JPH05315197A - Method of manufacturing aluminum electrode for electrolytic capacitor - Google Patents

Method of manufacturing aluminum electrode for electrolytic capacitor

Info

Publication number
JPH05315197A
JPH05315197A JP12160192A JP12160192A JPH05315197A JP H05315197 A JPH05315197 A JP H05315197A JP 12160192 A JP12160192 A JP 12160192A JP 12160192 A JP12160192 A JP 12160192A JP H05315197 A JPH05315197 A JP H05315197A
Authority
JP
Japan
Prior art keywords
aluminum
oxide
aluminum metal
electrolytic capacitor
tub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12160192A
Other languages
Japanese (ja)
Inventor
Masanori Yoshida
雅憲 吉田
Masakazu Tanahashi
正和 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12160192A priority Critical patent/JPH05315197A/en
Publication of JPH05315197A publication Critical patent/JPH05315197A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an aluminum electrode with a continuously high specific dielectric constant using a simple device by a method wherein an aqueous solution of metallic salt or a solution of organic metallic salt is applied to the surface of an aluminum metal, which is thermally decomposed to be a metallic oxide, and next an aluminum oxide is formed by an anodic oxidation method to form a composite dielectric film. CONSTITUTION:An aluminum metal 11 is put into an applying tub 13. Liquid containing n-hexane and titanium butoxide is put within the applying tub 13. The aluminum metal 11 applied in the solution is drawn up to put it into a dry furnace 14. Next, it is thermally decomposed in the dry furnace 15 to be a titanium oxide. The aluminum metal covered with the titanium oxide is next put into a chemical tub 16. Chemical liquid composed of an aqueous solution of ammonium adipate is put into the chemical tub 16 and the aluminum metal covered with the titanium oxide is anodically oxidized to wind it on a winding roll 12. Thus, it is possible to continuously manufacture an aluminum capacitor for an electrolytic capacitor with a high specific dielectric constant by a simple device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複合誘電体皮膜の形成さ
れた電解コンデンサ用アルミニウム電極の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an aluminum electrode for electrolytic capacitors having a composite dielectric film formed thereon.

【0002】[0002]

【従来の技術】従来のこの種の製造方法としては図3に
示すように高純度アルミニウムにチタンをイオンプレー
ティングにより付着させて表面にアルミニウム−チタン
合金層を形成させた後、陽極酸化処理してアルミニウム
−チタン混在酸化物誘電体層を形成させるものがあった
(特開昭63−30614号公報)。そしてイオンプレ
ーティングは図4に示す方法で行われていた。すなわ
ち、図4において、1は真空容器であり、陰極板2に高
純度アルミニウム3が付着されている。真空容器1内を
10-4Torr程度に減圧しながら高周波発振器4よりマッ
チングボックス5を経てRFコイル6に振動電場(通常
13.56MHz)を印加すると同時に蒸発源7からチタ
ン蒸気を蒸発させてプラズマ8を発生させかつ蒸発源7
と陰極板2の間に直流電源8により直流電場を印加して
チタンを高純度アルミニウムにコーティングしていた。
2. Description of the Related Art As a conventional manufacturing method of this kind, as shown in FIG. 3, titanium is attached to high-purity aluminum by ion plating to form an aluminum-titanium alloy layer on the surface, and then anodizing treatment is performed. In some cases, an aluminum-titanium mixed oxide dielectric layer was formed (JP-A-63-30614). Ion plating was performed by the method shown in FIG. That is, in FIG. 4, reference numeral 1 is a vacuum container, and high-purity aluminum 3 is attached to the cathode plate 2. While depressurizing the inside of the vacuum container 1 to about 10 −4 Torr, an oscillating electric field (usually 13.56 MHz) is applied to the RF coil 6 from the high frequency oscillator 4 through the matching box 5, and at the same time titanium vapor is evaporated from the evaporation source 7 to generate plasma And evaporation source 7
A high-purity aluminum was coated with titanium by applying a DC electric field between the cathode plate 2 and the cathode plate 2 by a DC power source 8.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記の従
来の製造方法でチタンを連続的にコーティングするため
には大型のイオンプレーティング装置が必要であり、し
かもコーティングに時間を要するという問題があった。
However, there is a problem that a large ion plating device is required for continuously coating titanium by the above-mentioned conventional manufacturing method, and that coating takes time.

【0004】本発明は上記の問題を解決し、簡単な装置
により連続的に比誘電率の高い電解コンデンサ用アルミ
ニウム電極の製造方法の提供を目的とする。
An object of the present invention is to solve the above problems and to provide a method for producing an aluminum electrode for an electrolytic capacitor having a high relative dielectric constant continuously by a simple device.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の電解コンデンサ用アルミニウム電極の製造
方法は、アルミニウム金属の表面に金属塩の水溶液また
は有機金属塩の溶液を塗布し、次に前記金属塩または有
機金属塩を熱分解して金属酸化物とし、次に陽極酸化法
により酸化アルミニウムを形成して酸化アルミニウムよ
り比誘電率の高い複合誘電体皮膜を形成する。
In order to achieve the above object, a method of manufacturing an aluminum electrode for an electrolytic capacitor according to the present invention comprises applying an aqueous solution of a metal salt or a solution of an organic metal salt onto the surface of aluminum metal, Then, the metal salt or organic metal salt is thermally decomposed to form a metal oxide, and then aluminum oxide is formed by an anodic oxidation method to form a composite dielectric film having a higher relative dielectric constant than aluminum oxide.

【0006】[0006]

【作用】上記の構成によれば常圧(760Torr)で溶液
の塗布、熱分解、陽極酸化ができる。
According to the above construction, application of the solution, thermal decomposition, and anodic oxidation can be carried out at normal pressure (760 Torr).

【0007】[0007]

【実施例】【Example】

(実施例1)以下本発明の第1の実施例について図1お
よび図2を参照しながら説明する。
(Embodiment 1) A first embodiment of the present invention will be described below with reference to FIGS.

【0008】まず純度99.9%、厚さ100μmのア
ルミニウム金属を塩酸を主体とするエッチング液で約5
0倍の表面積を有するように加工する。次に図2に示す
ように巻出しロール10に巻かれたエッチングされたア
ルミニウム金属11は巻取ロール12との間に架設さ
れ、一定速度で巻取ロール12に巻取られる。
First, an aluminum metal having a purity of 99.9% and a thickness of 100 μm is about 5 by an etching solution containing hydrochloric acid as a main component.
It is processed to have a surface area of 0 times. Next, as shown in FIG. 2, the etched aluminum metal 11 wound on the unwinding roll 10 is installed between the winding roll 12 and the winding roll 12, and is wound on the winding roll 12 at a constant speed.

【0009】その途中においてアルミニウム金属11は
まず塗布槽13に入る。塗布槽13内にはn−ヘキサン
にチタニウムテトラブトキシドを18重量%含有する溶
液が入れてある。溶液の塗布されたアルミニウム金属1
1は上方に引上げられ乾燥炉14に入る。乾燥炉14は
100℃に保持されているために溶剤のn−ヘキサンが
蒸発し、チタニウムテトラブトキシドで被覆されたアル
ミニウム金属が形成される。次に乾燥炉15は300℃
に保持されているためにチタニウムテトラブトキシドは
熱分解されて酸化チタンとなる。酸化チタンで被覆され
たアルミニウム金属は次に化成槽16に入る。化成槽1
6内には30g/lのアジピン酸アンモニウムの水溶液
からなる化成液が入れてあり、70℃において酸化チタ
ンで被覆されたアルミニウム金属に80VD.Cを印加
して陽極酸化を行なった後巻取ロール12に巻取った。
On the way, the aluminum metal 11 first enters the coating tank 13. The coating tank 13 contains a solution containing 18% by weight of titanium tetrabutoxide in n-hexane. Aluminum metal coated with solution 1
1 is pulled upward and enters the drying furnace 14. Since the drying furnace 14 is kept at 100 ° C., the solvent n-hexane is evaporated and aluminum metal coated with titanium tetrabutoxide is formed. Next, the drying oven 15 is 300 ° C
The titanium tetrabutoxide is thermally decomposed into titanium oxide because it is retained in the titanium oxide. The aluminum metal coated with titanium oxide then enters the conversion tank 16. Formation tank 1
A chemical conversion liquid consisting of an aqueous solution of 30 g / l ammonium adipate was placed in 6 and the aluminum metal coated with titanium oxide at 70 ° C. had 80 VD. After applying C to carry out anodization, it was wound on a winding roll 12.

【0010】本実施例による電解コンデンサ用アルミニ
ウム電極の静電容量と耐電圧をエッチングのみを施した
電解コンデンサ用アルミニウム電極の特性と比較して
(表1)に示した。
The electrostatic capacity and the withstand voltage of the aluminum electrode for electrolytic capacitors according to this example are shown in Table 1 in comparison with the characteristics of the aluminum electrode for electrolytic capacitors which has been subjected only to etching.

【0011】[0011]

【表1】 [Table 1]

【0012】静電容量はエチレングリコール電解液中に
おいて120Hzで測定し、耐電圧は同じエチレングリコ
ール電解液中で0.2mA/cm2を通電したときの電圧−
時間特性を測定し、電圧上昇停止点を耐電圧とした。
(表1)より本実施例によれば従来より誘電率が63%
高い電解コンデンサ用アルミニウム電極が得られること
が明らかである。その理由は比誘電率が85の酸化チタ
ン9体積%と比誘電率が8の酸化アルミニウム91体積
%が等価的に並列接続した複合誘電体皮膜を形成したた
めである。
The capacitance was measured at 120 Hz in the ethylene glycol electrolyte, and the withstand voltage was the voltage when 0.2 mA / cm 2 was applied in the same ethylene glycol electrolyte.
The time characteristic was measured, and the voltage rising stop point was defined as the withstand voltage.
From Table 1, according to this embodiment, the dielectric constant is 63% as compared with the conventional one.
It is clear that a high aluminum electrode for electrolytic capacitors can be obtained. The reason for this is that 9% by volume of titanium oxide having a relative permittivity of 85 and 91% by volume of aluminum oxide having a relative permittivity of 8 are equivalently connected in parallel to form a composite dielectric film.

【0013】(実施例2)本実施例の製造方法が実施例
1と相違する点は、塗布槽13内にチタニウムテトラブ
トキシドと等モルのバリウムアセテートを12重量%含
有するエタノール溶液を入れた点である。
(Example 2) The manufacturing method of this example is different from Example 1 in that an ethanol solution containing 12% by weight of titanium tetrabutoxide and equimolar barium acetate was placed in the coating tank 13. Is.

【0014】本実施例による電解コンデンサ用アルミニ
ウム電極の静電容量と耐電圧を(表1)に示した。
The capacitance and the withstand voltage of the aluminum electrode for electrolytic capacitors according to this example are shown in (Table 1).

【0015】(表1)より本実施例によれば誘電率が1
16%高い電解コンデンサ用アルミニウム電極が得られ
ることが明らかである。その理由は比誘電率が1500
のチタン酸バリウム5体積%と比誘電率が8の酸化アル
ミニウム95体積%が等価的に並列接続した複合誘電体
皮膜を形成したためである。
From Table 1, according to this embodiment, the dielectric constant is 1
It is clear that a 16% higher aluminum electrode for electrolytic capacitors is obtained. The reason is that the relative permittivity is 1500
5% by volume of barium titanate and 95% by volume of aluminum oxide having a relative dielectric constant of 8 are equivalently connected in parallel to form a composite dielectric film.

【0016】なお、実施例では酸化アルミニウムと酸化
チタンまたはチタン酸バリウムとの複合誘電体皮膜につ
いて説明したがこれらに代えて比誘電率が200のチタ
ン酸鉛、比誘電率が380〜1800のジルコニウム・
チタン酸鉛、比誘電率が380のニオブ酸鉛、比誘電率
が380のニオブ酸ストロンチウム・バリウムを用いて
もよい。
In the examples, the composite dielectric film of aluminum oxide and titanium oxide or barium titanate was described. Instead of these, lead titanate having a relative dielectric constant of 200 and zirconium having a relative dielectric constant of 380 to 1800 are used.・
Lead titanate, lead niobate having a relative permittivity of 380, and strontium barium niobate having a relative permittivity of 380 may be used.

【0017】また溶液の塗布方法としてはディップ法で
説明したがこれに代えてスプレー法を用いてもよい。
Further, although the dipping method has been described as the method for applying the solution, a spray method may be used instead.

【0018】[0018]

【発明の効果】以上の説明から明らかなように、本発明
の電解コンデンサ用アルミニウム電極の製造方法によれ
ば、常圧で溶液の塗布、熱分解、陽極酸化を行なうので
簡単な装置で連続的に比誘電率の大きいものが製造でき
る。
As is apparent from the above description, according to the method for producing an aluminum electrode for an electrolytic capacitor of the present invention, application of a solution, thermal decomposition and anodic oxidation are carried out under normal pressure, so that continuous operation is possible with a simple apparatus. In addition, a material having a large relative dielectric constant can be manufactured.

【0019】また本発明の製造方法によるコンデンサ用
アルミニウム電極によれば小型のアルミニウム電解コン
デンサが製造できる。
The aluminum electrode for a capacitor according to the manufacturing method of the present invention can manufacture a small-sized aluminum electrolytic capacitor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電解コンデンサ用アルミニウム電極の
製造方法の工程図
FIG. 1 is a process diagram of a method for manufacturing an aluminum electrode for an electrolytic capacitor according to the present invention.

【図2】同じく製造装置の断面図FIG. 2 is a sectional view of the same manufacturing apparatus.

【図3】従来の電解コンデンサ用アルミニウム電極の製
造方法の工程図
FIG. 3 is a process diagram of a conventional method for manufacturing an aluminum electrode for an electrolytic capacitor.

【図4】同じく製造装置の断面図FIG. 4 is a sectional view of the manufacturing apparatus.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アルミニウム金属の表面に金属塩の水溶液
または有機金属塩の溶液を塗布し、次に前記金属塩また
は有機金属塩を熱分解して金属酸化物とし、次に陽極酸
化法により酸化アルミニウムを形成して酸化アルミニウ
ムより比誘電率の高い複合誘電体皮膜を形成する電解コ
ンデンサ用アルミニウム電極の製造方法。
1. An aluminum metal surface is coated with an aqueous solution of a metal salt or a solution of an organic metal salt, and then the metal salt or the organic metal salt is thermally decomposed to form a metal oxide, and then oxidized by an anodic oxidation method. A method for manufacturing an aluminum electrode for an electrolytic capacitor, which comprises forming aluminum to form a composite dielectric film having a higher relative dielectric constant than aluminum oxide.
【請求項2】複合誘電体皮膜が二酸化チタン、チタン酸
バリウム、チタン酸鉛、ジルコニウム・チタン酸鉛、ニ
オブ酸鉛、ニオブ酸ストロンチウム・バリウムの1種以
上と酸化アルミニウムとからなる請求項1記載の電解コ
ンデンサ用アルミニウム電極の製造方法。
2. The composite dielectric film comprises one or more of titanium dioxide, barium titanate, lead titanate, zirconium lead titanate, lead niobate, strontium barium niobate, and barium, and aluminum oxide. Manufacturing method of aluminum electrode for electrolytic capacitor.
JP12160192A 1992-05-14 1992-05-14 Method of manufacturing aluminum electrode for electrolytic capacitor Pending JPH05315197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12160192A JPH05315197A (en) 1992-05-14 1992-05-14 Method of manufacturing aluminum electrode for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12160192A JPH05315197A (en) 1992-05-14 1992-05-14 Method of manufacturing aluminum electrode for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH05315197A true JPH05315197A (en) 1993-11-26

Family

ID=14815296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12160192A Pending JPH05315197A (en) 1992-05-14 1992-05-14 Method of manufacturing aluminum electrode for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH05315197A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055121A1 (en) * 2005-11-10 2007-05-18 Toyo Aluminium Kabushiki Kaisha Electrode structure, capacitor and method for producing electrode structure
WO2007077883A1 (en) * 2005-12-28 2007-07-12 Showa Denko K. K. Capacitor and method for manufacturing same
JPWO2006035579A1 (en) * 2004-09-29 2008-07-31 東洋アルミニウム株式会社 Electrode material and manufacturing method thereof
JP2010183091A (en) * 1999-06-09 2010-08-19 Showa Denko Kk Method of manufacturing electrode material for capacitor
JP2011096872A (en) * 2009-10-30 2011-05-12 Panasonic Corp Electrode foil and method of manufacturing the same, and capacitor using the electrode foil

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183091A (en) * 1999-06-09 2010-08-19 Showa Denko Kk Method of manufacturing electrode material for capacitor
JP4723139B2 (en) * 1999-06-09 2011-07-13 昭和電工株式会社 Electrode material for capacitors
JPWO2006035579A1 (en) * 2004-09-29 2008-07-31 東洋アルミニウム株式会社 Electrode material and manufacturing method thereof
JP4705583B2 (en) * 2004-09-29 2011-06-22 東洋アルミニウム株式会社 Electrode material and manufacturing method thereof
WO2007055121A1 (en) * 2005-11-10 2007-05-18 Toyo Aluminium Kabushiki Kaisha Electrode structure, capacitor and method for producing electrode structure
KR101224064B1 (en) * 2005-11-10 2013-01-18 도요 알루미늄 가부시키가이샤 Electrode structure, capacitor and method for producing electrode structure
WO2007077883A1 (en) * 2005-12-28 2007-07-12 Showa Denko K. K. Capacitor and method for manufacturing same
JPWO2007077883A1 (en) * 2005-12-28 2009-06-11 昭和電工株式会社 Capacitor and manufacturing method thereof
US7697267B2 (en) 2005-12-28 2010-04-13 Showa Denko K.K. Capacitor and method for manufacturing same
JP2011096872A (en) * 2009-10-30 2011-05-12 Panasonic Corp Electrode foil and method of manufacturing the same, and capacitor using the electrode foil

Similar Documents

Publication Publication Date Title
JP4973229B2 (en) Electrolytic capacitor and manufacturing method thereof
US8213159B2 (en) Electrode foil, method of manufacturing electrode foil, and electrolytic capacitor
KR100647181B1 (en) Solid electrolyte capacitor and its manufacturing method
KR20140139585A (en) Hybrid capacitor
KR101729382B1 (en) Method of manufacturing aluminium foil, aluminium foil having high dielectric constant, electrolytic capacitor having the aluminium foil and apparatus for manufacturing aluminium foil
US3397446A (en) Thin film capacitors employing semiconductive oxide electrolytes
JPH05315197A (en) Method of manufacturing aluminum electrode for electrolytic capacitor
JPH08167543A (en) Aluminum electrode foil for electrolytic capacitor and manufacture thereof
JPH059790A (en) Production of base substance having metal oxide on surface
JPS6215813A (en) Anode material for electrolytic capacitor
JP3515702B2 (en) Electrode foil for electrolytic capacitor, method for producing the same, and electrolytic capacitor
JPH034512A (en) Electrode for capacitor
GB1265749A (en)
JPS59167009A (en) Method of producing electrode material for electrolytic condenser
JPH0653088A (en) Aluminum electrode for electrolytic capacitor and its manufacture
JPH0475645B2 (en)
JP2826341B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0547611A (en) Production of solid electrolytic capacitor
JP3568382B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JP2696982B2 (en) Solid electrolytic capacitors
JPH01261815A (en) Manufacture of solid electrolytic capacitor
US3588999A (en) Method of producing wound-foil solid capacitor
JPH0513286A (en) Solid electrolytic capacitor
JP2775762B2 (en) Solid electrolytic capacitors
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same