JPH05283759A - Manufacture of single electron tunnel transistor element - Google Patents

Manufacture of single electron tunnel transistor element

Info

Publication number
JPH05283759A
JPH05283759A JP4074838A JP7483892A JPH05283759A JP H05283759 A JPH05283759 A JP H05283759A JP 4074838 A JP4074838 A JP 4074838A JP 7483892 A JP7483892 A JP 7483892A JP H05283759 A JPH05283759 A JP H05283759A
Authority
JP
Japan
Prior art keywords
substrate
thin film
transistor element
tunnel transistor
electron tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4074838A
Other languages
Japanese (ja)
Inventor
Toshiyuki Matsui
俊之 松井
Takeshi Suzuki
健 鈴木
Takashi Ishii
孝志 石井
Koichi Tsuda
孝一 津田
Kazuo Koe
和郎 向江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4074838A priority Critical patent/JPH05283759A/en
Publication of JPH05283759A publication Critical patent/JPH05283759A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7613Single electron transistors; Coulomb blockade devices

Abstract

PURPOSE:To realize a SET transistor element excellent in reproducibility by a method wherein a substrate is subjected to a roughening treatment, and an oxide superconductive thin film thinner than twice the height of the irregularities of the substrate is formed on the substrate through a reactive evaporation method. CONSTITUTION:A substrate 3 of MgO single crystal is subjected to a roughening process, where the surface of the substrate 3 is polished by Carborundum to be as rough as irregularities 50mum in height, and a YBCO thin film is formed on the surface of the substrate 3 through a reaction evaporation method, and if the YBCO thin film is thinner than twice the height of the irregularities provided onto the surface of the substrate 3, it is found that the YBCO thin film increases in resistance due to SET when the resistance change of the YBCO thin film with temperature is measured. It is considered that this phenomenon is produced by a tunnel effect, because false grain boundaries are produced between granular substances 1 due to the irregularities provided onto the surface of the MgO substrate 3. A source electrode 4 and a drain electrode 5 of YBCO thin film of 500nm thickness are provided sandwiching this channel 10 between them, a gate insulator 2 is formed of MgO, and a gate electrode of formed of Al, whereby a SET transistor element can be realized excellent in reproducibility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ソース電極とドレイン
電極との間にある粒状物質からなるチャネルの単一電子
トンネルをゲート電極へ印加する電圧で制御する単一電
子トンネルトランジスタ素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a single electron tunnel transistor device in which a single electron tunnel of a channel made of a granular material between a source electrode and a drain electrode is controlled by a voltage applied to a gate electrode. Regarding

【0002】[0002]

【従来の技術】粒状物質の粒界におけるトンネル効果を
利用した単一電子トンネル (以下SETと略す)トラン
ジスタ素子は、スイッチング速度の速いこと、消費電力
が小さいことなどの利点が得られるものとして注目され
ている。図2はSETトランジスタの構造を示し、絶縁
体2で覆われた粒状物質1からなるチャネル10を基板
3の上に有し、そのチャネル10をはさんでソース端子
Sに接続されたソース電極4とドレイン端子Dに接続さ
れたドレイン電極5、チャネル10の上に絶縁体2を介
してゲート端子Gに接続されたゲート電極6がそれぞれ
設けられてFET構造を構成している。このチャネル1
0には、例えばISEC '89にL.Kuzmin (Abstracts p3
44) 、N. Yoshikawa ( Abstracts p298)、T.Akeyoshi他
( Abstracts p334)が発表しているように、Al、Au、Pt
などの高融点を持つ金属材料のほかに、NbNやBi−Sr
−Ca−Cu−Oなどの超電導体が用いられている。
2. Description of the Related Art A single-electron tunnel (hereinafter abbreviated as SET) transistor device utilizing the tunnel effect at the grain boundary of a granular material is noted as having advantages such as high switching speed and low power consumption. Has been done. FIG. 2 shows the structure of a SET transistor, which has a channel 10 made of a granular material 1 covered with an insulator 2 on a substrate 3, and a source electrode 4 connected to a source terminal S with the channel 10 sandwiched therebetween. A drain electrode 5 connected to the drain terminal D and a gate electrode 6 connected to the gate terminal G via the insulator 2 are provided on the channel 10 to form an FET structure. This channel 1
0, for example, LSEC Kuzmin (Abstracts p3
44), N. Yoshikawa (Abstracts p298), T. Akeyoshi et al.
As announced by (Abstracts p334), Al, Au, Pt
In addition to metallic materials with high melting points such as NbN and Bi-Sr
A superconductor such as -Ca-Cu-O is used.

【0003】[0003]

【発明が解決しようとする課題】良好な特性を持つSE
Tトランジスタ素子を得るためのキーポイントの一つと
してチャネル部における粒の均一形成、すなわち粒径お
よび粒間の距離を均一にすることが挙げられる。高融点
金属は、一般に島状成長することが知られている。この
ため、膜厚を数nm程度に極端に薄くすれば、均一な粒を
持つチャネルを形成することができる。またNbNの場
合には、一般にスパッタリング法により合成されるが、
スパッタ条件により均一な粒を持つチャネルを形成する
ことができる。しかし、チャネルに酸化物超電導体を用
いた場合には、チャネルの再現性のよい形成が困難であ
った。
SE having good characteristics
One of the key points for obtaining the T-transistor element is to uniformly form grains in the channel portion, that is, to make the grain size and the distance between grains uniform. It is known that refractory metals generally grow in an island shape. Therefore, if the film thickness is made extremely thin to about several nm, it is possible to form channels having uniform particles. In the case of NbN, it is generally synthesized by the sputtering method,
Channels having uniform grains can be formed depending on the sputtering conditions. However, when an oxide superconductor was used for the channel, it was difficult to form the channel with good reproducibility.

【0004】本発明の目的は、上記の問題を解決し、酸
化物超電導体を用いて、しかも再現性のよいSETトラ
ンジスタ素子の製造方法を提供することにある。
An object of the present invention is to solve the above problems and to provide a method for manufacturing a SET transistor element using an oxide superconductor and having good reproducibility.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明のSETトランジスタ素子の製造方法は、
凹凸処理を施した基板表面上に、その凹凸の高さの2倍
より薄い膜厚の酸化物超電導体の薄膜を形成し、その薄
膜からなるチャネルをはさんでソース電極およびドレイ
ン電極、チャネル上に絶縁体を介してゲート電極を設け
るものとする。酸化物超電導体の薄膜を反応性蒸着法で
形成することが効果的である。そして、基板の材料とし
てMgO単結晶あるいはSiTiO3 x を用い、酸化物超電導
体としてYBa2 Cu3 x ( 以下YBCOと記す) を用い
ることが有効である。また、基板表面の凹凸処理をカー
ボランダム粒を用いて行うことあるいはイオン照射によ
り行うことが有効である。
In order to achieve the above-mentioned object, a method for manufacturing a SET transistor element of the present invention comprises:
A thin film of oxide superconductor with a thickness less than twice the height of the unevenness is formed on the surface of the substrate that has been subjected to unevenness treatment, and the thin film channel is sandwiched between the source electrode, drain electrode, and channel. A gate electrode is to be provided through an insulator. It is effective to form a thin film of an oxide superconductor by a reactive vapor deposition method. Then, it is effective to use MgO single crystal or SiTiO 3 x as the material for the substrate and YBa 2 Cu 3 O x (hereinafter referred to as YBCO) as the oxide superconductor. Further, it is effective to perform the unevenness treatment on the substrate surface by using carborundum grains or by ion irradiation.

【0006】[0006]

【作用】基板に凹凸処理を施し、その基板の凹凸高さの
2倍よりも膜厚の薄い酸化物超電導体の膜を形成する
と、擬似的な粒界が均一に形成される。このような相互
間に擬似的な粒界を持つ微小な粒からなる膜に電圧を印
加した場合には、粒界が微小なコンデンサとして作用す
るため、容量をC、電気素量をeとして2C/eに相当
した電圧で、単一電子の隣の粒へのトンネルが生じる。
When the substrate is subjected to the concavo-convex treatment to form an oxide superconductor film having a thickness smaller than twice the height of the concavo-convex of the substrate, pseudo grain boundaries are uniformly formed. When a voltage is applied to a film made up of minute grains having pseudo grain boundaries between them, the grain boundaries act as minute capacitors, so the capacitance is C and the elementary charge is 2C. At a voltage corresponding to / e, a single electron tunnels to the next grain.

【0007】[0007]

【実施例】本発明の一実施例により製造されたSETト
ランジスタ素子は、図2に示した素子と同様な構造をも
ち、基板3の材料にMgO単結晶を用い、その表面を粒径
100nm のカーボランダムで研磨することにより凹凸処理
をした。凹凸の高さは約50nmであった。そしてその面の
上に反応性蒸着法でYBCOの薄膜を形成した。その薄
膜の厚さを変え、異なる膜厚を持つYBCOの抵抗の温
度変化を測定した結果を図3に示す。膜厚が基板凹凸の
2倍より厚い場合には通常のYBCOの特性であるが、
膜厚が基板凹凸の2倍より薄い場合には、SETに起因
した抵抗の増加が観測された。蒸着法は、スパッタ法や
CVD法と比較してステップカバレージが悪いことが知
られている。このため図1に概念的に示すように、YB
COからなる粒状物質1相互間にMgO基板3の表面の凹
凸により擬似粒界が形成されたことにより、トンネル効
果があらわれたものと考えられる。このようにして作ら
れたチャネル10をはさんで、膜厚が500nm と厚いYB
COによりソース電極4およびドレイン電極5を形成し
た。膜厚が基板凹凸の2倍より厚いため、これらの電極
に擬似粒界は形成されていない。そしてゲート絶縁体2
としてMgOを用い、ゲート電極6をAlで形成した。基板
および絶縁体を構成するMgOはYBCOと熱膨脹係数が
近似しており、温度変動の際にチャネル10に応力が加
わることがない。また単結晶MgOはYBCOと格子常数
が近似しているため、その上に均一にYBCO薄膜が形
成されやすい。同様にYBCOと格子定数や熱膨脹係数
の近いSiTiO3 を基板に使用することができる。また、
基板表面の凹凸処理をイオン照射で行ってもよい。
EXAMPLE A SET transistor element manufactured according to an example of the present invention has a structure similar to that of the element shown in FIG. 2, uses MgO single crystal as the material of the substrate 3, and the surface thereof has a grain size.
Concavo-convex treatment was performed by polishing with 100 nm carborundum. The height of the irregularities was about 50 nm. Then, a YBCO thin film was formed on the surface by reactive vapor deposition. FIG. 3 shows the result of measuring the temperature change of the resistance of YBCO having different film thicknesses while changing the thickness of the thin film. When the film thickness is thicker than twice the unevenness of the substrate, it is a characteristic of normal YBCO.
When the film thickness was thinner than twice the substrate unevenness, an increase in resistance due to SET was observed. It is known that the vapor deposition method has worse step coverage than the sputtering method and the CVD method. Therefore, as conceptually shown in FIG.
It is considered that the tunnel effect appeared because the pseudo grain boundaries were formed between the granular substances 1 made of CO by the unevenness of the surface of the MgO substrate 3. YB with a thickness of 500 nm is sandwiched between the channels 10 made in this way.
The source electrode 4 and the drain electrode 5 were formed of CO. Since the film thickness is thicker than twice the substrate irregularities, no pseudo grain boundary is formed in these electrodes. And the gate insulator 2
The gate electrode 6 was formed of Al using MgO. MgO forming the substrate and the insulator has a thermal expansion coefficient similar to that of YBCO, and therefore stress is not applied to the channel 10 when the temperature changes. Further, since single crystal MgO has a lattice constant close to that of YBCO, a YBCO thin film is easily formed on it. Similarly, SiTiO 3 having a lattice constant and a thermal expansion coefficient close to that of YBCO can be used for the substrate. Also,
The unevenness treatment on the substrate surface may be performed by ion irradiation.

【0008】図4は、製造した図2の構造のSETトラ
ンジスタ素子のS−G間バイアス電圧0.25Vにおける特
性を示し、ゲート電圧の変化に対して、この素子特有の
ソース・ドレイン電流の周期的な振動が観測された。
FIG. 4 shows the characteristics of the manufactured SET transistor element having the structure shown in FIG. 2 at an S-G bias voltage of 0.25 V. The source-drain current peculiar to this element changes periodically with respect to the change of the gate voltage. Various vibrations were observed.

【0009】[0009]

【発明の効果】本発明によれば、凹凸処理した基板上へ
の酸化物超電導体の薄膜を堆積することにより、トンネ
ル効果を生ずる擬似粒界を形成したので、再現性よくS
ETトランジスタ素子を製造することが可能になった。
According to the present invention, a pseudo grain boundary that causes a tunnel effect is formed by depositing a thin film of an oxide superconductor on a substrate having a textured surface.
It has become possible to manufacture ET transistor devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるSETトランジスタ素
子の要部拡大図
FIG. 1 is an enlarged view of a main part of a SET transistor element according to an embodiment of the present invention.

【図2】本発明によた製造されるSETトランジスタ素
子の一例の構造を示す断面図
FIG. 2 is a sectional view showing the structure of an example of a SET transistor device manufactured according to the present invention.

【図3】凹凸基板上に堆積された種々の膜厚のYBCO
膜の抵抗の温度依存性を示す線図
FIG. 3 YBCO of various thicknesses deposited on a textured substrate
Diagram showing temperature dependence of film resistance

【図4】本発明の一実施例によるSETトランジスタ素
子の特性線図
FIG. 4 is a characteristic diagram of a SET transistor device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 粒状物質 2 絶縁体 3 基板 4 ソース電極 5 ドレイン電極 6 ゲート電極 10 チャネル 1 granular material 2 insulator 3 substrate 4 source electrode 5 drain electrode 6 gate electrode 10 channel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津田 孝一 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 向江 和郎 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koichi Tsuda 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Fuji Electric Co., Ltd. No. 1 inside Fuji Electric Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】凹凸処理を施した基板表面上に、その凹凸
の高さの2倍より薄い膜厚の酸化物超電導体の薄膜を形
成し、その薄膜からなるチャネルをはさんでソース電極
およびドレイン電極、チャネル上に絶縁体を介してゲー
ト電極を設けることを特徴とする単一電子トンネルトラ
ンジスタ素子の製造方法。
1. A thin film of an oxide superconductor having a thickness smaller than twice the height of the unevenness is formed on the surface of the substrate subjected to the unevenness treatment, and a source electrode and a thin film are sandwiched between the thin film and the source electrode. A method of manufacturing a single-electron tunnel transistor element, comprising providing a gate electrode on a drain electrode and a channel via an insulator.
【請求項2】酸化物超電導体の薄膜を反応性蒸着法で形
成する請求項1記載の単一電子トンネルトランジスタ素
子の製造方法。
2. The method for producing a single electron tunnel transistor device according to claim 1, wherein the oxide superconductor thin film is formed by a reactive vapor deposition method.
【請求項3】基板材料として酸化マグネシウムを用いる
請求項1あるいは2記載の単一電子トンネルトランジス
タ素子の製造方法。
3. The method for manufacturing a single electron tunnel transistor element according to claim 1, wherein magnesium oxide is used as the substrate material.
【請求項4】基板材料としてチタン酸ストロンチウムを
用いる請求項1あるいは2記載の単一電子トンネルトラ
ンジスタ素子の製造方法。
4. The method for manufacturing a single electron tunnel transistor element according to claim 1, wherein strontium titanate is used as the substrate material.
【請求項5】酸化物超電導体としてYBa2 Cu3 x を用
いる請求項1ないし4のいずれかに記載の単一電子トン
ネルトランジスタ素子の製造方法。
5. The method for manufacturing a single electron tunnel transistor element according to claim 1, wherein YBa 2 Cu 3 O x is used as the oxide superconductor.
【請求項6】基板表面の凹凸処理をカーボランダム粒を
用いて行う請求項1ないし5のいずれかに記載の単一電
子トンネルトランジスタ素子の製造方法。
6. The method for manufacturing a single electron tunnel transistor element according to claim 1, wherein the unevenness treatment of the substrate surface is carried out by using carborundum grains.
【請求項7】基板表面の凹凸処理をイオン照射により行
う請求項1ないし5のいずれかに記載の単一電子トンネ
ルトランジスタ素子の製造方法。
7. The method for manufacturing a single electron tunnel transistor element according to claim 1, wherein the unevenness treatment on the substrate surface is performed by ion irradiation.
JP4074838A 1992-03-31 1992-03-31 Manufacture of single electron tunnel transistor element Pending JPH05283759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4074838A JPH05283759A (en) 1992-03-31 1992-03-31 Manufacture of single electron tunnel transistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4074838A JPH05283759A (en) 1992-03-31 1992-03-31 Manufacture of single electron tunnel transistor element

Publications (1)

Publication Number Publication Date
JPH05283759A true JPH05283759A (en) 1993-10-29

Family

ID=13558880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4074838A Pending JPH05283759A (en) 1992-03-31 1992-03-31 Manufacture of single electron tunnel transistor element

Country Status (1)

Country Link
JP (1) JPH05283759A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240509A (en) * 1994-01-19 1995-09-12 Siemens Ag Micro electron device
EP0750353A2 (en) * 1995-06-23 1996-12-27 Matsushita Electric Industrial Co., Ltd. Single electron tunnel device and method for fabricating the same
WO2000041247A3 (en) * 1998-12-30 2000-11-09 Alexandr Mikhailovich Ilyanok Quantum-size electronic devices and operating conditions thereof
KR100468834B1 (en) * 1998-10-09 2005-04-06 삼성전자주식회사 Single electron transistor using oxidation process and manufacturing method
KR100446598B1 (en) * 1997-09-04 2005-05-16 삼성전자주식회사 A single electron tunneling device and a fabricating method thereof
JP2015209363A (en) * 2014-04-28 2015-11-24 国立大学法人島根大学 Re123 crystal film forming method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240509A (en) * 1994-01-19 1995-09-12 Siemens Ag Micro electron device
EP0750353A2 (en) * 1995-06-23 1996-12-27 Matsushita Electric Industrial Co., Ltd. Single electron tunnel device and method for fabricating the same
EP0750353A3 (en) * 1995-06-23 1997-07-02 Matsushita Electric Ind Co Ltd Single electron tunnel device and method for fabricating the same
US5731598A (en) * 1995-06-23 1998-03-24 Matsushita Electric Industrial Co. Ltd. Single electron tunnel device and method for fabricating the same
KR100446598B1 (en) * 1997-09-04 2005-05-16 삼성전자주식회사 A single electron tunneling device and a fabricating method thereof
KR100468834B1 (en) * 1998-10-09 2005-04-06 삼성전자주식회사 Single electron transistor using oxidation process and manufacturing method
WO2000041247A3 (en) * 1998-12-30 2000-11-09 Alexandr Mikhailovich Ilyanok Quantum-size electronic devices and operating conditions thereof
US6570224B1 (en) 1998-12-30 2003-05-27 Alexander Mikhailovich Ilyanok Quantum-size electronic devices and operating conditions thereof
CN100367512C (en) * 1998-12-30 2008-02-06 量子香港有限公司 Quantum-size electronic devices and operating conditions thereof
JP2015209363A (en) * 2014-04-28 2015-11-24 国立大学法人島根大学 Re123 crystal film forming method

Similar Documents

Publication Publication Date Title
US3878549A (en) Semiconductor memories
US5236850A (en) Method of manufacturing a semiconductor film and a semiconductor device by sputtering in a hydrogen atmosphere and crystallizing
JP3144032B2 (en) Thin film transistor and method of manufacturing the same
EP0473988A1 (en) Method of fabricating a thin film transistor having amorphous/polycrystalline semiconductor channel region
KR960019820A (en) Superconducting field effect element with grain boundary channel and its manufacturing method
EP0294802B1 (en) Thin-film transistor fabrication process
CA2122118A1 (en) Method for low temperature growth of epitaxial silicon and devices produced thereby
JPH05283759A (en) Manufacture of single electron tunnel transistor element
Horng et al. Effects of rapid thermal process on structural and electrical characteristics of Y2O3 thin films by rf-magnetron sputtering
JPS61220369A (en) Thin-film field-effect element
JP2645663B2 (en) Thin film semiconductor device and method of manufacturing the same
JPH02189935A (en) Manufacture of thin-film transistor
JPH08288563A (en) Superconducting field-effect element and manufacture thereof
JP3216089B2 (en) Superconducting device manufacturing method and superconducting transistor using the same
Nagatomo et al. Sputtered BaTiO3 films for silicon on insulator structures
JP2688369B2 (en) Method of manufacturing Josephson junction device
KR950009635B1 (en) Manufacturing method of super conducting field effecting device using mo-c super thin film
Seki et al. p-Channel TFT's using magnetron-sputtered Ta 2 O 5 films as gate insulators
JPH05259458A (en) Manufacture of semiconductor device
JP2713152B2 (en) Single electron tunneling effect element and method of manufacturing the same
JPH0256970A (en) Thin-film transistor and manufacture thereof
JP2797361B2 (en) Semiconductor device
JP2680959B2 (en) Superconducting field effect device and method of manufacturing the same
JP4056575B2 (en) Superconducting device and manufacturing method thereof
JPH04268734A (en) Thin film transistor and manufacture thereof