JPH08167543A - Aluminum electrode foil for electrolytic capacitor and manufacture thereof - Google Patents

Aluminum electrode foil for electrolytic capacitor and manufacture thereof

Info

Publication number
JPH08167543A
JPH08167543A JP30740194A JP30740194A JPH08167543A JP H08167543 A JPH08167543 A JP H08167543A JP 30740194 A JP30740194 A JP 30740194A JP 30740194 A JP30740194 A JP 30740194A JP H08167543 A JPH08167543 A JP H08167543A
Authority
JP
Japan
Prior art keywords
dielectric
foil
aluminum
fine particles
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30740194A
Other languages
Japanese (ja)
Inventor
Kounosuke Hashio
幸之助 箸尾
Koji Kamimoto
浩司 神本
Keizaburo Kuramasu
敬三郎 倉増
Masakazu Tanahashi
正和 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30740194A priority Critical patent/JPH08167543A/en
Publication of JPH08167543A publication Critical patent/JPH08167543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE: To prevent decrease in strength of aluminum electrode foil by a method wherein a dielectric film, on which the dielectric fine particles of high dielectric constant are mingled, is formed on the surface of aluminum foil. CONSTITUTION: A sheet of aluminum foil 3, of which the surface area is enlarged by forming a number of etch pits by etching, is delivered to a chemically forming bath 7 through a roller 6. A chemically forming solution, consisting of an adipic acid ammonium solution containing titanium oxide grains, is poured into the chemically forming bath 7, and an aluminum foil is formed by applying voltage from a chemically forming power source 8. The manufactured aluminum foil 3 is heat-treated in a heat treatment furnace 9, then it is depolarized in a deporarization treatment bath 10, subsequently a post-treatment is conducted in a chemically forming bath 13, and finally, it is dried up by a heat treatment furnace 14, and the aluminum foil is formed. As a result, electrostatic capacitance can be increased without decreasing strength, and a small electrolytic capacitor can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各種電子機器に利用され
る電解コンデンサ用アルミニウム電極箔およびその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum electrode foil for electrolytic capacitors used in various electronic devices and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電解コンデンサのアルミニウム電極箔は
一般的に、図3に示すように高純度のアルミニウム箔1
を塩素イオン(Cl-)を含むエッチング液中で陽極エ
ッチングを行い、このアルミニウム箔1に数多くのピッ
トを作成して表面積Aを増大させた後、化成液中で陽極
酸化処理を行い、アルミニウム箔1に誘電体皮膜2を形
成する。この誘電体皮膜2の膜厚をt、誘電率をεとし
たとき、アルミニウム電極箔の静電容量Cは下記式で表
わすことができる。
2. Description of the Related Art The aluminum electrode foil of an electrolytic capacitor is generally a high-purity aluminum foil 1 as shown in FIG.
Is subjected to anodic etching in an etching solution containing chlorine ions (Cl ), a large number of pits are formed on the aluminum foil 1 to increase the surface area A, and then anodizing treatment is performed in a chemical conversion solution to form an aluminum foil. A dielectric film 2 is formed on 1. When the film thickness of the dielectric film 2 is t and the dielectric constant is ε, the capacitance C of the aluminum electrode foil can be expressed by the following formula.

【0003】C=ε(A/t) この静電容量Cを増大させるためには、表面積Aの増大
と、誘電体皮膜2の膜厚tを薄くしていくことが有効と
されている。
C = ε (A / t) In order to increase the capacitance C, it is effective to increase the surface area A and reduce the film thickness t of the dielectric film 2.

【0004】しかしながら、誘電体皮膜2の膜厚tを薄
くしていくと絶縁破壊電圧が低くなり、低電圧での使用
しかできなくなり実用範囲が著しく狭められてしまうこ
とになる。
However, if the film thickness t of the dielectric film 2 is made thinner, the dielectric breakdown voltage becomes lower, and it can only be used at a low voltage, and the practical range is significantly narrowed.

【0005】このようなことから、従来の電解コンデン
サ用アルミニウム電極箔は、陽極エッチングによりアル
ミニウム箔1の表面積を増大して静電容量Cの増大を図
ってきた。
For these reasons, the conventional aluminum electrode foil for electrolytic capacitors has been attempted to increase the capacitance C by increasing the surface area of the aluminum foil 1 by anodic etching.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の電解コンデンサ用アルミニウム電極箔の製造方法で
は、静電容量の増大のために表面積を増大しているため
アルミニウム電極箔の強度が低下し、コンデンサ素子と
しての巻取り等でアルミニウム電極箔の破断が生じやす
く、生産性に支障をきたしコスト面で著しく不利になっ
ていた。
However, in the above-mentioned conventional method for manufacturing an aluminum electrode foil for an electrolytic capacitor, since the surface area is increased due to the increase in electrostatic capacity, the strength of the aluminum electrode foil is lowered, and the capacitor is reduced. The aluminum electrode foil is liable to break due to winding as an element, which hinders productivity and is extremely disadvantageous in terms of cost.

【0007】また、表面積の増大のための陽極エッチン
グでは、アルミニウム箔1の純度や不純物として含有さ
れる金属組成による影響を受けやすく、表面積増大につ
いてばらつきが生じやすく安定した静電容量を得ること
が困難であるといった欠点があった。
Further, in the anodic etching for increasing the surface area, it is easy to be influenced by the purity of the aluminum foil 1 and the metal composition contained as an impurity, and variations in the surface area increase easily, and a stable capacitance can be obtained. It had the drawback of being difficult.

【0008】本発明は以上のような従来の欠点を除去
し、強度の低下もなく静電容量のばらつきの少ない電解
コンデンサ用アルミニウム電極箔およびその製造方法を
提供することを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned conventional drawbacks and provide an aluminum electrode foil for an electrolytic capacitor having a small variation in electrostatic capacity and a manufacturing method thereof. .

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に本発明は、アルミニウム箔の表面に高誘電率の誘電体
微粒子を混在した誘電体皮膜を形成したものである。
In order to solve the above-mentioned problems, the present invention forms a dielectric film on the surface of an aluminum foil in which dielectric fine particles having a high dielectric constant are mixed.

【0010】[0010]

【作用】このような構成とすることにより、誘電体皮膜
としてアルミナと高誘電率の誘電体微粒子の混在したも
のとなり、誘電体皮膜自体の誘電率を大きくして静電容
量の増大を図ることができる。
With this structure, the dielectric film is a mixture of alumina and high-dielectric-constant dielectric fine particles, and the dielectric constant of the dielectric film itself is increased to increase the capacitance. You can

【0011】[0011]

【実施例】以下、本発明の電解コンデンサ用アルミニウ
ム電極箔の一実施例について図1を用いて説明する。
EXAMPLES An example of the aluminum electrode foil for electrolytic capacitors of the present invention will be described below with reference to FIG.

【0012】図1において、3は厚さ100μmで純度
99%のアルミニウム箔である。4はこのアルミニウム
箔3の表面に形成された誘電体皮膜であり、この誘電体
皮膜4中にはTiO2,PbZrO3,BaTiO3,P
bTiO3,ZrTiO3,(Ba,Sr)TiO3
(Pb,Zr)TiO3,Ta25などの高誘電率の誘
電体微粒子5が混在されている。
In FIG. 1, 3 is an aluminum foil having a thickness of 100 μm and a purity of 99%. Reference numeral 4 is a dielectric film formed on the surface of the aluminum foil 3, and in the dielectric film 4, TiO 2 , PbZrO 3 , BaTiO 3 , P is contained.
bTiO 3 , ZrTiO 3 , (Ba, Sr) TiO 3 ,
(Pb, Zr) TiO 3, Ta 2 O 5 dielectric grains 5 having a high dielectric constant, such as is mixed.

【0013】また、上記誘電体皮膜4は、平均粒径20
nm〜80nmの高誘電率の誘電体微粒子5を含有させ
た陽極酸化液を用いて陽極酸化処理を施すことにより形
成されている。この誘電体微粒子5の粒径を20nm〜
80nmとしたのは、20nm以下であれば凝集しやす
く陽極酸化液への分散が困難となり、誘電体皮膜4中に
均一に混在させることが困難となり、80nm以上にな
ると漏れ電流が大きくなって好ましくなくなることに起
因している。
The dielectric film 4 has an average particle size of 20.
It is formed by performing an anodizing treatment using an anodizing liquid containing the dielectric fine particles 5 having a high dielectric constant of nm to 80 nm. The particle diameter of the dielectric fine particles 5 is 20 nm
The thickness of 80 nm is preferably 20 nm or less, easily aggregated, and difficult to disperse in the anodizing solution, and difficult to uniformly mix in the dielectric film 4, and when 80 nm or more, leakage current becomes large, which is preferable. It is due to disappearance.

【0014】このような構成の電解コンデンサ用アルミ
ニウム電極箔とすることにより、アルミニウム箔3の表
面積の拡大を強度が低下しない程度までとしても静電容
量は数10%向上させることができる。
By using the aluminum electrode foil for an electrolytic capacitor having such a structure, the capacitance can be improved by several tens of percent even if the surface area of the aluminum foil 3 is not increased and the strength is not lowered.

【0015】次に本発明の電解コンデンサ用アルミニウ
ム電極箔の製造方法の具体的な実施例について説明す
る。
Next, specific examples of the method for producing the aluminum electrode foil for electrolytic capacitors of the present invention will be described.

【0016】(実施例1)まず、本発明の第1の実施例
としての電解コンデンサ用アルミニウム電極箔の製造方
法について図2を用いて説明する。
(Embodiment 1) First, a method of manufacturing an aluminum electrode foil for an electrolytic capacitor as a first embodiment of the present invention will be described with reference to FIG.

【0017】エッチングによりエッチピットを多数形成
して表面積の拡大を図った厚さ100μm、純度99%
のアルミニウム箔3は、ローラ6を介して化成槽7に送
り込まれる。この化成槽7には平均粒径30nmの酸化
チタン粒子(TiO2ルチル構造>97%)5を0.5
重量%含有する7%アジピン酸アンモニウム水溶液から
なる化成液が液温75℃を保って注入されている。ま
た、この化成槽7とアルミニウム箔3には化成用電源8
により0.5mA/cm2の電流密度で100Vの電圧
を印加して化成されるようになっている。
A large number of etch pits are formed by etching to increase the surface area, and the thickness is 100 μm and the purity is 99%.
The aluminum foil 3 is sent to the chemical conversion tank 7 via the roller 6. Titanium oxide particles (TiO 2 rutile structure> 97%) 5 having an average particle diameter of 30 nm are added to the chemical conversion tank 7 in an amount of 0.5.
A chemical conversion liquid consisting of a 7% ammonium adipate aqueous solution that is contained by weight is injected while maintaining the liquid temperature at 75 ° C. In addition, the chemical conversion power source 8 is used for the chemical conversion tank 7 and the aluminum foil 3.
Thus, the formation is performed by applying a voltage of 100 V at a current density of 0.5 mA / cm 2 .

【0018】この化成槽7で作成されたアルミニウム箔
3は熱処理炉9で熱処理され、次に減極処理槽10で減
極処理し、続いて化成槽11で化成用電源12で電圧を
印加しながら化成し、後処理槽13で後処理し、最後に
熱処理炉14で乾燥してアルミニウム電極箔とする。
The aluminum foil 3 produced in the chemical conversion tank 7 is heat-treated in the heat treatment furnace 9 and then subjected to the depolarization treatment in the depolarization treatment tank 10, and subsequently in the chemical conversion tank 11 a voltage is applied by the chemical conversion power supply 12. While being formed, it is post-treated in the post-treatment tank 13 and finally dried in the heat treatment furnace 14 to obtain an aluminum electrode foil.

【0019】この方法によって得られた電解コンデンサ
用アルミニウム電極箔の静電容量は15μF/cm2
あった。比較としてTiO2の誘電体微粒子を添加しな
い化成液である7%アジピン酸アンモニウム水溶液の化
成槽7で化成し、後は全く同じ工程で製造した電解コン
デンサ用アルミニウム電極箔の静電容量は12μF/c
2で本発明の方法によるものは約25%容量増加が得
られた。
The capacitance of the aluminum electrode foil for electrolytic capacitors obtained by this method was 15 μF / cm 2 . For comparison, the aluminum electrode foil for an electrolytic capacitor, which was formed in the same process as the chemical conversion tank 7 of a 7% ammonium adipate aqueous solution which is a chemical conversion liquid without adding TiO 2 dielectric fine particles, has a capacitance of 12 μF / c
With m 2 , a capacity increase of about 25% was obtained with the method of the invention.

【0020】上記化成液中に添加する誘電体微粒子の量
を変えて製造した電解コンデンサ用アルミニウム電極箔
の静電容量の測定結果を(表1)に示す。
Table 1 shows the measurement results of the capacitance of aluminum electrode foils for electrolytic capacitors manufactured by changing the amount of the dielectric fine particles added to the chemical conversion liquid.

【0021】[0021]

【表1】 [Table 1]

【0022】この(表1)から明らかなように、誘電体
微粒子の添加量を増すに従って静電容量は増加していく
が、5重量%以上の添加で飽和する傾向が見られた。こ
れは、この条件で製造した場合に陽極酸化時にアルミナ
中に固定される誘電体微粒子の量に制限があり、化成液
中の誘電体微粒子の量を増しても効果が出てこなくな
る。
As is clear from this (Table 1), the capacitance increases as the amount of the dielectric fine particles added increases, but there is a tendency that the capacitance is saturated with the addition of 5% by weight or more. This is because there is a limit to the amount of dielectric fine particles fixed in alumina during anodization when manufactured under these conditions, and even if the amount of dielectric fine particles in the chemical conversion liquid is increased, the effect cannot be obtained.

【0023】本実施例においては、誘電体微粒子の添加
量は5重量%が飽和点であったが化成条件によってはこ
の添加量はそれぞれ異なる。
In this embodiment, the amount of the dielectric fine particles added was 5% by weight at the saturation point, but the amount added varies depending on the chemical conversion conditions.

【0024】(実施例2)下記の組成で調合し、ポット
ミルで分散した分散物を得る。
(Example 2) Compounds having the following compositions were prepared and dispersed by a pot mill to obtain a dispersion.

【0025】 酸化チタン粒子(TiO2) 30g アクリル系樹脂 9g ヤシ脂肪酸ジェタノールアマイド 1PHP ブタノール 740g ジエチルフタル酸 2g ロールに巻回された厚さ100μm、純度99%のアル
ミニウム箔を上記分散物中に通す。送りスピードを調整
し、分散物をアルミニウム箔上に塗布し、加熱装置上を
通して乾燥させて溶剤を揮発させ、ローラで加圧した後
350℃以上で加熱し脱バインダー処理を行ってアルミ
ニウム箔上に酸化チタン層を形成させる。
Titanium oxide particles (TiO 2 ) 30 g Acrylic resin 9 g Palm fatty acid jetanol amide 1 PHP butanol 740 g Diethyl phthalic acid 2 g An aluminum foil with a thickness of 100 μm and a purity of 99% wound around a roll is passed through the above dispersion. . Adjust the feed speed, apply the dispersion on aluminum foil, dry it through a heating device to volatilize the solvent, press it with a roller and heat it at 350 ° C or more to remove the binder and perform debinding treatment on the aluminum foil. A titanium oxide layer is formed.

【0026】次に7%アジピン酸アンモニウム水溶液の
化成液を75℃に保った化成槽に上記アルミニウム箔を
送り込んで100Vの電圧で化成し、後は実施例1と同
じ工程を経て電解コンデンサ用アルミニウム電極箔を得
る。
Next, the above aluminum foil was fed into a chemical conversion tank in which a 7% ammonium adipate aqueous solution was kept at 75 ° C. for chemical conversion at a voltage of 100 V. Obtain the electrode foil.

【0027】この方法で得た電解コンデンサ用アルミニ
ウム電極箔の静電容量は0.16μF/cm2で、酸化
チタンの付着処理をしない電解コンデンサ用アルミニウ
ム電極箔の静電容量0.12μF/cm2に比べて約3
3%の容量増加を得ることができた。
The electrostatic capacity of the aluminum electrode foil for electrolytic capacitors obtained by this method is 0.16 μF / cm 2 , and the electrostatic capacity of the aluminum electrode foil for electrolytic capacitors without titanium oxide adhesion treatment is 0.12 μF / cm 2. About 3 compared to
A capacity increase of 3% could be obtained.

【0028】(実施例3)厚さ100μm、純度99%
のエッチング処理を施したアルミニウム箔を平均粒径3
0〜50nmの酸化チタン粒子(TiO2)を重量百分
率で0.5%含有するボイル純水溶液中に浸漬し、7%
アジピン酸アンモニウム水溶液の化成液を75℃に保っ
た化成槽で100Vの電圧を印加して化成処理し、以後
は実施例1と同じ工程を経て電解コンデンサ用アルミニ
ウム電極箔を得た。この電解コンデンサ用アルミニウム
電極箔の静電容量は15μF/cm2で酸化チタンを用
いないものの静電容量12μF/cm2に比べて約25
%の容量増加を得ることができた。
Example 3 Thickness 100 μm, Purity 99%
The average grain size of aluminum foil that has been subjected to the etching treatment of 3
The titanium oxide particles (TiO 2 ) having a particle size of 0 to 50 nm are dipped in a pure aqueous solution of boil containing 0.5% by weight to give 7%.
A chemical conversion treatment was carried out by applying a voltage of 100 V to a chemical conversion bath of an ammonium adipate aqueous solution kept at 75 ° C., and thereafter, the same steps as in Example 1 were performed to obtain an aluminum electrode foil for electrolytic capacitors. The electrolytic capacitance of the aluminum electrode foil for capacitors approximately as compared with the electrostatic capacitance 12μF / cm 2 of which does not use titanium oxide with 15μF / cm 2 25
% Capacity increase could be obtained.

【0029】(実施例4)静電気により金属、ゴムある
いは合成樹脂からなるローラ上に平均粒径50nmの酸
化チタン粒子を付着させ、厚さ100μmで純度99%
でアルミニウム箔に転写し、その後ローラで加圧し酸化
チタン粒子を固定させる。その後、このアルミニウム箔
を実施例2、実施例3と同じように化成処理を行って電
解コンデンサ用アルミニウム電極箔を得た。この電解コ
ンデンサ用アルミニウム電極箔の静電容量は0.17μ
F/cm2で酸化チタンを施さずに製造した電解コンデ
ンサ用アルミニウム電極箔の静電容量0.12μF/c
2に比べて約40%の容量増加を得ることができた。
(Embodiment 4) Titanium oxide particles having an average particle diameter of 50 nm are adhered on a roller made of metal, rubber or synthetic resin by static electricity, and the thickness is 100 μm and the purity is 99%.
Then, it is transferred to an aluminum foil by means of a roller and then pressed by a roller to fix the titanium oxide particles. Then, this aluminum foil was subjected to chemical conversion treatment in the same manner as in Examples 2 and 3 to obtain an aluminum electrode foil for electrolytic capacitors. The capacitance of this aluminum electrode foil for electrolytic capacitors is 0.17μ
Capacitance of aluminum electrode foil for electrolytic capacitors manufactured at F / cm 2 without titanium oxide 0.12 μF / c
It was possible to obtain a capacity increase of about 40% compared to m 2 .

【0030】なお、酸化チタン粒子の代りに高誘電率の
誘電体微粒子としてPbZrO3,BaTiO3,PbT
iO3,ZrTiO3,(Ba,Sr)TiO3,(P
b,Zr)TiO3,TiO3,Ta25を用いても同じ
効果があった。
Instead of the titanium oxide particles, PbZrO 3 , BaTiO 3 , PbT as high-dielectric-constant dielectric particles are used.
iO 3 , ZrTiO 3 , (Ba, Sr) TiO 3 , (P
The same effect was obtained by using (b, Zr) TiO 3 , TiO 3 , and Ta 2 O 5 .

【0031】(実施例5)下記の組成で調合し、ポット
ミルで分散した分散物を得る。
(Example 5) Compounds having the following compositions were prepared and dispersed by a pot mill to obtain a dispersion.

【0032】 酸化チタン粒子 15g ガラスフリット 15g アクリル系樹脂 7g ヤシ脂肪酸ジェタノールアマイド 1PHP ブタノール 740g ジエチルフタル酸 2g ロールに巻回された厚さ100μm、純度99%のアル
ミニウム箔を上記分散物中に通し、送りスピードを調整
してアルミニウム箔上に分散物を塗布し、加熱装置を通
して乾燥させて溶剤を揮発させた後、400℃以上に加
熱してガラスフリットを溶融しアルミニウム箔上に酸化
チタン粒子を固定する。このとき500℃以上に加熱す
ると特性が不安定になるため500℃以下が好ましく、
また、ガラスフリットの線熱膨張係数は3〜70×10
-6/℃が好ましく、この範囲外のものではアルミニウム
箔が大きく湾曲する。
Titanium oxide particles 15 g Glass frit 15 g Acrylic resin 7 g Cocoa fatty acid jetanol amide 1 PHP butanol 740 g Diethyl phthalic acid 2 g An aluminum foil wound around a roll having a thickness of 100 μm and a purity of 99% is passed through the above dispersion, After adjusting the feed speed, apply the dispersion on aluminum foil, dry it through a heating device to volatilize the solvent, then heat to 400 ° C or more to melt the glass frit and fix the titanium oxide particles on the aluminum foil. To do. At this time, if heated to 500 ° C or higher, the characteristics become unstable, so 500 ° C or lower is preferable,
The linear thermal expansion coefficient of the glass frit is 3 to 70 × 10.
-6 / ° C is preferable, and if it is out of this range, the aluminum foil is largely curved.

【0033】後は実施例2〜4に示すものと同様の工程
を経て電解コンデンサ用アルミニウム電極箔を得た。こ
の電解コンデンサ用アルミニウム電極箔の静電容量は
0.15μF/cm2で酸化チタン粒子を施さないもの
の静電容量0.12μF/cm2に比べて約25%の容
量増加が図れた。
Thereafter, the same steps as those shown in Examples 2 to 4 were performed to obtain aluminum electrode foils for electrolytic capacitors. The electrolytic capacitance of the aluminum electrode foil for capacitors was Hakare about 25% capacity increase over the capacitance 0.12μF / cm 2 of those not subjected to the titanium oxide particles 0.15μF / cm 2.

【0034】[0034]

【発明の効果】以上のように本発明は、誘電体皮膜中に
高誘電体微粒子を混在させることにより、アルミニウム
箔としてエッチングにより表面積の増大を図ったもので
も、エッチング処理の施していないアルミニウム箔で
も、静電容量を増大できる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, by mixing high dielectric fine particles in the dielectric film, even if the surface area of the aluminum foil is increased by etching, the aluminum foil is not subjected to etching treatment. However, the capacitance can be increased.

【0035】特に、本発明によりエッチングしたアルミ
ニウム箔の強度を過度のエッチング処理で強度を劣化さ
せることなく静電容量の増大が図れ、しかもその静電容
量は安定したものとなり、結果として小形の電解コンデ
ンサを構成できるとともにコスト面でも有利とすること
ができるなどの効果を有し、産業的価値の大なるもので
ある。
Particularly, it is possible to increase the capacitance of the aluminum foil etched according to the present invention without deteriorating the strength of the aluminum foil by excessive etching, and the capacitance becomes stable, resulting in a small electrolysis. It has a great industrial value because it has the effects of being able to configure a capacitor and being advantageous in terms of cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電解コンデンサ用アルミニウム電極箔
の一実施例を示す要部の拡大断面図
FIG. 1 is an enlarged cross-sectional view of a main part showing an embodiment of an aluminum electrode foil for electrolytic capacitors of the present invention.

【図2】同本発明の電解コンデンサ用アルミニウム電極
箔の製造方法の一実施例を示す工程図
FIG. 2 is a process chart showing an embodiment of a method for producing an aluminum electrode foil for electrolytic capacitors of the present invention.

【図3】従来の電解コンデンサ用アルミニウム電極箔の
要部の拡大断面図
FIG. 3 is an enlarged sectional view of a main part of a conventional aluminum electrode foil for electrolytic capacitors.

【符号の説明】[Explanation of symbols]

3 アルミニウム箔 4 誘電体皮膜 5 誘電体微粒子 7 化成槽 8 化成用電源 9 熱処理炉 10 減極処理槽 11 化成槽 12 化成用電源 13 後処理槽 14 熱処理炉 3 Aluminum foil 4 Dielectric film 5 Dielectric fine particles 7 Chemical conversion tank 8 Power source for chemical conversion 9 Heat treatment furnace 10 Depolarization treatment tank 11 Chemical conversion tank 12 Power source for chemical conversion 13 Post-treatment tank 14 Heat treatment furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 棚橋 正和 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masakazu Tanahashi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム箔の表面に高誘電率の誘電
体微粒子を混在した誘電体皮膜を形成した電解コンデン
サ用アルミニウム電極箔。
1. An aluminum electrode foil for an electrolytic capacitor, which comprises a surface of an aluminum foil and a dielectric film on which dielectric fine particles having a high dielectric constant are mixed.
【請求項2】 誘電体微粒子がTiO2,PbZrO3
BaTiO3,PbTiO3,ZrTiO3,(Ba,S
r)TiO3,(Pb,Zr)TiO3,Ta25より選
ばれた1種または複数種からなる請求項1記載の電解コ
ンデンサ用アルミニウム電極箔。
2. The dielectric fine particles are TiO 2 , PbZrO 3 ,
BaTiO 3 , PbTiO 3 , ZrTiO 3 , (Ba, S
The aluminum electrode foil for an electrolytic capacitor according to claim 1, comprising one or a plurality of r) TiO 3 , (Pb, Zr) TiO 3 , and Ta 2 O 5 .
【請求項3】 誘電体微粒子の粒径を20〜80nmと
した請求項1記載の電解コンデンサ用アルミニウム電極
箔。
3. The aluminum electrode foil for an electrolytic capacitor according to claim 1, wherein the particle size of the dielectric fine particles is 20 to 80 nm.
【請求項4】 アルミニウム箔があらかじめエッチング
処理により表面積を増大したものである請求項1記載の
電解コンデンサ用アルミニウム電極箔。
4. The aluminum electrode foil for an electrolytic capacitor according to claim 1, wherein the aluminum foil has a surface area increased in advance by an etching treatment.
【請求項5】 アルミニウム箔を高誘電率の誘電体微粒
子を含む化成液中で陽極酸化処理を行い、このアルミニ
ウム箔の表面に誘電体微粒子を混在する誘電体皮膜を形
成する電解コンデンサ用アルミニウム電極箔の製造方
法。
5. An aluminum electrode for an electrolytic capacitor, wherein an aluminum foil is anodized in a chemical conversion liquid containing high-dielectric-constant dielectric fine particles to form a dielectric film on the surface of which aluminum fine particles are mixed. Method of manufacturing foil.
【請求項6】 アルミニウム箔の表面に高誘電率の誘電
体微粒子を含む水溶液または有機溶液を塗布した後、液
中の水または有機溶剤を加熱処理により除去し、その後
化成液で陽極酸化処理を施し誘電体微粒子を混在する誘
電体皮膜を形成する電解コンデンサ用アルミニウム電極
箔の製造方法。
6. An aluminum foil surface is coated with an aqueous solution or an organic solution containing high-dielectric-constant dielectric fine particles, water or organic solvent in the solution is removed by heat treatment, and then anodization treatment is performed with a chemical conversion solution. A method of manufacturing an aluminum electrode foil for an electrolytic capacitor, which comprises forming a dielectric film containing mixed fine dielectric particles.
【請求項7】 アルミニウム箔を高誘電率の誘電体微粒
子の懸濁液に浸漬し、この懸濁液を加熱して誘電体微粒
子をアルミニウム箔の表面に固定し、次に化成液を用い
て陽極酸化処理をして誘電体微粒子を混在した誘電体皮
膜を形成する電解コンデンサ用アルミニウム電極箔の製
造方法。
7. An aluminum foil is dipped in a suspension of high-dielectric-constant dielectric fine particles, the suspension is heated to fix the dielectric fine particles to the surface of the aluminum foil, and then a chemical conversion solution is used. A method for manufacturing an aluminum electrode foil for an electrolytic capacitor, which comprises an anodizing treatment to form a dielectric film containing dielectric particles.
【請求項8】 ローラに高誘電率の誘電体微粒子を付着
させ、このローラの誘電体微粒子をアルミニウム箔の表
面に転写した後化成液を用いて陽極酸化処理を施してア
ルミニウム箔の表面に誘電体微粒子の混在する誘電体皮
膜を形成する電解コンデンサ用アルミニウム電極箔の製
造方法。
8. Dielectric fine particles having a high dielectric constant are adhered to a roller, the dielectric fine particles of the roller are transferred to the surface of an aluminum foil, and anodizing treatment is performed using a post chemical conversion liquid to dielectricize the surface of the aluminum foil. A method for producing an aluminum electrode foil for an electrolytic capacitor, which comprises forming a dielectric film in which body particles are mixed.
【請求項9】 高誘電率の誘電体微粒子とガラスフリッ
トを含む溶液をアルミニウム箔の表面に塗布し、加熱す
ることによりガラスフリットで誘電体微粒子をアルミニ
ウム箔に固定した後、化成液を用いて陽極酸化処理を施
して誘電体微粒子を混在した誘電体皮膜を形成する電解
コンデンサ用アルミニウム電極箔の製造方法。
9. A solution containing high-dielectric-constant dielectric fine particles and glass frit is applied to the surface of an aluminum foil and heated to fix the dielectric fine particles to the aluminum foil, and then a chemical conversion solution is used. A method for producing an aluminum electrode foil for an electrolytic capacitor, which comprises subjecting an anodizing treatment to a dielectric film in which dielectric particles are mixed.
【請求項10】 ガラスフリットとして軟化点が500
℃以下で線熱膨張係数が3〜70×10-6/℃のものを
用いた請求項9記載の電解コンデンサ用アルミニウム電
極箔の製造方法。
10. A glass frit having a softening point of 500.
The method for producing an aluminum electrode foil for an electrolytic capacitor according to claim 9, wherein a material having a linear thermal expansion coefficient of 3 to 70 × 10 −6 / ° C. at a temperature of ≦ ° C. is used.
JP30740194A 1994-12-12 1994-12-12 Aluminum electrode foil for electrolytic capacitor and manufacture thereof Pending JPH08167543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30740194A JPH08167543A (en) 1994-12-12 1994-12-12 Aluminum electrode foil for electrolytic capacitor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30740194A JPH08167543A (en) 1994-12-12 1994-12-12 Aluminum electrode foil for electrolytic capacitor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08167543A true JPH08167543A (en) 1996-06-25

Family

ID=17968612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30740194A Pending JPH08167543A (en) 1994-12-12 1994-12-12 Aluminum electrode foil for electrolytic capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08167543A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012400A (en) * 1998-06-19 2000-01-14 Nichicon Corp Electrode foil for aluminum electrolytic capacitor
JP2006114541A (en) * 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd Electrode foil and method of manufacturing the same for electrolytic capacitor
JP2008060596A (en) * 2001-08-22 2008-03-13 Showa Denko Kk Solid electrolytic capacitor and method for manufacturing it
WO2008041455A1 (en) 2006-09-28 2008-04-10 Nihon Parkerizing Co., Ltd. Method for coating ceramic film on metal, electrolysis solution for use in the method, and ceramic film and metal material
JP2008205112A (en) * 2007-02-19 2008-09-04 Fujitsu Ltd Electrolytic capacitor and its manufacturing method
JP2008270525A (en) * 2007-04-20 2008-11-06 Fujitsu Ltd Electrolytic capacitor
JP2008270524A (en) * 2007-04-20 2008-11-06 Fujitsu Ltd Electrode foil and manufacturing method therefor
KR100895318B1 (en) * 2007-06-15 2009-05-07 스템코 주식회사 Conductor roll and apparatus for manufacturing film carrier tape using the same
WO2010109783A1 (en) * 2009-03-23 2010-09-30 東洋アルミニウム株式会社 Electrode structure, capacitor, battery, and method for producing electrode structure
WO2010116656A1 (en) * 2009-04-08 2010-10-14 パナソニック株式会社 Capacitor and manufacturing method therefor
US8213159B2 (en) 2007-04-20 2012-07-03 Fujitsu Limited Electrode foil, method of manufacturing electrode foil, and electrolytic capacitor
JP2012256747A (en) * 2011-06-09 2012-12-27 Sanyo Electric Co Ltd Solid electrolytic capacitor and manufacturing method of the same
WO2014199770A1 (en) * 2013-06-12 2014-12-18 株式会社村田製作所 Electrode for capacitors, method for producing electrode for capacitors, and capacitor element
JP2016006212A (en) * 2014-06-20 2016-01-14 いすゞ自動車株式会社 Hybrid thermal barrier coating method of aluminum alloy material and its structure, and piston

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012400A (en) * 1998-06-19 2000-01-14 Nichicon Corp Electrode foil for aluminum electrolytic capacitor
JP2008060596A (en) * 2001-08-22 2008-03-13 Showa Denko Kk Solid electrolytic capacitor and method for manufacturing it
JP4572649B2 (en) * 2004-10-12 2010-11-04 パナソニック株式会社 Method for producing electrode foil for electrolytic capacitor
JP2006114541A (en) * 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd Electrode foil and method of manufacturing the same for electrolytic capacitor
WO2008041455A1 (en) 2006-09-28 2008-04-10 Nihon Parkerizing Co., Ltd. Method for coating ceramic film on metal, electrolysis solution for use in the method, and ceramic film and metal material
JP2008205112A (en) * 2007-02-19 2008-09-04 Fujitsu Ltd Electrolytic capacitor and its manufacturing method
JP2008270525A (en) * 2007-04-20 2008-11-06 Fujitsu Ltd Electrolytic capacitor
JP2008270524A (en) * 2007-04-20 2008-11-06 Fujitsu Ltd Electrode foil and manufacturing method therefor
US8213159B2 (en) 2007-04-20 2012-07-03 Fujitsu Limited Electrode foil, method of manufacturing electrode foil, and electrolytic capacitor
KR100895318B1 (en) * 2007-06-15 2009-05-07 스템코 주식회사 Conductor roll and apparatus for manufacturing film carrier tape using the same
US8385051B2 (en) 2009-03-23 2013-02-26 Toyo Aluminium Kabushiki Kaisha Electrode structure, capacitor, battery, and method for manufacturing electrode structure
WO2010109783A1 (en) * 2009-03-23 2010-09-30 東洋アルミニウム株式会社 Electrode structure, capacitor, battery, and method for producing electrode structure
US8638545B2 (en) 2009-03-23 2014-01-28 Toyo Aluminium Kabushiki Kaisha Electrode structure, capacitor, battery, and method for manufacturing electrode structure
JP2014045202A (en) * 2009-03-23 2014-03-13 Toyo Aluminium Kk Electrode structure, capacitor and battery
JP5542801B2 (en) * 2009-03-23 2014-07-09 東洋アルミニウム株式会社 Electrode structure, capacitor, battery, and manufacturing method of electrode structure
US8976509B2 (en) 2009-03-23 2015-03-10 Toyo Aluminium Kabushiki Kaisha Aluminum material
WO2010116656A1 (en) * 2009-04-08 2010-10-14 パナソニック株式会社 Capacitor and manufacturing method therefor
US8659875B2 (en) 2009-04-08 2014-02-25 Panasonic Corporation Capacitor and manufacturing method therefor
JP2012256747A (en) * 2011-06-09 2012-12-27 Sanyo Electric Co Ltd Solid electrolytic capacitor and manufacturing method of the same
WO2014199770A1 (en) * 2013-06-12 2014-12-18 株式会社村田製作所 Electrode for capacitors, method for producing electrode for capacitors, and capacitor element
JP2016006212A (en) * 2014-06-20 2016-01-14 いすゞ自動車株式会社 Hybrid thermal barrier coating method of aluminum alloy material and its structure, and piston

Similar Documents

Publication Publication Date Title
JPH08167543A (en) Aluminum electrode foil for electrolytic capacitor and manufacture thereof
WO2002049965A1 (en) Method of forming titanium oxide film and titanium electrolytic capacitor
JP2003224036A (en) Aluminum anode foil for electrolytic capacitor and its manufacturing method
US4450049A (en) Method of forming tantalum capacitor anodes and making the capacitors
US3345543A (en) Solid electrolytic capacitor with anodized aluminum electrode and method of making
JP3261482B2 (en) Electrode of aluminum electrolytic capacitor and method of manufacturing the same
JP3084330B2 (en) Method of manufacturing aluminum material for electrolytic capacitor electrode having reduced etching layer
JP2000286164A (en) Electrolytic capacitor, its manufacture, and electrode foil therefor
JP2000178792A (en) Production of oxide film
JPS6060709A (en) Aluminum electrode for electrolytic condenser
JPH0653088A (en) Aluminum electrode for electrolytic capacitor and its manufacture
JPH0475645B2 (en)
JP2847087B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
KR920010628B1 (en) Capacitor
KR100339754B1 (en) Making method of aluminium electrolytic capacitor
JP3250310B2 (en) Method of forming anode foil for aluminum electrolytic capacitor
JPH10112423A (en) Formation method for anodic foil for aluminum electrolytic capacitor
JP5016472B2 (en) Method for producing electrode foil for electrolytic capacitor
JP2731243B2 (en) Method for manufacturing solid electrolytic capacitor
JPS63299309A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JP2762556B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JPH0786075A (en) Capacitor
JPH079870B2 (en) Method for manufacturing aluminum electrode for electrolytic capacitor
JPH01248609A (en) Manufacture of aluminium material for electrolytic capacitor
JPH05234826A (en) Manufacture of capacitor