記酸化コバルト層は不働態膜として酸性ニッケル塩中
で保護膜の役割を果たし、高温、高濃度の酸性ニッケル
塩の含浸液中に於いても安定してニッケル焼結基板の腐
食及び脆弱化を防ぐ。また、酸化コバルトはそれ自身が
良好な導電性を有しており、更に酸化コバルト層と活物
質との界面テはニッケル・コバルトの固溶化によりて導
電性や付与がなされると考えられるため、酸化Hyケル
層を形成したときのような活物質の利用率の低下もない
(e) Function The above cobalt oxide layer plays the role of a protective film in acidic nickel salt as a passive film, and is stable even in high-temperature, high-concentration acidic nickel salt impregnation solution. Prevents corrosion and weakening. In addition, cobalt oxide itself has good conductivity, and the interface between the cobalt oxide layer and the active material is thought to be conductive or imparted by solid solution of nickel and cobalt. There is no decrease in the utilization rate of the active material, which occurs when an oxidized Hy Kel layer is formed.

(へ)実施例 還元性雰囲気中で焼結して得られた多孔度約80%のニ
ッケル焼結基板を、常温、比重125の硝酸コバルト水
溶液中に浸漬した後、80°0で十分に乾燥し、次いで
苛性ソーダ溶液中に浸漬して基板表面に水酸化コバルト
層を生成させ、更に苛性カリからなるアルカリ水溶液中
で基板を陽極にして基板表面に生成させた水酸化コバル
ト量の理論容量の150%の電気量を30分間かけて与
え、水酸化コバルトを酸化コバルトに変化させニッケル
焼結基板の表面を酸化コバルト層で均一に且つ完全に被
覆する0次いでこの酸化コバルト層で被覆した基板を、
80℃、比重175の硝酸ニッケル水溶液に30分間浸
漬し、こうして基板中に含浸した硝酸ニッケルを80°
C125%の苛性ソーダ溶液中で活物質化する一連の活
物質利用率k 作を5回繰如返して本発明だよる水酸化ニッケル電極(
にを製作した。
(F) Example A sintered nickel substrate with a porosity of approximately 80% obtained by sintering in a reducing atmosphere is immersed in an aqueous cobalt nitrate solution with a specific gravity of 125 at room temperature, and then thoroughly dried at 80°0. Then, the substrate was immersed in a caustic soda solution to form a cobalt hydroxide layer on the surface of the substrate, and the substrate was then used as an anode in an alkaline aqueous solution of caustic potash to form a cobalt hydroxide layer on the surface of the substrate, which amounted to 150% of the theoretical capacity. The amount of electricity is applied over 30 minutes to change cobalt hydroxide to cobalt oxide, and the surface of the nickel sintered substrate is uniformly and completely coated with a cobalt oxide layer.Next, the substrate coated with this cobalt oxide layer is
The substrate was immersed in an aqueous nickel nitrate solution with a specific gravity of 175 at 80°C for 30 minutes, and the nickel nitrate thus impregnated into the substrate was heated at 80°C.
The nickel hydroxide electrode of the present invention was prepared by repeating a series of active material utilization k processes five times in which the active material was formed in a 125% C125% caustic soda solution.
I made it.

また比較として、上記還元性雰囲気中で焼結して得た基
板を400℃で20分間空気中で加熱処理を行ない表面
に酸化ニッケル皮膜を形成した後、上記活物質充填操作
を行なりて得た電極(B1、上記還元性雰囲気中で焼結
して得た基板を全く処理なしで用い、上記活物質充填操
作を行なって得た電極(01及び上記実施例で得た水酸
化コバルトを表面に生成させた基板を酸化処理なしで用
い、上記活物質充填操作を行なって得た電極(D)を夫
々製作した0 第1図は上記本発明法による電極(Al及び比較電極t
B)乃至(DIを作製する際の活物質充填操作に於ける
、上記硝酸ニッケル水溶液中への基板の初回浸漬時の基
板電位を示す図面である。比較電極(Bl及び(01の
基板が初回浸漬時にニッケル溶解電位になりてしまうの
に対し、本発明法による電極(A)の基板は腐食性の大
きい含浸液中で常に不働態f電位を示し、ニッケル焼結
基板の溶解電位に到達しない耐食性の優れたものである
。また、第2図は初回浸漬時に良好な特性を示した本発
明法による電極(A)と比較電極(D)の1〜5回目の
各浸漬時に於ける基板電位を示した図面(浸漬回数は初
回を■、2回目を■のように0内の数字で示した)であ
り、比較電極(DIが3回目浸漬時以降は=wケル溶解
電位となるのに対し、未発明法による電極(AIの基板
は2回目〜5回目の硝酸ニッケル水溶液への浸漬の際に
も不働態電位を示し、耐食性が非常に優れたものである
ことがわかる。
For comparison, a substrate obtained by sintering in the reducing atmosphere described above was heated in air at 400°C for 20 minutes to form a nickel oxide film on the surface, and then the active material filling operation was performed as described above. electrode (B1, electrode obtained by performing the above active material filling operation using the substrate obtained by sintering in the above reducing atmosphere without any treatment) (01 and the cobalt hydroxide obtained in the above example) The electrodes (D) obtained by performing the above-mentioned active material filling operation were prepared by using the substrate produced by the method of the present invention without oxidation treatment.
B) to (FIG. 3 is a drawing showing the substrate potential at the time of initial immersion of the substrate in the nickel nitrate aqueous solution in the active material filling operation when producing DI. In contrast to the nickel dissolution potential during immersion, the substrate of the electrode (A) produced by the method of the present invention always shows a passive f potential in the highly corrosive impregnating liquid and does not reach the dissolution potential of the nickel sintered substrate. It has excellent corrosion resistance. Figure 2 shows the substrate potential during each of the 1st to 5th immersion of the electrode (A) produced by the method of the present invention, which showed good characteristics at the first immersion, and the comparative electrode (D). (The number of dipping times is indicated by a number within 0, such as ■ for the first time and ■ for the second time), and the reference electrode (DI is =w Kel dissolution potential after the third dipping). On the other hand, the electrode (AI) substrate made by the uninvented method showed a passive potential even when immersed in the nickel nitrate aqueous solution for the second to fifth times, indicating that it had very excellent corrosion resistance.

更に上記水酸化ニッケル電極(M乃至(DIを夫々同−
条件で製作した十分に容量の大きいカドオウム負極と組
み合わせて公称容量が12AHのニッケルーカド2ウム
電池を製作し、これら電池の充放電サイクル特性及び放
電特性を測定した。この結果を正極に用いた電極(AI
乃至()に符号を対応させて第3図及び第4図に夫々示
す。本発明法によるニッケル電極CAIは、酸化コバル
ト層によシミ接作製時に於ける腐食性の大きい含浸液中
でのニッケル焼結基板の溶解が防止でき電極強変が非常
に優れていることから充放電による活物質の脱落等が少
なく、まfC酸化コバルト層はアルカリ水溶液中での充
放電に於いてニッケル焼結基板の腐食活物質化を防止し
基板の脆弱化を抑えるため、この電極を正極に用いた電
池は第3図に示すように良好なサイクル特性を示し、且
つ酸化コバルト層はそれ自身導電性であるため基板表面
に多量の酸化ニッケルを生成したときのように抵抗が増
すことはなく第4図に示すように良好な放電特性を示し
ている。
Furthermore, the above nickel hydroxide electrodes (M to (DI) are respectively
A nickel-cadmium battery with a nominal capacity of 12AH was manufactured by combining a sufficiently large capacity cadmium negative electrode manufactured under the above conditions, and the charge/discharge cycle characteristics and discharge characteristics of these batteries were measured. Based on this result, the electrode used as the positive electrode (AI
3 and 4, respectively, with corresponding symbols in parentheses. The nickel electrode CAI produced by the method of the present invention prevents the nickel sintered substrate from dissolving in the highly corrosive impregnating liquid during stain bonding to the cobalt oxide layer, and has excellent electrode resistance. The active material is less likely to fall off due to discharge, and the MfC cobalt oxide layer prevents the nickel sintered substrate from becoming a corroded active material during charging and discharging in an alkaline aqueous solution and prevents the substrate from becoming brittle. As shown in Figure 3, the battery used in this study showed good cycle characteristics, and since the cobalt oxide layer itself is conductive, the resistance did not increase as would occur when a large amount of nickel oxide was formed on the substrate surface. However, as shown in FIG. 4, good discharge characteristics were exhibited.

尚、ニッケル焼結基板表面に酸化コバルト層を形成する
際に、予め基板表面に薄い酸化ニッケルの被膜を形成し
ておき、その表面に酸化コバルト層を形成しても同様の
効果が得られる。この場合、酸化ニッケルの被膜が薄い
ので導電性は低下しない。また、実施例で示したように
酸化コバルト層形成時に使用するコバルト無機酸塩溶液
は常温で且つ低濃度であるためニッケル焼結基板の腐食
はほとんど起こらないが、上記薄い酸化ニッケル被膜は
このコバルト無機酸塩溶液含浸時の基板の腐食防止にも
役立つ。
Incidentally, when forming the cobalt oxide layer on the surface of the nickel sintered substrate, the same effect can be obtained by forming a thin nickel oxide film on the substrate surface in advance and forming the cobalt oxide layer on the surface. In this case, the conductivity does not decrease because the nickel oxide film is thin. In addition, as shown in the example, the cobalt inorganic acid salt solution used when forming the cobalt oxide layer is at room temperature and has a low concentration, so corrosion of the nickel sintered substrate hardly occurs. It also helps prevent corrosion of the substrate during impregnation with an inorganic acid salt solution.

ζトl 発明の効果 本発明のアルカリ蓄電池用水酸化ニッケル電極の製造方
法は、ニッケル焼結基板表面に水酸化コバルトを生成さ
せ、次いで陽極酸化を行なうことで前記水酸化コバルト
を酸化コバルトに変化させてニッケル焼結基板表面を酸
化コバルト層で被覆した後、この基板に酸性ニッケル塩
の含浸を伴う活物質充填を行なうものであり、前記酸化
コバルト層は七ね自身が導電性で、且つ酸性ニッケル塩
中で不働態膜として働くので、基板と活物質との間の導
電性が良好であシ、酸性ニッケル塩による基板の腐食に
よる脆鵠化が防止できるため、サイクル特性及び放電特
性の優れたアルカリ谷電池用水酸化ニッケル電極を得る
ことができる0
Effects of the Invention The method for producing a nickel hydroxide electrode for an alkaline storage battery of the present invention involves generating cobalt hydroxide on the surface of a sintered nickel substrate, and then converting the cobalt hydroxide into cobalt oxide by performing anodic oxidation. After the surface of the nickel sintered substrate is coated with a cobalt oxide layer, this substrate is filled with an active material accompanied by impregnation with an acidic nickel salt. Since it acts as a passive film in salt, it has good electrical conductivity between the substrate and active material, and prevents the substrate from becoming brittle due to corrosion caused by acidic nickel salts, resulting in excellent cycle and discharge characteristics. Nickel hydroxide electrode for alkaline valley battery can be obtained0

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明法による電極と、比較電極作
製時に於ける硝酸ニッケル水溶液中への基板浸漬時間と
基板電位の関係を示す図面、第3図及び第4図は本発明
法による電極と比較電極を夫々用いた電池のサイクル特
性図及び放電特性図である。
Figures 1 and 2 are graphs showing the relationship between substrate potential and substrate immersion time in a nickel nitrate aqueous solution during the preparation of electrodes produced by the method of the present invention and comparison electrodes, and Figures 3 and 4 are diagrams showing the relationship between electrodes produced by the method of the present invention and substrate potential. FIG. 2 is a cycle characteristic diagram and a discharge characteristic diagram of a battery using an electrode according to the present invention and a comparative electrode, respectively.

Claims (1)

【特許請求の範囲】[Claims] (1)ニッケル焼結基板表面に水酸化コバルトを生成さ
せ、次いで陽極酸化を行なうことで前記水酸化コバルト
を酸化コバルトに変化させてニッケル焼結基板表面を酸
化コバルト層で被覆した後、該基板に酸性ニッケル塩の
含浸を伴う活物質充填操作を行なうことを特徴とするア
ルカリ蓄電池用水酸化ニッケル電極の製造方法。
(1) Cobalt hydroxide is generated on the surface of the nickel sintered substrate, and then anodization is performed to change the cobalt hydroxide to cobalt oxide and the surface of the nickel sintered substrate is coated with a cobalt oxide layer. A method for producing a nickel hydroxide electrode for an alkaline storage battery, comprising performing an active material filling operation involving impregnation of an acidic nickel salt into a nickel hydroxide electrode.
JP60176550A 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery Granted JPS6237875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60176550A JPS6237875A (en) 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60176550A JPS6237875A (en) 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6237875A true JPS6237875A (en) 1987-02-18
JPH0410178B2 JPH0410178B2 (en) 1992-02-24

Family

ID=16015542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60176550A Granted JPS6237875A (en) 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS6237875A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319762A (en) * 1986-07-11 1988-01-27 Matsushita Electric Ind Co Ltd Nickel positive electrode for alkaline storage battery
JPS63216268A (en) * 1987-03-03 1988-09-08 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319762A (en) * 1986-07-11 1988-01-27 Matsushita Electric Ind Co Ltd Nickel positive electrode for alkaline storage battery
JPH0568067B2 (en) * 1986-07-11 1993-09-28 Matsushita Electric Ind Co Ltd
JPS63216268A (en) * 1987-03-03 1988-09-08 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery
FR2611988A1 (en) * 1987-03-03 1988-09-09 Sanyo Electric Co PROCESS FOR MANUFACTURING A NICKEL HYDROXIDE ELECTRODE
JPH0550099B2 (en) * 1987-03-03 1993-07-28 Sanyo Electric Co

Also Published As

Publication number Publication date
JPH0410178B2 (en) 1992-02-24

Similar Documents

Publication Publication Date Title
JPH0550099B2 (en)
JP3412451B2 (en) Nickel sintered substrate for positive electrode of alkaline storage battery, method for producing the same, and alkaline storage battery
JPS6237875A (en) Manufacture of nickel hydroxide electrode of alkaline storage battery
JPH0410177B2 (en)
JPH0570907B2 (en)
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JPH0410179B2 (en)
JP3275594B2 (en) Manufacturing method of positive electrode for alkaline storage battery
JPH0475255A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
JP2865391B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery
JP2951940B2 (en) Electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPH0589876A (en) Manufacture of ni electrode for alkaline storage battery
JP3606123B2 (en) Manufacturing method of nickel positive electrode plate for alkaline storage battery
JP3625681B2 (en) Method for producing nickel electrode for alkaline storage battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3941341B2 (en) Alkaline battery and nickel plate
JPH0582027B2 (en)
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2000277105A (en) Manufacture of sintered nickel electrode for alkaline storage battery
JPS61206165A (en) Manufacture of cadmium anode for alkaline storage battery
CN116995236A (en) Three-dimensional zinc/zinc oxalate negative electrode material, and preparation method and application thereof
CN116387646A (en) Zinc cathode, preparation method thereof and water-based zinc-based electrochemical energy storage device
CN111435730A (en) Method for forming an interfacial layer of a lead-carbon compound on a lead-based substrate
JPH0241865B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term