JP2733230B2 - Sealed nickel-hydrogen storage battery using hydrogen storage alloy - Google Patents

Sealed nickel-hydrogen storage battery using hydrogen storage alloy

Info

Publication number
JP2733230B2
JP2733230B2 JP62290019A JP29001987A JP2733230B2 JP 2733230 B2 JP2733230 B2 JP 2733230B2 JP 62290019 A JP62290019 A JP 62290019A JP 29001987 A JP29001987 A JP 29001987A JP 2733230 B2 JP2733230 B2 JP 2733230B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
nickel
battery
negative electrode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62290019A
Other languages
Japanese (ja)
Other versions
JPH01132066A (en
Inventor
功 松本
博志 川野
宗久 生駒
康子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17750736&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2733230(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62290019A priority Critical patent/JP2733230B2/en
Priority to EP88302472A priority patent/EP0284333B1/en
Priority to DE3854727T priority patent/DE3854727T2/en
Priority to US07/171,739 priority patent/US4935318A/en
Publication of JPH01132066A publication Critical patent/JPH01132066A/en
Application granted granted Critical
Publication of JP2733230B2 publication Critical patent/JP2733230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極に水素吸蔵合金を用いたニッケル・水
素蓄電池の構成の改良に関する。 従来の技術 高密度に水素を吸蔵・放出する水素吸蔵合金を負極材
料に用いるニッケル・水素蓄電池は密閉化が可能で、円
筒密閉形ニッケル・カドミウム蓄電池(以後ニカド電池
と称する)をはるかに凌ぐ高エネルギー密度電池として
期待されている。しかし、このニッケル・水素蓄電池
は、現在まだ開発段階であり電池の構成方法に基準とな
るものが乏しい。このため、従来のニカド電池の構成方
法を参考にする場合が多い。電池構成時におけるニカド
電池は、通常以下の状態の正・負極をセパレータを介し
て渦巻状に構成し、電解液とともに円筒状の缶に挿入し
密閉される。 (1) 焼結式ニッケル正極の場合は、ニッケルの焼結
基板内部に活物質であるNi(OH)を充填し、アルカリ
水溶液中で電気化学的に充放電を施したのち水洗・乾燥
を経過した放電状態である。 非焼結式ニッケル正極の場合はNi(OH)を塗着また
は充填した放電状態である。 (2) カドミウム負極の場合は、焼結式および非焼結
式のいずれもが、アルカリ水溶液中で電気化学的に部分
充電を施したのち水洗・乾燥を経過した未放電状態であ
る。 この理由は、一般にカドミウム負極はニッケル正極に
比べて、高率放電特性に劣るためあらかじめ負極側に放
電可能容量を前記した方法で設け、正極容量によって電
池容量を規制するためである。これによって、負極が、
電池の放電後においても完全放電状態あるいは過放電状
態になることが防止でき、負極活物質の溶出に起因する
サイクル寿命の劣化が抑制される。 ニッケル・水素蓄電池では、ニッケル正極を用いる点
は、ニカド電池と同様であるが、負極活物質に水素を吸
蔵・放出する水素吸蔵合金を使用する(以後、合金負極
と略称する)。一般に、合金負極はカドミウム負極と同
様に、ニッケル正極と比べて高率放電特性に劣るためこ
の場合も前記(1)(2)の状態で電池を構成する必要
がある。そこで合金負極を部分充電状態にするため、以
下の方法が提案されている。 カドミウム負極と同様アルカリ溶液中で部分充電を
施す。 水素ガスの吸蔵放出操作により合金を粉砕するとと
もに一部の水素を残しておき、この状態の合金粉末を用
いて負極を構成する(水素の吸蔵は充電に相当する)。 発明が解決しようとする問題点 前記の方法は、従来のカドミウム負極の化成操作
にあたる煩雑な水素吸蔵操作を必要とする。またの
方法では、電池構成前に大気に触れ水素を吸蔵した活性
な合金が燃焼する危険性があり、仮に燃えなくても大気
中に水素が飛散し、所望の水素吸蔵量が得られにくい。 本発明は上記のような問題点を解消し、簡単な製法に
よる正極と負極を用いて、正極容量により容量が規制さ
れる長寿命の密閉形ニッケル・水素蓄電池を提供するこ
とを目的とする。 問題点を解決するための手段 この問題点を解決するため本発明は、正極中に電気化
学的に酸化される2価のコバルト酸化物、さらに好まし
くは、水酸化コバルトCo(OH)および/または酸化コ
バルトCoOを予め加えた無化成の正極と、水素吸蔵合金
を支持体に充填あるいは塗着しただけの合金負極とを組
み合わせて電池を構成したものである。 作用 この構成によれば、電池の初充電でニッケル正極では
活物質であるNi(OH)の他に電気化学的に酸化される
2価のコバルト酸化物が充電され、一方合金負極ではこ
れら両者の充電電気量の合計が充電される。しかし、電
気化学的に酸化される2価のコバルト酸化物は3価のCo
2O3等の高次酸化物になると放電されにくく、正極の放
電は活物質だけが働く。したがって、電池の完全放電後
には合金負極にまだ放電余力を有する結果、電池容量は
正極容量で規制され電池の長寿命化がはかれることとな
る。 実 施 例 以下本発明の実施例を第1図と第2図を参照して説明
する。 Ni(OH)粉末100重量部に対し平均粒径5μmの水
酸化コバルトCo(OH)粉末12重量部の混合物を水で混
練し多孔度約95%、厚さ1.5mmのスポンジ状ニッケル多
孔体中に充填する。これを100℃で乾燥後、加圧して平
均厚さ7.8mmとしたのち幅39mm、長さ60mmの寸法に切断
し、理論容量1070mAhのニッケル正極1を得る。 MmNi3.55Mn0.4Al0.3Co0.75となるように溶解し合金化
された水素吸蔵合金を機械的に粉砕し、平均粒径20μm
の合金粉末を得る。この粉末をポリビニルアルコール1.
5wt%水溶液でペースト状にし、厚さ0.9mmにした前記ス
ポンジ状ニッケル多孔体内に充填し、100℃で乾燥後加
圧して平均厚さ0.5mmの極板にする。ついで幅39mm、長
さ80mmに切断し、理論容量1700mAhの合金負極板を得
る。ここで理論容量の算出には230mAh/合金1グラムを
採用した。 このようにして得られた正・負極を汎用のポリアミド
系不織布のセパレータ3を介し、渦巻状に捲回してAAサ
イズのケース4に挿入し、ついで6.3NのKOH水溶液を2.2
cm3加えたのち絶縁リング5を介して正極端子6を取付
けた封口板7で封口した。第1図にこの電池の概略図を
示す。なお、2で示した負極はケース4に直接接触する
のでケース4は負極端子を兼ねる。 第2図のaに、この電池を20℃の雰囲気中で200mAで
7.5時間充電後500mAで放電したときの充放電サイクル数
と放電容量の関係、すなわちサイクル寿命試験の結果を
示す。比較例として、合金負極を予め約400mAhの部分充
電を施した前記合金負極とCo(OH)粉末を含まない汎
用の正極とを組み合せた電池および部分充電を全く施さ
ない合金負極と前記汎用の正極とを組み合せた電池の同
様なサイクル寿命試験結果をそれぞれbおよびcで示
す。この結果、bの電池の合金負極には放電後、若干の
水素が吸蔵されているためcより寿命が改善されている
が、本発明によるaの電池は、ほぼコバルトの充電電気
量(この場合は約400mAhに相当する)相当の水素が放電
後の合金負極中に存在するため優れたサイクル寿命を示
したものと考えられる。なお、正極中の水酸化コバルト
量を減少させ、約300mAhの充電電気量にすると、サイク
ル寿命が低下する傾向が認められた。この結果および高
価なコバルトの使用を考慮すると、1000mAhの正極容量
の場合300〜450mAhの充電電気量、すなわちNi(OH)210
0重量部に対し10〜15重量部の水酸化コバルトCo(OH)
粉末の添加が適切である。 なお、水素吸蔵合金粉末を発泡状ニッケル多孔体中に
充填するのではなく、汎用の焼結式ニッケル正極に使用
される焼結基板のように芯材に塗着して焼結電極にした
場合は、高率放電特性が若干向上する。この場合は、正
極の放電量に対する合金負極の放電量差が縮まるため、
正極中に加える水酸化コバルトおよび/または酸化コバ
ルト量を若干減少させることが可能である。 なお、この電池系の特性を深く調べるにつれて、放置
後の電池挙動に異常が生じることが判明してきた。すな
わち、金属状態のコバルトを添加すると放置中にコバル
トイオンの溶出量が増大し、短絡の原因となることであ
る。これはコバルト粒子の内部が未充電状態で残り、つ
まり安定な3価または4価のコバルト酸化物に全体が変
化せず、コバルト溶出が放置中に生ずるためと推定され
る。本発明のニッケル・水素蓄電池系では、ニカド電池
と異なり常に水素の環元雰囲気下に置かれていることも
この溶出を促進していると思われる。従って、コバルト
酸化物は全体が3価または4価にまで充電されやすい2
価の酸化物が適切である。 さらに、2価のコバルト化合物の中で、例えばCoCl2,
Co(NO32,CoSO4などを検討したが、いずれもCl-,N
O3 -,SO4 2-イオンが電解液中に溶出し、自己放電を増大
させる現象が若干認められた。従って、そのような影響
のないCoOやCo(OH)が最も適切な2価コバルト化合
物であることが分かった。 発明の効果 本発明による密閉形ニッケル・水素蓄電池は、電池構
成前の正・負極とも化成(充放電あるいは水素の吸蔵・
放出)等の工程を必要としない簡単な製法が採用でき、
サイクル寿命にも優れるという効果が与えられる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in the configuration of a nickel-metal hydride storage battery using a hydrogen storage alloy for a negative electrode. 2. Description of the Related Art Nickel-metal hydride storage batteries that use a hydrogen storage alloy that absorbs and releases hydrogen at a high density as a negative electrode material can be hermetically sealed. It is expected as an energy density battery. However, this nickel-metal hydride storage battery is still in the development stage, and there are few standards that can be used for the battery configuration method. For this reason, in many cases, a conventional method for configuring a nickel-cadmium battery is referred to. In a battery configuration, a nickel-cadmium battery usually has the following positive and negative electrodes in a spiral shape with a separator interposed therebetween, and is inserted into a cylindrical can together with an electrolytic solution and hermetically sealed. (1) In the case of a sintered nickel positive electrode, Ni (OH) 2 which is an active material is filled in a nickel sintered substrate, and charged and discharged electrochemically in an alkaline aqueous solution, followed by washing and drying. This is the elapsed discharge state. In the case of the non-sintered nickel positive electrode, the discharge state is such that Ni (OH) 2 is applied or filled. (2) In the case of the cadmium negative electrode, both of the sintered type and the non-sintered type are in an undischarged state after being partially charged electrochemically in an alkaline aqueous solution, then washed and dried. The reason for this is that a cadmium negative electrode is generally inferior in high-rate discharge characteristics to a nickel positive electrode, so that a dischargeable capacity is provided in advance on the negative electrode side by the above-described method, and the battery capacity is regulated by the positive electrode capacity. This allows the negative electrode to
It is possible to prevent the battery from being completely discharged or overdischarged even after the battery is discharged, and to suppress deterioration in cycle life due to elution of the negative electrode active material. A nickel-hydrogen storage battery is similar to a nickel-cadmium battery in that a nickel positive electrode is used, but a hydrogen storage alloy that stores and releases hydrogen in a negative electrode active material is used (hereinafter, simply referred to as an alloy negative electrode). In general, the alloy negative electrode, like the cadmium negative electrode, is inferior in high-rate discharge characteristics as compared with the nickel positive electrode. Therefore, the following method has been proposed to bring the alloy negative electrode into a partially charged state. As in the case of the cadmium negative electrode, partial charging is performed in an alkaline solution. The alloy is pulverized by the operation of storing and releasing hydrogen gas and a part of hydrogen is left, and a negative electrode is formed using the alloy powder in this state (the storage of hydrogen corresponds to charging). Problems to be Solved by the Invention The above-mentioned method requires a complicated hydrogen storage operation equivalent to a conventional cadmium negative electrode formation operation. According to the other method, there is a danger that the active alloy which has absorbed hydrogen by contacting the atmosphere before the construction of the battery may burn. Even if the active alloy does not burn, the hydrogen is scattered in the atmosphere, and it is difficult to obtain a desired amount of hydrogen storage. An object of the present invention is to solve the above problems and to provide a long-life sealed nickel-metal hydride storage battery whose capacity is regulated by the capacity of the positive electrode, using a positive electrode and a negative electrode by a simple manufacturing method. Means for Solving the Problems To solve this problem, the present invention provides a divalent cobalt oxide, more preferably cobalt hydroxide Co (OH) 2 and / or Alternatively, a battery is formed by combining a non-chemically formed positive electrode to which cobalt oxide CoO is added in advance and an alloy negative electrode in which a support is only filled or coated with a hydrogen storage alloy. According to this configuration, in the first charge of the battery, the nickel positive electrode is charged with Ni (OH) 2 as an active material, as well as a divalent cobalt oxide that is electrochemically oxidized, while the alloy negative electrode is charged with both. Is charged. However, divalent cobalt oxide that is electrochemically oxidized is trivalent Co
When a higher oxide such as 2 O 3 is used, it is difficult to discharge, and only the active material works for discharging the positive electrode. Therefore, after the battery is completely discharged, the alloy negative electrode still has a discharge surplus, so that the battery capacity is regulated by the positive electrode capacity and the life of the battery is extended. Embodiment An embodiment of the present invention will be described below with reference to FIG. 1 and FIG. A mixture of 12 parts by weight of cobalt hydroxide Co (OH) 2 powder having an average particle size of 5 μm with respect to 100 parts by weight of Ni (OH) 2 powder is kneaded with water and sponge-like nickel porous with a porosity of about 95% and a thickness of 1.5 mm. Fills the body. This is dried at 100 ° C., pressurized to an average thickness of 7.8 mm, and then cut into dimensions of 39 mm in width and 60 mm in length to obtain a nickel positive electrode 1 having a theoretical capacity of 1070 mAh. MnNi 3.55 Mn 0.4 Al 0.3 Co The hydrogen storage alloy melted and alloyed to become 0.75 is mechanically pulverized, and the average particle size is 20 μm.
To obtain an alloy powder of This powder was added to polyvinyl alcohol 1.
The sponge-like nickel porous material having a thickness of 0.9 mm is made into a paste with a 5 wt% aqueous solution, filled in, dried at 100 ° C., and then pressed to form an electrode plate having an average thickness of 0.5 mm. Then, it is cut into a width of 39 mm and a length of 80 mm to obtain an alloy negative electrode plate having a theoretical capacity of 1700 mAh. Here, 230 mAh / gram of alloy was employed for calculation of the theoretical capacity. The positive and negative electrodes thus obtained are spirally wound through a general-purpose polyamide nonwoven fabric separator 3 and inserted into an AA-size case 4, and then a 6.3N KOH aqueous solution is added to 2.2.
After adding cm 3 , the resultant was sealed with a sealing plate 7 to which a positive electrode terminal 6 was attached via an insulating ring 5. FIG. 1 shows a schematic diagram of this battery. Since the negative electrode indicated by 2 directly contacts the case 4, the case 4 also serves as a negative electrode terminal. FIG. 2a shows that this battery is operated at 200 mA in an atmosphere of 20 ° C.
7 shows the relationship between the number of charge / discharge cycles and discharge capacity when discharging at 500 mA after charging for 7.5 hours, that is, the results of a cycle life test. As a comparative example, a battery obtained by combining the alloy negative electrode in which the alloy negative electrode was partially charged in advance with about 400 mAh and a general-purpose positive electrode not containing Co (OH) 2 powder, and an alloy negative electrode not subjected to any partial charge and the general-purpose negative electrode were used. Similar cycle life test results of the battery combined with the positive electrode are indicated by b and c, respectively. As a result, the life of the alloy negative electrode of the battery b was improved over that of the battery c since a small amount of hydrogen was absorbed after the battery was discharged. (Equivalent to about 400 mAh). It is considered that the excellent cycle life was exhibited because considerable hydrogen was present in the alloy negative electrode after discharge. Note that when the amount of cobalt hydroxide in the positive electrode was reduced to about 300 mAh of charge electricity, the cycle life tended to decrease. Considering this result and the use of expensive cobalt, a charge capacity of 300 to 450 mAh for a positive electrode capacity of 1000 mAh, ie, Ni (OH) 2 10
10 to 15 parts by weight of cobalt hydroxide Co (OH) per 0 parts by weight
The addition of two powders is appropriate. When the hydrogen storage alloy powder is not filled in the foamed nickel porous body, but is coated on a core material like a sintered substrate used for a general-purpose sintered nickel positive electrode to form a sintered electrode , The high rate discharge characteristics are slightly improved. In this case, since the difference in the discharge amount of the alloy negative electrode with respect to the discharge amount of the positive electrode is reduced,
It is possible to slightly reduce the amount of cobalt hydroxide and / or cobalt oxide added to the positive electrode. As the characteristics of the battery system were deeply examined, it was found that the battery behavior after standing was abnormal. That is, when cobalt in a metal state is added, the elution amount of cobalt ions increases during standing, which causes a short circuit. This is presumably because the inside of the cobalt particles remains in an uncharged state, that is, the whole does not change into a stable trivalent or tetravalent cobalt oxide, and cobalt elution occurs during standing. In the nickel-metal hydride storage battery system of the present invention, unlike the nickel-cadmium battery, the fact that the nickel-hydrogen storage battery is always placed under the hydrogen reducing atmosphere seems to promote this elution. Therefore, the cobalt oxide is easily charged to trivalent or tetravalent as a whole.
Multivalent oxides are suitable. Further, among divalent cobalt compounds, for example, CoCl 2 ,
Co (NO 3 ) 2 , CoSO 4 etc. were examined, but all were Cl , N
O 3 and SO 4 2− ions were eluted into the electrolyte solution, and a phenomenon of increasing self-discharge was observed. Therefore, it was found that CoO or Co (OH) 2 having no such influence is the most appropriate divalent cobalt compound. Effect of the Invention The sealed nickel-metal hydride storage battery according to the present invention is capable of forming (charging / discharging or hydrogen storage /
Release) and other simple processes that do not require
The effect that the cycle life is also excellent is provided.

【図面の簡単な説明】 第1図は本発明の実施例に示した密閉形ニッケル・水素
蓄電池の構成図、第2図は20℃雰囲気における密閉形ニ
ッケル・水素蓄電池の充放電サイクル寿命試験の結果を
示す図である。 1……正極、2……負極、3……セパレータ、4……ケ
ース。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram of a sealed nickel-metal hydride storage battery shown in an embodiment of the present invention, and FIG. 2 is a diagram showing a charge / discharge cycle life test of the sealed nickel-metal hydride storage battery in a 20 ° C. atmosphere. It is a figure showing a result. 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator, 4 ... Case.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 生駒 宗久 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 伊藤 康子 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭61−39461(JP,A) 特開 昭61−156639(JP,A) 特開 昭62−15769(JP,A) 特開 昭63−236274(JP,A) 特公 昭57−5018(JP,B2)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Munehisa Ikoma               Matsushita, 1006 Kadoma, Kazuma, Osaka               Kiki Sangyo Co., Ltd. (72) Inventor Yasuko Ito               Matsushita, 1006 Kadoma, Kazuma, Osaka               Kiki Sangyo Co., Ltd.                (56) References JP-A-61-39461 (JP, A)                 JP-A-61-156639 (JP, A)                 JP-A-62-15769 (JP, A)                 JP-A-63-236274 (JP, A)                 Tokiko Sho 57-5018 (JP, B2)

Claims (1)

(57)【特許請求の範囲】 1.主にニッケルで構成される非焼結式正極と、主に水
素吸蔵合金で構成される負極と、セパレータと電解液と
を密閉容器に収納した密閉形ニッケル・水素蓄電池であ
って、前記正極には2価のコバルト酸化物の微粉末が添
加されたことを特徴とする水素吸蔵合金を用いた密閉形
ニッケル・水素蓄電地。 2.2価のコバルト酸化物が、水酸価コバルト(Co(O
H))、酸化コバルト(CoO)の少なくとも一方である
特許請求の範囲第1項記載の水素吸蔵合金を用いた密閉
形ニッケル・水素蓄電池。
(57) [Claims] A non-sintered positive electrode mainly composed of nickel, a negative electrode mainly composed of a hydrogen storage alloy, a sealed nickel-hydrogen storage battery containing a separator and an electrolyte in a closed container, wherein the positive electrode Is a sealed nickel-hydrogen storage area using a hydrogen storage alloy, to which fine powder of divalent cobalt oxide is added. 2.2 When the divalent cobalt oxide has a hydroxyl value of cobalt (Co (O
H) A sealed nickel-metal hydride storage battery using a hydrogen storage alloy according to claim 1, which is at least one of 2 ) and cobalt oxide (CoO).
JP62290019A 1987-03-25 1987-11-17 Sealed nickel-hydrogen storage battery using hydrogen storage alloy Expired - Lifetime JP2733230B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62290019A JP2733230B2 (en) 1987-11-17 1987-11-17 Sealed nickel-hydrogen storage battery using hydrogen storage alloy
EP88302472A EP0284333B1 (en) 1987-03-25 1988-03-22 Sealed type nickel-hydride battery and production process thereof
DE3854727T DE3854727T2 (en) 1987-03-25 1988-03-22 Gas-tight nickel hydride battery and method of manufacture.
US07/171,739 US4935318A (en) 1987-03-25 1988-03-22 Sealed type nickel-hydride battery and production process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290019A JP2733230B2 (en) 1987-11-17 1987-11-17 Sealed nickel-hydrogen storage battery using hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPH01132066A JPH01132066A (en) 1989-05-24
JP2733230B2 true JP2733230B2 (en) 1998-03-30

Family

ID=17750736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290019A Expired - Lifetime JP2733230B2 (en) 1987-03-25 1987-11-17 Sealed nickel-hydrogen storage battery using hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP2733230B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610565B2 (en) * 1992-12-10 1997-05-14 古河電池株式会社 Manufacturing method of sealed alkaline storage battery using paste-type nickel positive electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575018A (en) * 1980-06-13 1982-01-11 Olympus Optical Co Ltd Focus controller
JPS6139461A (en) * 1984-07-31 1986-02-25 Toshiba Corp Manufacture of enclosed alkaline battery

Also Published As

Publication number Publication date
JPH01132066A (en) 1989-05-24

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
US20030017395A1 (en) Nickel-hydrogen storage battery and method of producing the same
JP3245072B2 (en) Hydrogen storage alloy electrode and method for producing the same
EP1054463A1 (en) Positive electrode, alkaline secondary battery, and method for manufacturing alkaline secondary battery
US5840442A (en) Method for activating an alkaline rechargeable battery
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2987873B2 (en) Alkaline storage battery
JP2823301B2 (en) Hydrogen storage alloy electrode
JPH10255775A (en) Hydrogen storage alloy electrode and its manufacture
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JP3118812B2 (en) Alkaline storage battery
JPS63239771A (en) Paste-type hydrogen occluded electrode
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term