JPH053031A - Manufacture of alkaline storage battery and its negative electrode - Google Patents

Manufacture of alkaline storage battery and its negative electrode

Info

Publication number
JPH053031A
JPH053031A JP3152977A JP15297791A JPH053031A JP H053031 A JPH053031 A JP H053031A JP 3152977 A JP3152977 A JP 3152977A JP 15297791 A JP15297791 A JP 15297791A JP H053031 A JPH053031 A JP H053031A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrogen
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3152977A
Other languages
Japanese (ja)
Inventor
Yasuko Ito
康子 伊藤
Koji Yuasa
浩次 湯浅
Shozo Fujiwara
昌三 藤原
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3152977A priority Critical patent/JPH053031A/en
Publication of JPH053031A publication Critical patent/JPH053031A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a battery having excellent charging characteristics and high efficiency discharging characteristics by improving hydrogen storage alloy powders in an alkaline battery, the negative electrode of which being made of the hydrogen storage alloy powders. CONSTITUTION:Hydrogen storage alloy powders, the shape of which being spherical and the surface contour of which being irregular, are used. Whereby, hydrogen storage powders, in which the diffusion velocity of hydrogen being fast and the specific surface area of which being large, can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ蓄電池とその負
極の製造方法に関し、特に負極の活物質である水素を電
気化学的に吸蔵・放出可能な水素吸蔵合金を用いたアル
カリ蓄電池とその負極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an alkaline storage battery and its negative electrode, and more particularly to an alkaline storage battery using a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen, which is the active material of the negative electrode, and its negative electrode. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】多量に水素を吸蔵・放出する水素吸蔵合
金は、高エネルギー密度を有する電極材料として注目さ
れ、高容量を目指すアルカリ蓄電池への応用が図られて
いる。
2. Description of the Related Art Hydrogen storage alloys that store and release a large amount of hydrogen have attracted attention as electrode materials having high energy density and are being applied to alkaline storage batteries aiming at high capacity.

【0003】水素吸蔵合金は合金塊を適当な粒子径の微
粉末とし、ペースト状として多孔鋼板に塗着、あるいは
発泡状金属基板などの三次元基板に充填して、アルカリ
蓄電池の負極として用いられる。この微粉末を得るに
は、機械的に、あるいは、水素ガスの吸蔵・放出を繰り
返すことにより粉砕を行う方法が一般的である。ここ
で、微粉末の粒子径が、吸蔵される水素の拡散距離を意
味することは明らかである。そこで、適切な粒子径を選
択することにより、この電池の充電特性の向上が図られ
ている。
The hydrogen storage alloy is used as a negative electrode of an alkaline storage battery by making an alloy lump into a fine powder having an appropriate particle size and coating it as a paste on a porous steel plate or filling a three-dimensional substrate such as a foam metal substrate. . In order to obtain this fine powder, it is general to pulverize mechanically or by repeating occlusion / release of hydrogen gas. Here, it is clear that the particle size of the fine powder means the diffusion distance of the stored hydrogen. Therefore, the charging characteristics of this battery are improved by selecting an appropriate particle size.

【0004】[0004]

【発明が解決しようとする課題】しかしこのようにして
得られた粉末は、前述の粉砕では微細な断片状であるた
め、粉末表面から内部への水素の拡散距離が一定でない
ので水素拡散が不均一になる。従って、高率で充電を行
った場合、合金内の水素拡散が律速となり、充電のため
流した電気量だけ充電できない。つまり充電効率が低下
するという問題点がある。そこで、球状の水素吸蔵合金
粉末を用いることにより、粉末表面のいずれの地点から
も水素の拡散距離が一定になり、均一な拡散が可能とな
り充填特性に優れた電池が得られる。この球状の粉末
は、合金の溶湯の圧縮気体や液体で噴霧(アトマイズ)
する方法により得られるがまたこの方法は、合金の溶融
から粉末を得るまでが1工程であるので、工程の簡易化
も期待できる。
However, since the powder thus obtained is in the form of fine fragments by the above-mentioned pulverization, the diffusion distance of hydrogen from the surface of the powder to the inside is not constant, so that the hydrogen diffusion is unsatisfactory. Be uniform. Therefore, when charging at a high rate, the hydrogen diffusion in the alloy becomes rate-determining, and it is not possible to charge only the amount of electricity that has flowed for charging. That is, there is a problem that the charging efficiency is reduced. Therefore, by using a spherical hydrogen storage alloy powder, the diffusion distance of hydrogen becomes constant from any point on the powder surface, uniform diffusion is possible, and a battery having excellent filling characteristics can be obtained. This spherical powder is atomized by compressed gas or liquid of molten alloy (atomize)
In this method, the process from melting the alloy to obtaining the powder is one step, and therefore simplification of the step can be expected.

【0005】しかし、単に形状が球形の粉末を用いただ
けでは、合金粉末の比表面積が最小値となり、電極とし
て用いる場合、水素吸蔵合金表面と電解液との接触面積
が減少し、電流密度が増大するため、とくに高率放電時
に負極の分極が大きくなり、電池電圧が低下して電池容
量が低下するため、高容量のアルカリ蓄電池としての利
点が失われる。
However, if only the powder having a spherical shape is used, the specific surface area of the alloy powder becomes the minimum value, and when it is used as an electrode, the contact area between the surface of the hydrogen storage alloy and the electrolytic solution decreases, and the current density increases. Therefore, the polarization of the negative electrode becomes large especially at the time of high-rate discharge, the battery voltage decreases, and the battery capacity decreases, so that the advantages of the high-capacity alkaline storage battery are lost.

【0006】本発明はこのような問題点を解決するもの
で、放電特性を低下させることなく充電特性に優れたア
ルカリ蓄電池とその負極の製造方法を提供することを目
的する。
The present invention solves such problems, and an object of the present invention is to provide an alkaline storage battery excellent in charge characteristics without deteriorating discharge characteristics and a method for manufacturing the negative electrode thereof.

【0007】[0007]

【課題を解決するための手段】これらの課題を解決する
ために本発明のアルカリ蓄電池とその負極の製造方法
は、粉末形状が球状であり、その表面形状が凹凸を示す
水素吸蔵合金粉末を用いてアルカリ蓄電池を構成するも
のである。
In order to solve these problems, the method for producing an alkaline storage battery and its negative electrode of the present invention uses a hydrogen storage alloy powder having a spherical powder shape and an uneven surface shape. And constitutes an alkaline storage battery.

【0008】[0008]

【作用】この構成により本発明のアルカリ蓄電池とその
負極の製造方法は、粉末形状が球状であり、表面形状が
凹凸を示す水素吸蔵合金粉末を負極に用いたことによ
り、水素拡散速度が向上することとなる。
With this structure, in the method of manufacturing the alkaline storage battery and the negative electrode thereof of the present invention, the hydrogen diffusion rate is improved by using the hydrogen storage alloy powder, which has a spherical powder shape and an uneven surface shape, for the negative electrode. It will be.

【0009】すなわち、粉末形状が、球状であり、表面
形状が凹凸を示す水素吸蔵合金を用いたことにより、水
素拡散の速度が増大し、充電効率が向上し、かつ高率放
電時の電流密度の著しい増大を防ぎ、放電電圧の低下を
防止することが可能になる。
That is, by using a hydrogen storage alloy having a spherical powder shape and an uneven surface shape, the rate of hydrogen diffusion is increased, the charging efficiency is improved, and the current density during high-rate discharge is increased. It is possible to prevent a significant increase in the discharge voltage and a decrease in the discharge voltage.

【0010】また水素吸蔵合金の溶湯を噴霧(アトマイ
ズ)して水素吸蔵合金粉末を得た後、その水素吸蔵合金
粉末をアルカリ水溶液中に浸漬することにより、形状が
球形で、表面形状が凹凸を示す水素吸蔵合金粉末を容易
に得ることが可能で、充放電特性に優れた、水素吸蔵合
金負極を提供することが可能になる。
Further, after the molten metal of the hydrogen storage alloy is atomized to obtain the hydrogen storage alloy powder, the hydrogen storage alloy powder is dipped in an alkaline aqueous solution to have a spherical shape and an uneven surface shape. It is possible to easily obtain the hydrogen storage alloy powder shown and to provide a hydrogen storage alloy negative electrode having excellent charge and discharge characteristics.

【0011】[0011]

【実施例】以下、本発明の一実施例のアルカリ蓄電池と
その負極の製造方法について図面とともに詳細に説明す
る。充電効率の測定は、負極容量規制のモデル電池で、
高率放電特性は、正極容量規制の電池で測定する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing an alkaline storage battery and its negative electrode according to an embodiment of the present invention will be described in detail below with reference to the drawings. The charging efficiency was measured using a model battery with negative electrode capacity regulation.
The high rate discharge characteristics are measured with a battery having a regulated positive electrode capacity.

【0012】活物質である水素を電気化学的に吸蔵・放
出する水素吸蔵合金と、その電極は、以下の方法で作成
した。
A hydrogen storage alloy that electrochemically stores and releases hydrogen, which is an active material, and its electrode were prepared by the following method.

【0013】セリウム約40wt%,ランタン約30w
t%,ネオジウム約13wt%を主成分とするミッシュ
メタル(以下Mmと称す)、ニッケル,コバルト,アル
ミニウムおよびマンガンをそれぞれ原子比で1:3.5
5:0.75:0.3:0.4となるように秤量する。
これを高周波溶解炉で溶解し、CaCu5型の結晶構造
を有する、MmNi3.55Mn0.4Al0.3Co0.75の水素
吸蔵合金を作成した。これを、1180℃で、再度溶解
し、これを高圧のアルゴンガスで噴霧して、図1に示す
平均粒子径25μmの球状の水素吸蔵合金粉末1を得
た。水素吸蔵合金粉末1を比重1.30,80℃のKO
H水溶液に浸漬し、表面エッチングを施し、その凹凸の
ある表面を内部の合金組成に比較してNiの多い凹凸表
面2とした。そしてこれにカルボキシメチルセルロース
の1wt%水溶液を加えてペースト状にし、厚さ0.9
mmとした多孔度約95%の支持体であるスポンジ状ニッ
ケル多孔体内に充填した。これを100℃で乾燥後加圧
して、平均厚さ0.5mmの極板にした。ついでこれを幅
20mm,長さ20mmに切断し充放電容量が200mAh
の水素吸蔵合金電極の負極3を得た。これをポリアミド
製不織布のセパレータ4を介して、十分容量の大きい正
極5で挟み、7.1規定のKOH水溶液の電解液6に浸
漬して図4に示すようなモデル電池を構成した。
Cerium about 40 wt%, lanthanum about 30 w
The atomic ratio of misch metal (hereinafter referred to as Mm) containing t% and about 13 wt% of neodymium as main components, nickel, cobalt, aluminum and manganese is 1: 3.5.
Weigh to be 5: 0.75: 0.3: 0.4.
This was melted in a high frequency melting furnace to prepare a hydrogen storage alloy of MmNi 3.55 Mn 0.4 Al 0.3 Co 0.75 having a CaCu 5 type crystal structure. This was melted again at 1180 ° C. and sprayed with a high-pressure argon gas to obtain a spherical hydrogen storage alloy powder 1 having an average particle diameter of 25 μm shown in FIG. Hydrogen storage alloy powder 1 with a specific gravity of 1.30 and KO of 80 ° C
It was dipped in an aqueous solution of H and subjected to surface etching, and the uneven surface was used as the uneven surface 2 containing a large amount of Ni as compared with the internal alloy composition. Then, a 1 wt% aqueous solution of carboxymethyl cellulose was added thereto to form a paste, and the thickness was 0.9.
It was filled in a sponge-like nickel porous body which was a support having a porosity of about 95%. This was dried at 100 ° C. and then pressed to form an electrode plate having an average thickness of 0.5 mm. Then, this was cut into a width of 20 mm and a length of 20 mm, and the charge / discharge capacity was 200 mAh.
The negative electrode 3 of the hydrogen storage alloy electrode of was obtained. This was sandwiched by a positive electrode 5 having a sufficiently large capacity via a polyamide nonwoven fabric separator 4 and immersed in an electrolyte solution 6 of a 7.1 N KOH aqueous solution to form a model battery as shown in FIG.

【0014】また、前記極板を、幅39mm,長さ80mm
に切断し、充放電可能容量が1600mAhの水素吸蔵
合金電極を得た。このようにして得られた水素吸蔵合金
電極を負極とし、容量が1000mAhの公知の発泡メ
タル式ニッケル正極とポリプロピレン不織布をスルフォ
ン化したスルフォン化ポリプロピレン不織布のセパレー
タとで電極群を構成して、金属ケースに挿入し、ついで
7.1規定のKOH水溶液2.2cm3注液した後、封口
してAA(R6)サイズの電池Aを試作した。
The electrode plate has a width of 39 mm and a length of 80 mm.
After cutting into pieces, a hydrogen storage alloy electrode having a chargeable / dischargeable capacity of 1600 mAh was obtained. The hydrogen storage alloy electrode thus obtained was used as a negative electrode, and an electrode group was constituted by a known foam metal nickel positive electrode having a capacity of 1000 mAh and a sulfonated polypropylene nonwoven fabric separator obtained by sulfonating a polypropylene nonwoven fabric. Then, after injecting 2.2 cm 3 of 7.1N KOH aqueous solution, it was sealed and a battery A of AA (R6) size was manufactured.

【0015】比較例として、図2に示す表面エッチング
を施さない表面に凹凸のない、形状が球状の水素吸蔵合
金粉末1aと、高周波溶解炉で作成した前記合金を機械
的に粉砕して得た、図3に示す平均粒子径25μmの断
片状の水素吸蔵合金粉末1bを用いて、図4と同様なモ
デル電池と、AAサイズの電池Bと電池Cを作成した。
As a comparative example, the hydrogen-absorbing alloy powder 1a shown in FIG. 2 which is not subjected to surface etching and has a spherical shape and a spherical shape, and the alloy prepared in a high frequency melting furnace were mechanically pulverized to obtain the powder. Using the fragmentary hydrogen storage alloy powder 1b having an average particle diameter of 25 μm shown in FIG. 3, a model battery similar to that of FIG. 4, and AA size batteries B and C were prepared.

【0016】モデル電池については、20℃の雰囲気下
で、200mAで1時間充電し、20mAで放電を行
い、充電電気量に対する放電容量の割合を測定した。
The model battery was charged at 200 mA for 1 hour in an atmosphere of 20 ° C. and discharged at 20 mA, and the ratio of the discharge capacity to the amount of charged electricity was measured.

【0017】放電特性は、AAサイズの電池を20℃の
雰囲気下で、初充電を100mAで15時間行った後、
200mAで1.0Vまで放電した。この後、これらの
電池を前記と同様な条件で充電を行い、3000mAの
定電流で放電し、1.0Vまでの放電容量を測定した。
The discharge characteristics are as follows: AA size battery was initially charged at 100 mA for 15 hours in an atmosphere of 20 ° C.,
It was discharged to 1.0 V at 200 mA. After that, these batteries were charged under the same conditions as above, discharged at a constant current of 3000 mA, and the discharge capacity up to 1.0 V was measured.

【0018】測定は、それぞれの電池5個ずつについて
行い、その平均をとった。(表1)に、それぞれの電池
の番号と、粉末の形状、および、その電池特性を示す。
また、高率放電時の平均の放電カーブを図5に示す。
The measurement was carried out for each of the five batteries and the average was taken. (Table 1) shows the number of each battery, the shape of the powder, and the battery characteristics.
Moreover, the average discharge curve at the time of high rate discharge is shown in FIG.

【0019】[0019]

【表1】 [Table 1]

【0020】その結果、電池Aと電池Bは、粉末形状が
球状の水素吸蔵合金を負極として用いたため、水素拡散
が速く、高い充電効率を示した。また、電池Aは表面に
凹凸を設けた水素吸蔵合金粉末1を用いたため、高率放
電特性も良好であった。しかし、高率充電が水素吸蔵合
金粉末内部の水素拡散が律速になるのに対して、高率放
電特性は、粉末表面が電解液と接触する面積,電流密度
による影響を大きく受けるため、表面に凹凸のない水素
吸蔵合金粉末1aを用いた電池Bは、高率放電時の放電
容量が、断片状の水素吸蔵合金粉末1bを用いた電池C
より著しく低下する。これは、電池Bに用いた水素吸蔵
合金粉末1aが表面に凹凸のない球形のため、粉末の比
表面積が最小になり、例えばBET法で測定を行うと、
約0.03m2/gであり、電池Cに用いた断片状の水
素吸蔵合金粉末1b(約0.2m2/g)に比較して小
さく、図5に示したように3000mAの大電流で高率
放電を行った場合、電圧低下が大きく、通常用いられる
電池電圧1.0Vに達するまでの容量では、放電容量が
著しく低下する。しかし、電池Aの結果から明らかなよ
うに、この球状の水素吸蔵合金粉末1の表面形状を凹凸
にすることにより、比表面積を飛躍的に増加させる(約
0.6m2/g)ことが可能で、放電特性にも優れた電
池が得られた。また、図2に示したような表面が凹凸で
ない球状の粉末1aでは、粉末間や、粉末と集電体との
接触点が小さくなって、電池特性の低下の原因になった
と考えられるが、図1に示す水素吸蔵合金粉末1は表面
形状を凹凸したことにより、粉末間および、粉末と集電
体間の接触が良好になったことも、高率放電特性の向上
に寄与したと考えられる。
As a result, in the batteries A and B, since the hydrogen storage alloy having a spherical powder shape was used as the negative electrode, hydrogen diffusion was fast and high charging efficiency was exhibited. In addition, since the battery A uses the hydrogen storage alloy powder 1 having irregularities on the surface, the high rate discharge characteristics are also good. However, while high-rate charging limits the rate of hydrogen diffusion inside the hydrogen-absorbing alloy powder, high-rate discharge characteristics are greatly affected by the area where the powder surface contacts the electrolyte and the current density. The battery B using the hydrogen-absorbing alloy powder 1a having no unevenness is a battery C using the hydrogen-absorbing alloy powder 1b whose discharge capacity at high rate discharge is fragmentary.
More significantly lower. This is because the hydrogen storage alloy powder 1a used in the battery B has a spherical shape with no unevenness on the surface, and therefore the specific surface area of the powder is minimized. For example, when the BET method is used for measurement,
It is about 0.03 m 2 / g, which is smaller than the fragmentary hydrogen-absorbing alloy powder 1b (about 0.2 m 2 / g) used in the battery C, and at a large current of 3000 mA as shown in FIG. When the high-rate discharge is performed, the voltage drop is large, and the discharge capacity is remarkably reduced in the capacity until the battery voltage 1.0V which is usually used is reached. However, as is clear from the result of the battery A, by making the surface shape of the spherical hydrogen storage alloy powder 1 uneven, the specific surface area can be dramatically increased (about 0.6 m 2 / g). Thus, a battery having excellent discharge characteristics was obtained. In addition, it is considered that in the spherical powder 1a as shown in FIG. 2 in which the surface is not uneven, the contact point between the powders and the contact point between the powder and the current collector becomes small, which causes the deterioration of the battery characteristics. It is considered that the hydrogen storage alloy powder 1 shown in FIG. 1 has a good surface contact between the powders and the contact between the powders and the current collector, which contributes to the improvement of the high rate discharge characteristics. .

【0021】[0021]

【発明の効果】以上の実施例の説明により明らかなよう
に、本発明のアルカリ蓄電池とその負極の製造方法によ
れば、形状が球状で、表面形状が凹凸を示す水素吸蔵合
金を用いたことにより、高率の充電時にも充電効率が高
く、かつ大電流で放電を行っても優れた放電特性を有す
るアルカリ蓄電池を提供できるという効果がある。
As is apparent from the above description of the embodiments, according to the method for manufacturing an alkaline storage battery and its negative electrode of the present invention, a hydrogen storage alloy having a spherical shape and a surface shape having irregularities was used. As a result, there is an effect that it is possible to provide an alkaline storage battery having high charging efficiency even at a high rate of charging and having excellent discharge characteristics even when discharged at a large current.

【0022】また、水素吸蔵合金の溶湯をアトマイズし
てえた後、アルカリ水溶液に浸漬することにより、充電
特性にも放電特性にも優れた、アルカリ蓄電池を提供で
きるという効果がある。
[0024] Further, there is an effect that it is possible to provide an alkaline storage battery having excellent charging characteristics and discharging characteristics by atomizing the molten metal of the hydrogen storage alloy and then immersing it in an alkaline aqueous solution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の、一実施例のアルカリ蓄電池とその負
極の製造方法における形状が球状で表面形状が凹凸の水
素吸蔵合金粉末を模式的に示す断面図
FIG. 1 is a sectional view schematically showing a hydrogen storage alloy powder having a spherical shape and an uneven surface shape in a method for producing an alkaline storage battery and a negative electrode thereof according to an embodiment of the present invention.

【図2】比較例の形状が球状で表面が凹凸でない水素吸
蔵合金粉末を模式的に示す断面図
FIG. 2 is a cross-sectional view schematically showing a hydrogen storage alloy powder having a spherical shape and a surface having no unevenness in a comparative example.

【図3】同断片状の水素吸蔵合金粉末を模式的に示す断
面図
FIG. 3 is a cross-sectional view schematically showing the fragmentary hydrogen storage alloy powder.

【図4】本発明の一実施例または比較例のアルカリ蓄電
池とその負極の製造方法における充電効率を測定するモ
デル電池の構成を示す概念図
FIG. 4 is a conceptual diagram showing the configuration of a model battery for measuring the charging efficiency in the method of manufacturing an alkaline storage battery and its negative electrode according to one embodiment or comparative example of the present invention.

【図5】同それぞれの粉末を用いた電池の平均の放電特
性を示すグラフ
FIG. 5 is a graph showing average discharge characteristics of batteries using the respective powders.

【符号の説明】[Explanation of symbols]

1 水素吸蔵合金粉末 2 Niの多い凹凸表面 3 負極 4 正極 5 セパレータ 6 電解液 1 Hydrogen storage alloy powder 2 Uneven surface with a lot of Ni 3 Negative electrode 4 positive electrode 5 separator 6 Electrolyte

フロントページの続き (72)発明者 松本 功 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continued front page    (72) Inventor Isao Matsumoto             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物を主体とする正極と、活物質
である水素を電気化学的に吸蔵・放出することが可能な
水素吸蔵合金粉末を主構成材料とする負極と、セパレー
タと、アルカリ電解液とを主体として構成するアルカリ
蓄電池において、前記水素吸蔵合金粉末の形状が球状で
あるアルカリ蓄電池。
1. A positive electrode mainly composed of a metal oxide, a negative electrode mainly composed of a hydrogen storage alloy powder capable of electrochemically storing and releasing hydrogen as an active material, a separator, and an alkali. An alkaline storage battery mainly composed of an electrolytic solution, wherein the hydrogen storage alloy powder has a spherical shape.
【請求項2】 球状の水素吸蔵合金粉末の表面形状が凹
凸である請求項1記載のアルカリ蓄電池。
2. The alkaline storage battery according to claim 1, wherein the surface shape of the spherical hydrogen storage alloy powder is uneven.
【請求項3】 表面形状が凹凸を呈した水素吸蔵合金の
表面組成は、内部の合金組成よりもNiの割合が多い請
求項2記載のアルカリ蓄電池。
3. The alkaline storage battery according to claim 2, wherein the surface composition of the hydrogen storage alloy having irregularities has a higher Ni content than the internal alloy composition.
【請求項4】 水素吸蔵合金を主構成材料とするアルカ
リ蓄電池用負極において、水素吸蔵合金の溶湯を噴霧し
て水素吸蔵合金粉末を得る工程と、その水素吸蔵合金粉
末をアルカリ水溶液中に浸漬する工程とを有するアルカ
リ蓄電池用負極の製造方法。
4. A step of obtaining a hydrogen storage alloy powder by spraying a molten metal of the hydrogen storage alloy in a negative electrode for an alkaline storage battery containing a hydrogen storage alloy as a main constituent material, and immersing the hydrogen storage alloy powder in an alkaline aqueous solution. The manufacturing method of the negative electrode for alkaline storage batteries which has a process.
JP3152977A 1991-06-25 1991-06-25 Manufacture of alkaline storage battery and its negative electrode Pending JPH053031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3152977A JPH053031A (en) 1991-06-25 1991-06-25 Manufacture of alkaline storage battery and its negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152977A JPH053031A (en) 1991-06-25 1991-06-25 Manufacture of alkaline storage battery and its negative electrode

Publications (1)

Publication Number Publication Date
JPH053031A true JPH053031A (en) 1993-01-08

Family

ID=15552270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152977A Pending JPH053031A (en) 1991-06-25 1991-06-25 Manufacture of alkaline storage battery and its negative electrode

Country Status (1)

Country Link
JP (1) JPH053031A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616435A (en) * 1994-07-22 1997-04-01 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for metal hydride alkaline battery
JP2009287044A (en) * 2008-05-27 2009-12-10 Mitsui Mining & Smelting Co Ltd Metal particulate, and method for producing metal particulate
WO2013118806A1 (en) * 2012-02-09 2013-08-15 株式会社三徳 Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616435A (en) * 1994-07-22 1997-04-01 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for metal hydride alkaline battery
JP2009287044A (en) * 2008-05-27 2009-12-10 Mitsui Mining & Smelting Co Ltd Metal particulate, and method for producing metal particulate
WO2013118806A1 (en) * 2012-02-09 2013-08-15 株式会社三徳 Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
JPWO2013118806A1 (en) * 2012-02-09 2015-05-11 株式会社三徳 Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
US9859556B2 (en) 2012-02-09 2018-01-02 Santoku Corporation Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell

Similar Documents

Publication Publication Date Title
JPH053031A (en) Manufacture of alkaline storage battery and its negative electrode
JPS6193556A (en) Electrode for battery
JPS6119063A (en) Hydrogen occlusion electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2924382B2 (en) Method for producing hydrogen storage alloy and alkaline storage battery using the alloy
JP2629807B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPH05258750A (en) Manufacture of hydrogen storage alloy electrode
JP3118812B2 (en) Alkaline storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JP2586752B2 (en) Hydrogen storage alloy electrode
JPS60119079A (en) Hydrogen absorption electrode
JP2532498B2 (en) Hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JPH0834100B2 (en) Hydrogen storage alloy electrode
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0562671A (en) Manufacture of hydrogen storage electrode
JP2001035526A (en) Nickel hydrogen storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPS6119058A (en) Hydrogen occlusion electrode
JPH0326501B2 (en)
JPH0785866A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0812777B2 (en) Manufacturing method of hydrogen storage electrode