JPH0256970A - Thin-film transistor and manufacture thereof - Google Patents

Thin-film transistor and manufacture thereof

Info

Publication number
JPH0256970A
JPH0256970A JP20764188A JP20764188A JPH0256970A JP H0256970 A JPH0256970 A JP H0256970A JP 20764188 A JP20764188 A JP 20764188A JP 20764188 A JP20764188 A JP 20764188A JP H0256970 A JPH0256970 A JP H0256970A
Authority
JP
Japan
Prior art keywords
electrode
layer
cdse
film
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20764188A
Other languages
Japanese (ja)
Inventor
Masaharu Terauchi
正治 寺内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20764188A priority Critical patent/JPH0256970A/en
Publication of JPH0256970A publication Critical patent/JPH0256970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To increase the mobility of carriers by successively laminating a source electrode layer, a CdSe semiconductor layer and a drain electrode layer in parallel with an insulating substrate so that the electrode of two layers holding the CdSe semiconductor layer are not brought into contact electrically and forming a gate electrode in a region in which the electrodes of the two layers are not brought into contact electrically. CONSTITUTION:An NiCr layer is shaped onto a glass substrate 1, and used as a source electrode 2. A CdSe film 3 is formed onto the source electrode 2 as a semiconductor layer, and an NiCr layer is shaped onto the film 3 as a drain electrode 4. The NiCr layer 2, the CdSe film 3 and the NiCr layer 4 are reverse-sputtering etched at a time, and patterned so that one end faces of the three layers coincide with each other, and an Al-Ta-O layer as a gate insulating film 5 is formed to a shape coating the end faces. A gate electrode 6 is shaped in a region, in which the gate electrode 6 is not brought into contact electrically with the source electrode 2, the CdSe semiconductor layer 3 and the drain electrode 4 including the end faces of the three layers under the gate insulating film 5 on the gate insulating film 5 on the film 5. Accordingly, the effect of scattering on the crystal boundary of carriers is reduced, thus increasing the effective mobility of carriers.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、表示装置、例えばエレクトロルミネッセンス
パネルの駆動回路に用いられる大面積にわたり、均一な
特性を有する薄膜トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thin film transistor having uniform characteristics over a large area and used in a drive circuit for a display device, such as an electroluminescent panel.

従来の技術 従来のCdSe薄膜トランジスタの構成を第2図に示す
。絶縁基板1上に、ゲート電極6が形成され、その上部
に、ゲート絶縁膜5を介してCdSe膜3が形成されて
いる。CdSe膜3にはソース、ドレイン両電極2.4
が付与されている。
2. Description of the Related Art The structure of a conventional CdSe thin film transistor is shown in FIG. A gate electrode 6 is formed on an insulating substrate 1, and a CdSe film 3 is formed on top of the gate electrode 6 with a gate insulating film 5 interposed therebetween. Both source and drain electrodes 2.4 are provided on the CdSe film 3.
has been granted.

ゲート電圧よって誘起されるキャリアの導通路は、ソー
ス電極2から、ドレイン電極4方向であり、絶縁基板1
に平行であった。
The carrier conduction path induced by the gate voltage is from the source electrode 2 to the drain electrode 4, and from the insulating substrate 1.
was parallel to

発明が解決しようとする課題 CdSe膜3は多結晶膜であるため、結晶粒界が存在す
る。キャリアの導通路が結晶粒界を横切って、形成され
ると、キャリアが結晶粒界で散乱を受けるために、実効
的なキャリアの移動度が10〜50cm2/vsとなり
、CdSe単結晶で報告されている〜600 c m 
2 / v sという値に比べて、非常に小さ(なって
しまう。
Problems to be Solved by the Invention Since the CdSe film 3 is a polycrystalline film, grain boundaries exist. When carrier conduction paths are formed across grain boundaries, the carriers are scattered at the grain boundaries, resulting in an effective carrier mobility of 10 to 50 cm2/vs, which is reported for CdSe single crystals. ~600 cm
It is very small compared to the value 2/vs.

本発明は、キャリアの結晶粒界での散乱の影響を少なく
シ、実効的なキャリアの移動度を大きくすることを目的
とする。
An object of the present invention is to reduce the influence of scattering of carriers at grain boundaries and to increase effective carrier mobility.

課題を解決するための手段 絶縁基板上にソース(ドレイン)電極層、CdSe半導
体層、ドレイン(ソース)電極層を、順次、絶縁基板と
平行に、且つ、CdSe半導体層を挟む2層の電極が、
電気的接触を持たないように積層し、前記3層の1端面
を一致させるようにパターンニングし、その上に、前記
端面を覆う形状のゲート絶縁膜を形成し、更にその上に
、前記ゲート絶縁膜上でその下に前記端面を含み、前記
ソース(ドレイン) 、CdSe半導体層、ドレイン(
ソース)電極と電気的接触を持たない領域に、ゲート電
極を形成する。
Means for Solving the Problem A source (drain) electrode layer, a CdSe semiconductor layer, and a drain (source) electrode layer are sequentially formed on an insulating substrate, parallel to the insulating substrate, and two layers of electrodes sandwiching the CdSe semiconductor layer. ,
The three layers are stacked so as not to have electrical contact, patterned so that one end surface of the three layers coincides with each other, a gate insulating film having a shape that covers the end surface is formed, and the gate The source (drain), the CdSe semiconductor layer, the drain (
A gate electrode is formed in a region that has no electrical contact with the source (source) electrode.

作用 上記の構成によれば、CdSe膜は基板に対して垂直に
、強いC軸配向性を持っており、基板に対して垂直方向
に結晶成長が起こりやすい。従って、基板に対して垂直
方向の結晶粒界の密度は基板に対して平行方向に比べて
?小さくなる。そのため、CdSe薄膜トランジスタの
キャリアの導通路が、基板に対して、垂直方向に形成さ
れるようにすることで、キャリアの結晶粒界での散乱の
影響を少な(なり、実効的なキャリアの移動度が大きく
なる。
Effect: According to the above structure, the CdSe film has a strong C-axis orientation perpendicular to the substrate, and crystal growth tends to occur perpendicularly to the substrate. Therefore, what is the density of grain boundaries in the direction perpendicular to the substrate compared to the density in the direction parallel to the substrate? becomes smaller. Therefore, by forming the carrier conduction path in a CdSe thin film transistor in a direction perpendicular to the substrate, the influence of scattering of carriers at grain boundaries can be reduced (this reduces the effective carrier mobility). becomes larger.

実施例 以下、本発明の実施例を、図面を用いて説明する。第1
図は、本発明による薄膜トランジスタの構成である。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1st
The figure shows the configuration of a thin film transistor according to the present invention.

第1図に示すように、ガラス基板1上に、膜厚が50n
m程度のNiCr層を、電子ビーム蒸着法で形成し、ソ
ース(ドレイン)電極2とする。
As shown in FIG. 1, a film with a thickness of 50n
A NiCr layer having a thickness of about 100 m is formed by electron beam evaporation to form the source (drain) electrode 2.

その上に、半導体層として、CdSe膜3を500nm
程度、抵抗加熱蒸着法で形成する。その上に、ドレイン
(ソース)電極4として、膜厚が50nm程度のNiC
r層を、電子ビーム蒸着法で形成する。その後、NiC
r層2)CdSe膜3、NiCr層4を、−度に逆スッ
パタエッチングを行い、前記3層の1端面を一致させる
ようにパターンニングを行う。前記端面を覆う形状に、
ゲート絶縁膜5として、例えば、スパッタリング法で作
製した200nm程度の厚さのAl−Ta−0層を形成
する。更に、その上に、ゲート絶縁膜5上で、その下に
前記3層の端面を含み、前記ソース(ドレイン)電極2
)CdSe半導体層3、ドレイン(ソース)電極4と電
気的接触を持たない領域に、ゲート電極6を、30nm
程度、抵抗加熱蒸着法で形成する。
On top of that, a CdSe film 3 with a thickness of 500 nm is formed as a semiconductor layer.
It is formed by resistance heating vapor deposition method. On top of that, a NiC film with a thickness of about 50 nm is formed as a drain (source) electrode 4.
The r layer is formed by electron beam evaporation. After that, NiC
r layer 2) The CdSe film 3 and the NiCr layer 4 are subjected to reverse sputter etching at - degrees, and patterned so that one end surface of the three layers coincides with each other. In a shape that covers the end surface,
As the gate insulating film 5, for example, an Al-Ta-0 layer with a thickness of about 200 nm is formed using a sputtering method. Furthermore, the source (drain) electrode 2 is formed on the gate insulating film 5 and includes the end faces of the three layers below.
) A gate electrode 6 is formed with a thickness of 30 nm in a region that has no electrical contact with the CdSe semiconductor layer 3 and the drain (source) electrode 4.
It is formed by resistance heating vapor deposition method.

第3図は、絶縁基板に蒸着したCdSe膜のX線回折を
示す図である。この図の唯一のピークは、CdSeの(
002)面のものである。これから明らかなように、C
dSe膜は基板に対して垂直に、強いC軸配向性を持っ
ており、基板に対して垂直方向に結晶成長が起こりやす
い。そのため、基板に対して垂直方向の結晶粒界の密度
は基板に対して平行方向に比べて、小さ(なる。そのた
め、CdSe薄膜トランジスタのキャリアの導通路が、
基板に対して、垂直方向に形成されるようにすることで
、キャリアの結晶粒界での散乱の影響を少なくし、実効
的なキャリアの移動度を大きくすることができる。
FIG. 3 is a diagram showing X-ray diffraction of a CdSe film deposited on an insulating substrate. The only peak in this figure is CdSe (
002) surface. As is clear from this, C.
The dSe film has strong C-axis orientation perpendicular to the substrate, and crystal growth tends to occur in the direction perpendicular to the substrate. Therefore, the density of grain boundaries in the direction perpendicular to the substrate is smaller than that in the direction parallel to the substrate.As a result, the carrier conduction path of the CdSe thin film transistor is
By forming it in a direction perpendicular to the substrate, it is possible to reduce the influence of carrier scattering at grain boundaries and increase the effective carrier mobility.

その後、アルゴンガス雰囲気中で、フラッシュアニール
を行う。通常のような長時間(例えば、30分)のアニ
ールでは、電極材料であるNiCrが、CdSe膜へ拡
散し、第4図に示すようなトランジスタ特性となり、良
好な特性を示さない。また、アニールを行わないと、C
d S e膜とNiCr膜の接触抵抗が大きくなり、第
5図に示すような特性となり、フラッシュアニールは、
単時間であるため、良好なオーミック接触が得られ、且
つ、拡散は小さい。フラッシュアニールを行ったときの
特性は、第6図に示すようなトランジスタ特性となり、
良好な特性を示す。この時のキャリアの移動度は、30
0〜400 c m 2 / vBであった。
Thereafter, flash annealing is performed in an argon gas atmosphere. When annealing is performed for a normal long time (for example, 30 minutes), NiCr, which is an electrode material, diffuses into the CdSe film, resulting in transistor characteristics as shown in FIG. 4, which do not exhibit good characteristics. Also, if annealing is not performed, C
The contact resistance between the dS e film and the NiCr film increases, resulting in the characteristics shown in Figure 5, and flash annealing
Since it is a single time, good ohmic contact can be obtained and diffusion is small. When flash annealing is performed, the transistor characteristics are as shown in Figure 6.
Shows good properties. The carrier mobility at this time is 30
It was 0-400 cm2/vB.

発明の効果 本発明によれば、移動度が大きい薄膜トランジスタが得
られるため、特に、スピードを要求される、各種トラン
ジスタ回路に広(活用できる。
Effects of the Invention According to the present invention, since a thin film transistor with high mobility can be obtained, it can be widely used in various transistor circuits that require high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例における薄膜トランジスタ
の構成を示す断面図、第2図は、従来の薄膜トランジス
タの構成を示す断面図、第3図は、CdSe膜のX線回
折パターンを示す図、第4図は、本発明にもとすく構造
の薄膜トランジスタの、長持間(〜30分)のアニール
を行った後の特性図、第5図は、同薄膜トランジスタの
、アニールしなかった時の特性図、第6図は、同薄膜ト
ランジスタの、フラッシュアニールした後の特性図であ
る。 1・・絶縁基板、2・・ソース(ドレイン)電極、3・
・CdSe膜、4・・ソース(ドレイン)電極、5・・
ゲート絶縁膜、6・・ゲート電極。 代理人の氏名 弁理士 粟野重孝 ほか1名Cclae
FIG. 1 is a cross-sectional view showing the structure of a thin film transistor according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the structure of a conventional thin film transistor, and FIG. 3 is a view showing an X-ray diffraction pattern of a CdSe film. , Fig. 4 is a characteristic diagram of a thin film transistor having a structure according to the present invention after long-term annealing (~30 minutes), and Fig. 5 is a characteristic diagram of the same thin film transistor without annealing. 6 are characteristic diagrams of the same thin film transistor after flash annealing. 1. Insulating substrate, 2. Source (drain) electrode, 3.
・CdSe film, 4... Source (drain) electrode, 5...
Gate insulating film, 6...gate electrode. Name of agent: Patent attorney Shigetaka Awano and one other person Cclae
order

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁基板上にソース(ドレイン)電極層、CdS
e半導体層、ドレイン(ソース)電極層を、順次、絶縁
基板と平行に、且つ、CdSe半導体層を挟む2層の電
極が、電気的接触を持たないように積層し、前記3層の
1端面を一致させるようにパターンニングし、その上に
、前記端面を覆う形状のゲート絶縁膜を形成し、更にそ
の上に、前記ゲート絶縁膜上でその下に前記端面を含み
、前記ソース(ドレイン)、CdSe半導体層、ドレイ
ン(ソース)電極と電気的接触を持たない領域に、ゲー
ト電極を形成したことを特徴とする薄膜トランジスタ。
(1) Source (drain) electrode layer, CdS on an insulating substrate
The e-semiconductor layer and the drain (source) electrode layer are sequentially stacked parallel to the insulating substrate so that the two electrode layers sandwiching the CdSe semiconductor layer do not have electrical contact, and one end surface of the three layers is A gate insulating film having a shape that covers the end face is formed on the gate insulating film, and a gate insulating film is formed on the gate insulating film and includes the end face below the gate insulating film, and the source (drain) , a thin film transistor characterized in that a gate electrode is formed in a region having no electrical contact with a CdSe semiconductor layer and a drain (source) electrode.
(2)特許請求の範囲第1項記載の薄膜トランジスタを
、不活性ガス中でフラッシュアニールすることを特徴と
する薄膜トランジスタの製造方法。
(2) A method for manufacturing a thin film transistor, comprising flash annealing the thin film transistor according to claim 1 in an inert gas.
JP20764188A 1988-08-22 1988-08-22 Thin-film transistor and manufacture thereof Pending JPH0256970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20764188A JPH0256970A (en) 1988-08-22 1988-08-22 Thin-film transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20764188A JPH0256970A (en) 1988-08-22 1988-08-22 Thin-film transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0256970A true JPH0256970A (en) 1990-02-26

Family

ID=16543147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20764188A Pending JPH0256970A (en) 1988-08-22 1988-08-22 Thin-film transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0256970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003058723A1 (en) * 2001-12-28 2003-07-17 National Institute Of Advanced Industrial Science And Technology Organic thin-film transistor and manufacturing method thereof
CN106024906A (en) * 2016-07-18 2016-10-12 京东方科技集团股份有限公司 Thin film transistor, display substrate and liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003058723A1 (en) * 2001-12-28 2003-07-17 National Institute Of Advanced Industrial Science And Technology Organic thin-film transistor and manufacturing method thereof
US7138682B2 (en) 2001-12-28 2006-11-21 National Institute Of Advanced Industrial Science And Technology Organic thin-film transistor and method of manufacturing the same
CN106024906A (en) * 2016-07-18 2016-10-12 京东方科技集团股份有限公司 Thin film transistor, display substrate and liquid crystal display device

Similar Documents

Publication Publication Date Title
KR20000076790A (en) Thin Film Trarsistor and LCD
JPS6242564A (en) Thin film transistor and manufacture of the same
JPH05190877A (en) Manufacture of diode element
JPH0256970A (en) Thin-film transistor and manufacture thereof
JPH0546106B2 (en)
JPS6138850B2 (en)
GB2044994A (en) Thin film transistors
JPH08172195A (en) Thin film transistor
JPH0147012B2 (en)
JPS61187274A (en) Manufacture of thin-film transistor
JPS61105870A (en) Manufacture of thin film transistor
JP2645663B2 (en) Thin film semiconductor device and method of manufacturing the same
JPH10209160A (en) Wiring and display using the same
JPH01136373A (en) Manufacture of thin-film semiconductor device
JPH06275130A (en) Transparent conductive film
US3569801A (en) Thin film triodes and method of forming
JPH054828B2 (en)
JP4056575B2 (en) Superconducting device and manufacturing method thereof
JPS63193581A (en) Resistance control element
JP2594384B2 (en) Metal oxide thin film, method of manufacturing the same, and electronic device using the metal oxide thin film
JP2907094B2 (en) Superconducting transistor
JPS63235982A (en) Manufacture of electrode for display panel
JP2738144B2 (en) Superconducting element and fabrication method
JPH05206531A (en) Manufacture of superconducting device
JPS62169482A (en) Manufacture of semiconductor device