JPH05232024A - Icp emission spectral analyzer - Google Patents

Icp emission spectral analyzer

Info

Publication number
JPH05232024A
JPH05232024A JP4033175A JP3317592A JPH05232024A JP H05232024 A JPH05232024 A JP H05232024A JP 4033175 A JP4033175 A JP 4033175A JP 3317592 A JP3317592 A JP 3317592A JP H05232024 A JPH05232024 A JP H05232024A
Authority
JP
Japan
Prior art keywords
sample aerosol
plasma torch
ultrasonic nebulizer
icp emission
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4033175A
Other languages
Japanese (ja)
Other versions
JP3084885B2 (en
Inventor
Hitoshi Hiromichi
仁 広道
Kensuke Daiho
健介 大穂
Koji Okada
幸治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP04033175A priority Critical patent/JP3084885B2/en
Publication of JPH05232024A publication Critical patent/JPH05232024A/en
Application granted granted Critical
Publication of JP3084885B2 publication Critical patent/JP3084885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent plasma flames from being extinguished due to droplets of solvent, and stabilize a photometric signal in an ICP emission spectral analyzer. CONSTITUTION:In an ICP emission spectral analyzer having an ultrasonic nebulizer 1, a double-cylinder-structural separating chamber 10 having a liquid discharge port 11a is interposed between a sample aerosol conveying route so as to reach from the ultrasonic nebulizer 1 to a plasma torch 2. A nozzle 14 to blow out sample aerosol from the ultrasonic nebulizer 1 is opened inside of a double cylinder of this separating chamber 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ICP(高周波誘導結
合プラズマ)発光分光分析装置に係り、詳しくは、超音
波ネブライザからプラズマトーチに至る試料エアロゾル
の搬送経路部分の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ICP (high frequency inductively coupled plasma) emission spectroscopic analyzer, and more particularly, to a structure of a sample aerosol carrying path portion from an ultrasonic nebulizer to a plasma torch.

【0002】[0002]

【従来の技術】ICP発光分光分析装置には、超音波ネ
ブライザにより液体試料をエアロゾル化し、この試料エ
アロゾルをキャリアガスとともにプラズマトーチに導入
するようにしたものがある。超音波ネブライザは、霧吹
き式のネブライザに比べると、粒径の細かい試料エアロ
ゾルが生成でき、また、キャリアガスの供給量に関係な
く試料エアロゾルの量を調整しうる、という利点があ
る。
2. Description of the Related Art Some ICP emission spectroscopic analyzers are those in which a liquid sample is aerosolized by an ultrasonic nebulizer and this sample aerosol is introduced into a plasma torch together with a carrier gas. The ultrasonic nebulizer has advantages that it can generate a sample aerosol having a fine particle size and that the amount of the sample aerosol can be adjusted regardless of the supply amount of the carrier gas, as compared with the nebulizer of the atomization type.

【0003】図2に、従来のこの種のICP発光分光分
析装置の要部の構成を示す。同図において、符号1は超
音波ネブライザ、2はプラズマトーチである。超音波ネ
ブライザ1は、ネブライザ本体3と、脱溶媒部4とから
なる。ネブライザ本体3は、霧化室5内に超音波振動子
6を設けたもので、試料容器7からポンプ8により超音
波振動子6の表面に送り込まれる液体試料Sを、超音波
振動子6の振動により霧化する。このネブライザ本体3
でエアロゾル化された試料は、霧化室5内に流入するキ
ャリアガスとともに、脱溶媒部4へ送出される。脱溶媒
部4は、加熱と冷却とにより試料エアロゾルを細粒子化
するとともに、試料エアロゾルから溶媒(通常は水)を
取り除く。脱溶媒部4を通過した試料エアロゾルは、搬
送管9を通じてプラズマトーチ2に搬送される。
FIG. 2 shows the structure of the main part of a conventional ICP emission spectroscopic analyzer of this type. In the figure, reference numeral 1 is an ultrasonic nebulizer, and 2 is a plasma torch. The ultrasonic nebulizer 1 includes a nebulizer body 3 and a desolvation unit 4. The nebulizer main body 3 is provided with an ultrasonic vibrator 6 in the atomization chamber 5, and the liquid sample S sent from the sample container 7 to the surface of the ultrasonic vibrator 6 by the pump 8 is transferred to the ultrasonic vibrator 6. It atomizes due to vibration. This nebulizer body 3
The aerosolized sample is sent to the desolvation unit 4 together with the carrier gas flowing into the atomization chamber 5. The desolvation unit 4 atomizes the sample aerosol by heating and cooling and removes the solvent (usually water) from the sample aerosol. The sample aerosol that has passed through the desolvation unit 4 is transported to the plasma torch 2 through the transport tube 9.

【0004】[0004]

【発明が解決しようとする課題】上記の通り、超音波ネ
ブライザを有する従来のICP発光分光分析装置では、
超音波ネブライザ1に脱溶媒部4を付設して、この脱溶
媒部4により試料エアロゾルから溶媒を取り除き、プラ
ズマトーチ2には、溶媒を含まない試料エアロゾルを送
り込むようにしているが、脱溶媒部4での溶媒は、装置
を長時間運転した場合とか、室温が低い場合には、試料
エアロゾルに含まれる溶媒が液滴(通常は水滴)として
搬送管9内に溜まってしまって完全に除去しきれないこ
とがある。そして、搬送管9内に溶媒が液滴として溜ま
ってしまうと、この液滴状の溶媒がプラズマトーチ2に
まで吹き上がり、結果、プラズマ炎が消炎されてしまう
という不具合を引き起こす。
As described above, in the conventional ICP emission spectroscopic analyzer having the ultrasonic nebulizer,
A desolvation section 4 is attached to the ultrasonic nebulizer 1, the solvent is removed from the sample aerosol by the desolvation section 4, and a sample aerosol containing no solvent is sent to the plasma torch 2. When the apparatus is operated for a long time or when the room temperature is low, the solvent in 4 is completely removed because the solvent contained in the sample aerosol accumulates in the carrier tube 9 as droplets (usually water droplets). Sometimes I can't. Then, if the solvent accumulates in the carrier tube 9 as a droplet, the droplet-shaped solvent blows up to the plasma torch 2, and as a result, the plasma flame is extinguished.

【0005】また、従来の装置では、超音波ネブライザ
1からプラズマトーチ2へ試料エアロゾルが円滑に流れ
るように、その間の搬送経路がほぼ同一内径の管路で構
成されているのであるが、ネブライザ本体3で試料エア
ロゾルの粒子密度に濃淡の変動が発生した場合には、そ
の濃淡の変動が疎密波の形でプラズマトーチ2まで直接
送られることになり、プラズマトーチ2で発光の強度変
動を来し、結果、安定した測光信号が得られなくなる、
という問題がある。
Further, in the conventional apparatus, the transport path between the ultrasonic nebulizer 1 and the plasma torch 2 is constituted by the conduits having substantially the same inner diameter so that the sample aerosol can smoothly flow. When the density variation of the sample aerosol particle density occurs in 3, the density variation is directly sent to the plasma torch 2 in the form of a compressional wave, and the plasma torch 2 causes a variation in the emission intensity. As a result, a stable photometric signal cannot be obtained,
There is a problem.

【0006】さらに、脱溶媒部4での試料エアロゾルの
細粒子化が不充分である場合には、粒径にばらつきのあ
る試料エアロゾルがそのままプラズマトーチ2に導入さ
れることにもなり、発光強度にばらつきが生じ、この点
からも、安定した測光信号が得られなくなる。
Further, when the sample aerosol in the desolvation section 4 is not sufficiently finely pulverized, the sample aerosol having a variation in particle size may be directly introduced into the plasma torch 2, and the emission intensity may be increased. And a stable photometric signal cannot be obtained from this point as well.

【0007】本発明は、上記の問題点に鑑みてなされた
ものであって、溶媒の液滴によるプラズ炎の消炎という
不具合の発生を防止するとともに、測光信号を安定化す
ることを課題とする。
The present invention has been made in view of the above problems, and it is an object of the present invention to prevent the occurrence of the problem of quenching the plasm flame due to the droplets of the solvent and to stabilize the photometric signal. ..

【0008】[0008]

【課題を解決するための手段】本発明は、上記の課題を
達成するために、超音波ネブライザとプラズマトーチと
の間の試料エアロゾルの搬送経路に、排液口を有する分
離チャンバが介装されており、この分離チャンバは内筒
と外筒とを有し、この内筒に超音波ネブライザからの試
料エアロゾルが噴出するとともに、外筒からプラズマト
ーチに試料エアロゾルを搬送する構造とした。
According to the present invention, in order to achieve the above object, a separation chamber having a drainage port is provided in a transport path of a sample aerosol between an ultrasonic nebulizer and a plasma torch. The separation chamber has an inner cylinder and an outer cylinder, and the sample aerosol is ejected from the ultrasonic nebulizer to the inner cylinder and the sample aerosol is conveyed from the outer cylinder to the plasma torch.

【0009】[0009]

【作用】上記の構成によれば、超音波ネブライザから送
り出された試料エアロゾルは、プラズマトーチの手前
で、分離チャンバの内筒に噴出し、チャンバ端部で反転
流動した後、その外筒からプラズマトーチ側に流出す
る。その間に試料エアロゾルは、粒子密度が平均化され
るとともに、溶媒の液滴や、試料エアロゾルの大きな粒
子が分離除去される。
According to the above construction, the sample aerosol sent from the ultrasonic nebulizer is jetted to the inner cylinder of the separation chamber before the plasma torch, reversely flows at the chamber end, and then the plasma is discharged from the outer cylinder. It flows out to the torch side. In the meantime, the particle density of the sample aerosol is averaged, and droplets of the solvent and large particles of the sample aerosol are separated and removed.

【0010】[0010]

【実施例】図1は本発明の一実施例に係るICP発光分
光分析装置の要部の構成を示す構成図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing the structure of the main part of an ICP emission spectroscopic analyzer according to an embodiment of the present invention.

【0011】同図に示すように、この実施例のICP発
光分光分析装置が、超音波ネブライザ1と、プラズマト
ーチ2とを備え、超音波ネブライザ1が、ネブライザ本
体3と、脱溶媒部4とからなる点は、前記した従来例と
同じである。また、ネブライザ本体3が、霧化室5と、
超音波振動子6とを備え、試料容器7からポンプ8によ
り超音波振動子6の表面に送り込まれる液体試料Sを、
超音波振動子6の振動により霧化するものであり、ま
た、脱溶媒部4が、ネブライザ本体3からの試料エアロ
ゾルを加熱と冷却とにより細粒子化するとともに、試料
エアロゾルから溶媒を取り除くものである点も、従来例
と同じである。
As shown in the figure, the ICP emission spectroscopic analyzer of this embodiment comprises an ultrasonic nebulizer 1 and a plasma torch 2, and the ultrasonic nebulizer 1 comprises a nebulizer body 3 and a desolvation section 4. Is the same as the conventional example described above. In addition, the nebulizer main body 3 and the atomization chamber 5,
The ultrasonic sample 6 and the liquid sample S sent from the sample container 7 to the surface of the ultrasonic oscillator 6 by the pump 8 are
The atomization is performed by the vibration of the ultrasonic vibrator 6, and the desolvation unit 4 removes the solvent from the sample aerosol while atomizing the sample aerosol from the nebulizer body 3 by heating and cooling. Some points are also the same as the conventional example.

【0012】この実施例のICP発光分光分析装置が従
来例と異なる点は、超音波ネブライザ1の脱溶媒部4か
ら試料エアロゾルを搬送する搬送管9と、プラズマトー
チ1のセンター管2aとが分離され、その分離部間に、
二重筒構造の分離チャンバ10が連通接続されているこ
とである。この分離チャンバ10は、一端が閉じた外筒
11と、この外筒11の他端を閉じるキャップ12と、
外筒11と同心にキャップ12側に取り付けられた内筒
13とから構成され、キャップ12が若干高くなる傾斜
姿勢で支持されている。そして、キャップ12には、搬
送管9に連通接続するノズル14が設けられ、このノズ
ル14は、内筒13の内部で傾斜下端側に向けて開口し
ている。一方、外筒11の傾斜下端には排液口11aが
開設され、外筒11の上部で長さ方向中途位置に、試料
エアロゾルの流出口11bが設けられ、この流出口11
bがプラズマトーチ2のセンター管2aに接続されてい
る。15は排液タンクである。
The ICP emission spectroscopic analyzer of this embodiment is different from the conventional example in that the carrier tube 9 for carrying the sample aerosol from the desolvation section 4 of the ultrasonic nebulizer 1 and the center tube 2a of the plasma torch 1 are separated. Between the separated parts,
That is, the separation chamber 10 having the double cylinder structure is connected and connected. The separation chamber 10 includes an outer cylinder 11 whose one end is closed, a cap 12 which closes the other end of the outer cylinder 11,
It is composed of an outer cylinder 11 and an inner cylinder 13 concentrically attached to the cap 12 side, and the cap 12 is supported in an inclined posture in which it is slightly higher. Further, the cap 12 is provided with a nozzle 14 which is connected to the transport pipe 9 so as to communicate therewith, and the nozzle 14 is opened inside the inner cylinder 13 toward the inclined lower end side. On the other hand, a drainage port 11a is opened at the lower inclined end of the outer cylinder 11, and a sample aerosol outlet 11b is provided at an upper portion of the outer cylinder 11 in the longitudinal direction.
b is connected to the center tube 2a of the plasma torch 2. Reference numeral 15 is a drainage tank.

【0013】上記の構成において、ネブライザ本体3で
生成された試料エアロゾルは、脱溶媒部4で、細粒子化
されるとともに溶媒が取り除かれ、搬送管9を通じてプ
ラズマトーチ2側へ送出されるが、プラズマトーチ2の
手前で、分離チャンバ10に流入する。この分離チャン
バ10で、試料エアロゾルはノズル14から内筒13の
内部に噴出し、外筒11の傾斜下端で反転して内筒13
と外筒11との間隙に流入し、流出口11bからプラズ
マトーチ2側に流出する。
In the above structure, the sample aerosol generated in the nebulizer main body 3 is made into fine particles and the solvent is removed in the desolvation section 4, and is sent to the plasma torch 2 side through the carrier tube 9. Before the plasma torch 2, it flows into the separation chamber 10. In this separation chamber 10, the sample aerosol is ejected from the nozzle 14 into the inner cylinder 13, and is inverted at the lower end of the inclination of the outer cylinder 11 to be reversed.
Flows into the gap between the outer cylinder 11 and the outer cylinder 11, and flows out from the outlet 11b toward the plasma torch 2 side.

【0014】この間、試料エアロゾルは、分離チャンバ
10内部で反転流動することで、粒径に応じて選別分離
される。すなわち、試料エアロゾルに溶媒の液滴が含ま
れていると、その液滴は外筒11の壁面に付着し、壁面
に沿って傾斜下端に集まる。そして、排液口11aから
外部に排出される。
During this period, the sample aerosol flows and reverses in the separation chamber 10 and is selectively separated according to the particle size. That is, when the sample aerosol contains a droplet of the solvent, the droplet adheres to the wall surface of the outer cylinder 11 and collects at the lower end of the slope along the wall surface. Then, the liquid is discharged to the outside from the drainage port 11a.

【0015】また、分離チャンバ10に流入する試料エ
アロゾルのうち、粒径の細かいものは流出口11bに達
するが、粒径の大きなものは外筒11の壁面に付着し、
試料エアロゾルから取り除かれる。したがって、試料エ
アロゾルは分離チャンバ10を通過することで、粒径の
細かいものが選別され、プラズマトーチ2には、細かい
粒径に揃えられた試料エアロゾルが供給され、発光強度
のばらつきが生じなくなる。
Further, among the sample aerosols flowing into the separation chamber 10, those having a small particle size reach the outlet 11b, but those having a large particle size adhere to the wall surface of the outer cylinder 11,
Removed from the sample aerosol. Therefore, as the sample aerosol passes through the separation chamber 10, those having a small particle size are selected, the sample aerosol having a uniform particle size is supplied to the plasma torch 2, and variations in emission intensity do not occur.

【0016】さらに、試料エアロゾルは、分離チャンバ
10の内部で反転流動することで、一時的に滞留し、撹
拌される。そのため、ネブライザ本体3から、粒子密度
に濃淡の変動がある試料エアロゾルが送られてきても、
分離チャンバ10内でその粒子密度が平均化され、プラ
ズマトーチ2では、粒子密度の濃淡による発光強度の変
動がなくなり、発光強度が安定する。
Further, the sample aerosol is caused to reversely flow inside the separation chamber 10 so that it is temporarily retained and agitated. Therefore, even if the sample aerosol with the particle density varying in density is sent from the nebulizer main body 3,
The particle densities are averaged in the separation chamber 10, and in the plasma torch 2, there is no fluctuation in the emission intensity due to the density of the particle density, and the emission intensity is stable.

【0017】[0017]

【発明の効果】本発明によれば、分離チャンバ内で溶媒
の液滴が分離除去されるから、プラズマトーチの手前に
液滴が溜まるようなことがなく、液滴の吹き上げにより
プラズマ炎が消炎するという不具合の発生が確実に防止
される。
According to the present invention, since the droplets of the solvent are separated and removed in the separation chamber, the droplets do not accumulate in front of the plasma torch, and the plasma flame is extinguished by blowing up the droplets. It is possible to prevent the occurrence of such a trouble.

【0018】また、超音波ネブライザからの試料エアロ
ゾルに粒子密度の濃淡変動があっても、その試料エアロ
ゾルは、分離チャンバ内で粒子密度が平均化されるか
ら、プラズマトーチでの発光強度も平均化し、安定した
測光信号が得られる。
Further, even if the sample aerosol from the ultrasonic nebulizer has a variation in the density of the particle density, the particle density of the sample aerosol is averaged in the separation chamber, and therefore the emission intensity of the plasma torch is also averaged. , A stable photometric signal can be obtained.

【0019】しかも、分離チャンバで粒径の大きな試料
エアロゾルが分離除去され、プラズマトーチには、細か
い粒径に揃えられた試料エアロゾルが供給されるから、
この点からも、測光信号が安定化する。
Moreover, the sample aerosol having a large particle size is separated and removed in the separation chamber, and the sample aerosol having a uniform particle size is supplied to the plasma torch.
From this point as well, the photometric signal is stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るICP発光分光分析装
置の要部の構成図である。
FIG. 1 is a configuration diagram of a main part of an ICP emission spectroscopy analyzer according to an embodiment of the present invention.

【図2】従来のICP発光分光分析装置の要部の構成図
である。
FIG. 2 is a configuration diagram of a main part of a conventional ICP emission spectroscopy analyzer.

【符号の説明】[Explanation of symbols]

1 超音波ネブライザ 2 プラズマトーチ 9 搬送管 10 分離チャンバ 11 外筒 11a 排液口 12 内筒 14 ノズル 1 Ultrasonic Nebulizer 2 Plasma Torch 9 Transfer Pipe 10 Separation Chamber 11 Outer Cylinder 11a Drainage Port 12 Inner Cylinder 14 Nozzle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 超音波ネブライザとプラズマトーチとの
間の試料エアロゾルの搬送経路に、排液口を有する分離
チャンバが介装されており、この分離チャンバは内筒と
外筒とを有し、この内筒に超音波ネブライザからの試料
エアロゾルが噴出するとともに、外筒からプラズマトー
チに試料エアロゾルを搬送する構造になっていることを
特徴とするICP発光分光分析装置。
1. A separation chamber having a drainage port is provided in a sample aerosol transfer path between an ultrasonic nebulizer and a plasma torch, and the separation chamber has an inner cylinder and an outer cylinder. An ICP emission spectroscopic analyzer characterized in that the sample aerosol is ejected from the ultrasonic nebulizer to the inner cylinder and the sample aerosol is conveyed from the outer cylinder to the plasma torch.
JP04033175A 1992-02-20 1992-02-20 ICP emission spectrometer Expired - Fee Related JP3084885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04033175A JP3084885B2 (en) 1992-02-20 1992-02-20 ICP emission spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04033175A JP3084885B2 (en) 1992-02-20 1992-02-20 ICP emission spectrometer

Publications (2)

Publication Number Publication Date
JPH05232024A true JPH05232024A (en) 1993-09-07
JP3084885B2 JP3084885B2 (en) 2000-09-04

Family

ID=12379187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04033175A Expired - Fee Related JP3084885B2 (en) 1992-02-20 1992-02-20 ICP emission spectrometer

Country Status (1)

Country Link
JP (1) JP3084885B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000572A1 (en) * 1986-07-24 1988-01-28 Shiseido Company Ltd. Spherical clay mineral powder, process for its production, and composition containing same
JP2009008689A (en) * 2008-08-08 2009-01-15 Shimadzu Corp Aerosol generator
JP2012032210A (en) * 2010-07-29 2012-02-16 Yamatake Corp Analysis light generation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6058078B2 (en) * 2015-06-12 2017-01-11 幸人 河本 Garbage cover protection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000572A1 (en) * 1986-07-24 1988-01-28 Shiseido Company Ltd. Spherical clay mineral powder, process for its production, and composition containing same
JP2009008689A (en) * 2008-08-08 2009-01-15 Shimadzu Corp Aerosol generator
JP2012032210A (en) * 2010-07-29 2012-02-16 Yamatake Corp Analysis light generation device

Also Published As

Publication number Publication date
JP3084885B2 (en) 2000-09-04

Similar Documents

Publication Publication Date Title
US4990740A (en) Intra-microspray ICP torch
JPH0362443A (en) Reaction gas sample introduction system for mass spectrometer of inductive coupling plasma
JP2002355584A (en) Apparatus for depositing particles on surface
US5454274A (en) Sequential combination low temperature condenser and enclosed filter solvent removal system, and method of use
JP3084885B2 (en) ICP emission spectrometer
JPH01223347A (en) Liquid tester
JPH03242257A (en) Atomization device
JPS6257067B2 (en)
JPH10296582A (en) Ultra low volume cutting oil supplying method and device therefor
CN211678470U (en) A second grade atomizer for aerosol direct-write printing
JP3764798B2 (en) Inductively coupled plasma mass and spectroscopic analyzer
JPS6333639Y2 (en)
JP2007114063A (en) Nebulizer and sample liquid atomizer
JPH05232025A (en) Icp emission spectral analyzer
JPH06249783A (en) Icp emission spectroscopic analyzer
JP2705502B2 (en) ICP emission spectrometer
JPH05180770A (en) Icp emission spectrophotometer
JP3131273B2 (en) Sample liquid atomizer
JP3206216B2 (en) ICP emission spectrometer
JPH10267806A (en) Ultrasonic atomizing device
CN110665728A (en) Secondary atomizer for aerosol direct-writing printing and atomization method thereof
JP2002062256A (en) Atomic absorption spectrophotometer
JPH0835932A (en) Laser ablation apparatus
JPH073319Y2 (en) Sample fog generator for ICP emission spectroscopy
JPS5883237A (en) Powder aerosol generator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees