JPH05198319A - Photoelectric air secondary battery - Google Patents

Photoelectric air secondary battery

Info

Publication number
JPH05198319A
JPH05198319A JP4008716A JP871692A JPH05198319A JP H05198319 A JPH05198319 A JP H05198319A JP 4008716 A JP4008716 A JP 4008716A JP 871692 A JP871692 A JP 871692A JP H05198319 A JPH05198319 A JP H05198319A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode member
negative electrode
air
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4008716A
Other languages
Japanese (ja)
Other versions
JP2998765B2 (en
Inventor
Takaharu Akuto
敬治 阿久戸
Naoki Kato
直樹 加藤
Masaaki Takeuchi
正明 竹内
Tsutomu Ogata
努 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4008716A priority Critical patent/JP2998765B2/en
Priority to US08/005,301 priority patent/US5346785A/en
Priority to EP93400134A priority patent/EP0553023B1/en
Priority to DE69313152T priority patent/DE69313152T2/en
Publication of JPH05198319A publication Critical patent/JPH05198319A/en
Application granted granted Critical
Publication of JP2998765B2 publication Critical patent/JP2998765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)

Abstract

PURPOSE:To obtain a battery having a high density of energy, in which a charger is eliminated to save the energy, by using oxygen in the air as an energy source to perform the charge and the discharge. CONSTITUTION:Bend of an energy band, which is formed by dipping a N-type semiconductive photoelectrode in the electrolyte, is used to convert the optical energy to the electrochemical energy and enable the charge. Practically, a battery case 28 is formed into a square box shape, and one surface thereof is provided with the light receiving surface 28a made of the permeable material, and the opposite surface thereof is provided with multiple air holes 30. A positive electrode 21 is provided on the surface 28b side formed with the air holes 30, and a negative electrode 22 is provided between the positive electrode 21 and a photoelectrode 23, and a space between the positive electrode 21 and the negative electrode 22 is filled with the liquid electrolyte 24 made of permeable glass fiber. At this stage, as a positive electrode 23, the porous oxygen catalyst carrying porous carbon Pt or Pd is used, and as a photoelectrode 23, a N-type semiconductor such as GaP, GaAs is used. A potential level of the lower end of a conductive band of the photoelectrode 23 is thereby made lower than the oxidation-reduction potential of the negative electrode active material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充電と放電の双方が可
能な2次電池に係わり、空気中の酸素をエネルギー源と
して放電し、かつ光エネルギーによる充電が可能な、充
電器を必要としない省エネルギー性に優れた光空気2次
電池の構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery capable of both charging and discharging, and requires a charger capable of discharging oxygen in the air as an energy source and charging with light energy. The present invention relates to a structure of a photo-air secondary battery excellent in energy saving.

【0002】[0002]

【従来の技術】太陽可視光等の光エネルギーで2次電池
を充電する試みは、以前からなされており、この種の電
池としては、アモルファスシリコン太陽電池とニッケル
−カドミウム蓄電池や鉛蓄電池等の2次電池を組合せた
太陽光蓄電池が知られている。
2. Description of the Related Art Attempts have been made to charge a secondary battery with light energy such as visible light from the sun, and examples of this type of battery include an amorphous silicon solar battery, a nickel-cadmium storage battery, a lead storage battery and the like. A solar battery that combines a secondary battery is known.

【0003】図7は、従来の光2次電池の第1例を示す
ものであり、また図8は図7に示した電池の等価回路図
を示したものである。これらの図に示す光2次電池は、
太陽電池1で発電した後、得られた電力を2次電池2に
貯蔵するという二段階型(間接型)の光2次電池であ
り、電圧調整回路3や逆流防止ダイオード4が必要であ
る。
FIG. 7 shows a first example of a conventional optical secondary battery, and FIG. 8 shows an equivalent circuit diagram of the battery shown in FIG. The optical secondary battery shown in these figures is
It is a two-stage type (indirect type) optical secondary battery in which the obtained electric power is stored in the secondary battery 2 after being generated by the solar cell 1, and the voltage adjusting circuit 3 and the backflow prevention diode 4 are required.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
従来型光2次電池にあっては、上記したように電圧調整
回路3や逆流防止ダイオード4等の構成部品が必須であ
るため、光2次電池の構造が複雑で大きなものとなると
いう欠点を有している。
However, in the above-mentioned conventional optical secondary battery, since the components such as the voltage adjusting circuit 3 and the backflow prevention diode 4 are essential as described above, the optical secondary battery is required. It has a drawback that the structure of the battery is complicated and large.

【0005】また、上記従来型光2次電池を適正に機能
させるには、太陽電池1で発電した電力を、2次電池2
へ充電するのに適した電圧に調整する必要があり、この
調整のために消費されるエネルギー損失が大であるとい
う問題があった。また、上記従来型光2次電池は、光→
電気→電気化学の3段階のエネルギー変換ステップを経
るため、このエネルギー変換ステップのための構成部品
数の増加や、あるいはこのエネルギー変換ステップに起
因するエネルギーロスの増大といった問題も有してい
る。さらに、太陽電池1を製造するには、pn接合設備
等の比較的高度の製造設備が必要となるなど、製造上の
困難性も有している。
Further, in order for the above-mentioned conventional optical secondary battery to function properly, the electric power generated by the solar cell 1 is applied to the secondary battery 2
There is a problem that it is necessary to adjust to a voltage suitable for charging the battery, and the energy loss consumed for this adjustment is large. In addition, the above-mentioned conventional photo secondary battery is
Since the three-step energy conversion step of electricity → electrochemistry is performed, there is also a problem that the number of constituent parts for this energy conversion step increases or the energy loss due to this energy conversion step increases. Further, in order to manufacture the solar cell 1, a relatively high-level manufacturing facility such as a pn junction facility is required, which is a manufacturing difficulty.

【0006】一方、図9は、従来型光蓄電池を示す図で
ある。この光蓄電池は、透明ガラス基板7と、p型半導
体8と、i型半導体9と、集電体10,11と、陰極1
2と、陽極13と、固体電解質14と、パッシベーショ
ン層15と、透明電極16とを具備してなる電池であ
る。この光蓄電池においても、上述の説明と同様、構造
が複雑であり、エネルギー密度が小さいといった欠点が
ある。
On the other hand, FIG. 9 is a diagram showing a conventional photo-storage battery. This light storage battery comprises a transparent glass substrate 7, a p-type semiconductor 8, an i-type semiconductor 9, current collectors 10 and 11, and a cathode 1.
2 is a battery including an anode 13, a solid electrolyte 14, a passivation layer 15, and a transparent electrode 16. Also in this light storage battery, similar to the above description, the structure is complicated and the energy density is small.

【0007】図10は、従来型光化学2次電池の第1例
の構成図を示したもので、図中符号17は電池容器、1
7aは電池容器を密閉するための蓋、18はセパレー
タ、19はn型半導体よりなる光電極、20aは充電用
の電極、20bは放電用の電極である。図11は、従来
型光化学2次電池の第2例を示す図で、電池の簡単な構
成とエネルギー準位図を示したものである。
FIG. 10 is a block diagram of a first example of a conventional photochemical secondary battery, in which reference numeral 17 is a battery container,
Reference numeral 7a is a lid for sealing the battery container, 18 is a separator, 19 is a photoelectrode made of an n-type semiconductor, 20a is a charging electrode, and 20b is a discharging electrode. FIG. 11 is a diagram showing a second example of a conventional photochemical secondary battery, showing a simple configuration of the battery and an energy level diagram.

【0008】これらの光化学2次電池は、半導体−電解
質界面の電気化学特性を利用して、即ち、半導体電極を
電解質と接触させた時に生じるエネルギーバンドの曲り
を利用して、光エネルギーを電気化学的に蓄積すること
を狙いとした光化学2次電池である。この図10の光化
学2次電池の光変換部は、半導体電極19を電解質Sに
浸漬させるだけで構成されており、この点、太陽電池等
の必要な図7や図8に示した従来型光2次電池に比べ優
れている。
These photochemical secondary batteries utilize the electrochemical characteristics of the semiconductor-electrolyte interface, that is, the bending of the energy band that occurs when the semiconductor electrode is brought into contact with the electrolyte, to generate photoelectrochemical energy. It is a photochemical secondary battery whose purpose is to accumulate electricity. The light conversion part of the photochemical secondary battery of FIG. 10 is configured only by immersing the semiconductor electrode 19 in the electrolyte S, and in this respect, the conventional type light shown in FIGS. Superior to secondary batteries.

【0009】しかし、これらの電池の反応は、電解質の
酸化還元反応に基づくものであり、容量増大の為には、
多量の電解質が必要となり、基本的には大きなエネルギ
ー密度が望めないという欠点が有った。
However, the reaction of these batteries is based on the redox reaction of the electrolyte, and in order to increase the capacity,
A large amount of electrolyte is required, and basically there is a drawback that a large energy density cannot be expected.

【0010】本発明は、上記事情に鑑みなされたもの
で、空気中の酸素をエネルギー源とした放電と光エネル
ギーによる充電が可能で、充電器を必要としない省エネ
ルギー性に優れた、高エネルギー密度の光空気2次電池
の提供を目的としている。
The present invention has been made in view of the above circumstances and is capable of discharging by using oxygen in the air as an energy source and charging by light energy, which does not require a charger and is excellent in energy saving and has a high energy density. The purpose of the invention is to provide a light-air secondary battery.

【0011】[0011]

【課題を解決するための手段】本発明は、上記課題を解
消するために、金属製の負極部材と、酸素触媒を有する
正極部材と、該負極部材と該正極部材とに接触する電解
質と、該負極部材に電気的に接続され、且つ該電解質と
接触するn型半導体よりなる光電極部材と、該負極部材
に電気的に接続されてなる負極端子と、該正極部材に電
気的に接続されてなる正極端子と、少なくとも可視光の
一部または紫外光の一部を入射する受光部を有し、上記
負極部材と上記正極部材と上記電解質とが収容される電
池ケースとを具備し、上記負極部材をなす金属と、空気
中の酸素と上記電解質中の酸素の少なくとも一方との酸
化反応により放電され、上記光電極部材に上記受光部か
ら入射された光エネルギーを作用させて、該光電極部材
に接続された負極部材を還元して充電を行う光空気2次
電池を提供する。
In order to solve the above-mentioned problems, the present invention provides a negative electrode member made of metal, a positive electrode member having an oxygen catalyst, and an electrolyte in contact with the negative electrode member and the positive electrode member. A photoelectrode member made of an n-type semiconductor electrically connected to the negative electrode member and in contact with the electrolyte, a negative electrode terminal electrically connected to the negative electrode member, and electrically connected to the positive electrode member. A positive electrode terminal formed of, and a light receiving unit for receiving at least a part of visible light or a part of ultraviolet light, and comprising a battery case in which the negative electrode member, the positive electrode member, and the electrolyte are housed, The metal constituting the negative electrode member is discharged by an oxidation reaction of at least one of oxygen in the air and oxygen in the electrolyte, and the photoelectrode member is acted upon by the light energy incident from the light receiving section to generate the photoelectrode. Negative electrode connected to the member By reducing timber to provide a light air secondary battery for charging.

【0012】また、請求項1記載の光空気2次電池は、
光電極の受光部側と上記電池ケース受光部とを接触させ
た構成としてもよい。
Further, the optical air secondary battery according to claim 1 is
A configuration may be used in which the light receiving portion side of the photoelectrode and the light receiving portion of the battery case are in contact with each other.

【0013】また、請求項1記載の光空気2次電池は、
電池ケースの受光部が光電極で構成されていてもよい。
The photo-air secondary battery according to claim 1 is
The light receiving portion of the battery case may be composed of photoelectrodes.

【0014】また、請求項1、2又は3記載の光空気2
次電池の電池ケースは、正極部材の一部に外部の空気を
接触させる空気孔を、該正極部材近傍に少なくとも一つ
以上具備した構成とするのが望ましい。
Further, the optical air 2 according to claim 1, 2 or 3.
The battery case of the secondary battery preferably has at least one air hole in the vicinity of the positive electrode member for allowing the outside air to come into contact with a part of the positive electrode member.

【0015】また、請求項1、2又は3記載の光空気2
次電池の電池ケースの少なくとも正極部材近傍部分が、
酸素透過性部材よりなる構成としてもよい。
Further, the optical air 2 according to claim 1, 2 or 3.
At least the portion near the positive electrode member of the battery case of the secondary battery,
It may be configured by an oxygen permeable member.

【0016】また、請求項1、2、3、4又は5記載の
光空気2次電池の正極部材は、酸素触媒と、電池ケース
の空気孔または酸素透過性部材よりなる部分を通して、
電解質が電池外部へ流出し、透過するのを防止する溌水
剤とで構成されることが望ましい。
Further, the positive electrode member of the photo-air secondary battery according to claim 1, 2, 3, 4 or 5, passes through an oxygen catalyst and a portion formed by an air hole or an oxygen permeable member of the battery case,
It is desirable that the electrolyte is composed of a water repellent agent that prevents the electrolyte from flowing out of the battery and permeating the electrolyte.

【0017】また、請求項1、2又は3記載の光空気2
次電池の正極部材は、正極部材と電池ケースとの間に、
該電池ケースの空気孔または酸素透過性部材よりなる部
分を通して、電解質が電池外部へ流出し、透過するのを
防止する溌水膜または溌水板を設けた構成としてもよ
い。
Further, the optical air 2 according to claim 1, 2 or 3.
The positive electrode member of the secondary battery is between the positive electrode member and the battery case,
A water repellent membrane or water repellent plate may be provided to prevent the electrolyte from flowing out and permeating to the outside of the battery through the air holes or the oxygen permeable member of the battery case.

【0018】また、請求項6記載の光空気2次電池は、
正極部材と電池ケースとの間に、酸素を該正極部材表面
に一様に拡散するための拡散紙を設けた構成としてもよ
い。
The photo-air secondary battery according to claim 6 is:
A configuration may be adopted in which a diffusion paper for uniformly diffusing oxygen on the surface of the positive electrode member is provided between the positive electrode member and the battery case.

【0019】また、請求項7記載の光空気2次電池は、
溌水膜または溌水板と電池ケースとの間に、酸素を正極
部材表面に一様に拡散するための拡散紙を設けた構成と
してもよい。
The photo-air secondary battery according to claim 7 is:
A configuration may be used in which a diffusion paper for uniformly diffusing oxygen on the surface of the positive electrode member is provided between the water repellent film or the water repellent plate and the battery case.

【0020】[0020]

【作用】以上述べたように、本発明の光2次電池にあっ
ては、上記負極部材をなす金属の酸化反応により放電さ
れ、電解質中にn型半導体光電極を浸漬することで形成
されるエネルギーバンドの曲りを利用して、光エネルギ
ー→電気化学エネルギーへの変換を行い、光エネルギー
により充電される構成としたので、放電時には、例えば
空気中の酸素により負極部材をなす金属が酸化されるこ
とにより放電される。また、充電時には、上記光電極に
光エネルギーを作用させて、伝導帯に電子を励起して価
電子帯にホールを生じせしめ、このホールを、上記エネ
ルギーバンドの曲りに添って電解質側へ運び、負極表面
で水酸イオンと反応させて酸素と水を生成するととも
に、伝導帯に励起された電子を、エネルギーバンドの曲
りに添って負極へ移動させ、この負極表面で電解質中の
水と反応して上記放電で酸化された負極金属を還元す
る。従って、本発明の光空気2次電池は、電気と光の何
れのエネルギー形態でも充電可能である等の特徴を有す
る。
As described above, in the photo secondary battery of the present invention, it is formed by immersing the n-type semiconductor photoelectrode in the electrolyte by being discharged by the oxidation reaction of the metal forming the negative electrode member. By using the bending of the energy band, light energy is converted to electrochemical energy, and the energy is charged by light energy. Therefore, during discharge, for example, oxygen in the air oxidizes the metal forming the negative electrode member. It will be discharged. During charging, light energy is applied to the photoelectrode to excite electrons in the conduction band to generate holes in the valence band, which are carried along with the bend of the energy band to the electrolyte side, On the surface of the negative electrode, oxygen and water are generated by reacting with hydroxide ions, and electrons excited in the conduction band are moved to the negative electrode along the bend of the energy band, and react with water in the electrolyte on the surface of the negative electrode. To reduce the negative electrode metal oxidized by the above discharge. Therefore, the photo-air secondary battery of the present invention is characterized in that it can be charged in any energy form of electricity and light.

【0021】[0021]

【実施例】図1および図2は、本発明に係る光空気2次
電池の第1の実施例を示す図で、図中符号21は多孔性
酸素触媒よりなる正極、22は金属よりなる負極、23
はn型半導体よりなる光電極、24はこれら正極および
負極と接触する電解質、25はセパレータ、26は正極
端子、27は負極端子、28は電池ケース、29は溌水
膜、30は電池ケース28に設けられた空気孔、31は
接続導体である。
1 and 2 are views showing a first embodiment of a photo-air secondary battery according to the present invention, in which reference numeral 21 is a positive electrode made of a porous oxygen catalyst and 22 is a negative electrode made of a metal. , 23
Is a photoelectrode made of an n-type semiconductor, 24 is an electrolyte in contact with these positive and negative electrodes, 25 is a separator, 26 is a positive electrode terminal, 27 is a negative electrode terminal, 28 is a battery case, 29 is a water repellent film, and 30 is a battery case 28. An air hole provided in the reference numeral 31 is a connecting conductor.

【0022】上記電池ケース28は、角箱状をなし、一
方の面には光透過材等からなる受光面28aが設けら
れ、反対の面には多数の空気孔30が設けられている。
この電池ケース28内には、空気孔30が形成されてい
る面28b側に配設された正極21と、受光面28a側
に配設された光電極23と、上記正極21と光電極23
との間に配設された負極22と、これら正極21と負極
22との間に充満された液状電解質24と、この電解質
24が通過可能なガラス繊維等の材料からなり、上記正
極21と負極22との間に設けられているセパレータ2
5とが収納されている。また、上記光電極23と負極2
2とは、接続導体31により電気的に接続されている。
また、上記正極21と電池ケース28の空気孔30が形
成されている面28bとの間には、通気性を有し、電解
質24の外部への流出を防止する溌水膜29が設けられ
ている。
The battery case 28 is in the shape of a rectangular box, and has a light receiving surface 28a made of a light transmitting material or the like on one surface and a large number of air holes 30 on the opposite surface.
In the battery case 28, the positive electrode 21 arranged on the surface 28b side where the air holes 30 are formed, the photoelectrode 23 arranged on the light receiving surface 28a side, the positive electrode 21 and the photoelectrode 23.
The negative electrode 22 disposed between the positive electrode 21 and the negative electrode 22, the liquid electrolyte 24 filled between the positive electrode 21 and the negative electrode 22, and a material such as glass fiber through which the electrolyte 24 can pass. 22 is provided between the separator 2 and
5 and 5 are stored. In addition, the photoelectrode 23 and the negative electrode 2
2 is electrically connected by a connection conductor 31.
Further, between the positive electrode 21 and the surface 28b of the battery case 28 where the air holes 30 are formed, a water repellent film 29 having air permeability and preventing the electrolyte 24 from flowing out is provided. There is.

【0023】本実施例の光空気2次電池では、空気中の
酸素の還元に基づく放電反応を円滑に進行させるため、
酸素と電解質および正極21(酸素触媒)とで構成され
る気−液−固三相界面の場を効果的に形成することが必
要である。従って、該三相界面場の増大を目的として、
例えば正極21を多孔性の酸素触媒で構成するのが好ま
しい。ただし、低率(低電流)放電で使用する電池を構
成する場合には、必ずしも多孔性である必要はなく、板
状の正極21を用いてもよい。
In the photo-air secondary battery of this embodiment, since the discharge reaction based on the reduction of oxygen in the air is allowed to proceed smoothly,
It is necessary to effectively form a gas-liquid-solid three-phase interface field composed of oxygen, the electrolyte, and the positive electrode 21 (oxygen catalyst). Therefore, for the purpose of increasing the three-phase interface field,
For example, the positive electrode 21 is preferably composed of a porous oxygen catalyst. However, when a battery used for low rate (low current) discharge is constructed, it does not necessarily have to be porous, and a plate-shaped positive electrode 21 may be used.

【0024】上記正極21としては、カーボン(多孔炭
素)や多孔ニッケル、および、これらにPtやPdを担持し
た多孔性酸素触媒(Pt-C、Pd-C、Pt-Ni、Pd-Ni)、さら
に、Pt、Pd、Ir、Rh、Os、Ru、Pt-Co、Pt-Au、Pt-Sn、P
d-Au、Ru-Ta、Pt-Pd-Au、Pt-酸化物、Au、Ag、Ag-C、Ni
-P、Ag-Ni-P、ラネーニッケル、Ni-Mn、Ni-酸化コバル
ト、Cu-Ag、Cu-Au、ラネー銀等の貴金属および合金、ホ
ウ化ニッケル、ホウ化コバルト、炭化タングステン、水
酸化チタン、リン化タングステン、リン化ニオブ、遷移
金属の炭化物、スピネル化合物、酸化銀、酸化タングス
テン、遷移金属のペロブスカイト型イオン結晶等の無機
化合物、および、バクテリヤ、非イオン活性剤、フタロ
シアニン、金属フタロシアニン、活性炭、キノン類等の
有機化合物のいずれかで構成されるのが好ましい。
As the positive electrode 21, carbon (porous carbon) or porous nickel, and a porous oxygen catalyst (Pt-C, Pd-C, Pt-Ni, Pd-Ni) having Pt or Pd supported thereon are used. Furthermore, Pt, Pd, Ir, Rh, Os, Ru, Pt-Co, Pt-Au, Pt-Sn, P
d-Au, Ru-Ta, Pt-Pd-Au, Pt-oxide, Au, Ag, Ag-C, Ni
-P, Ag-Ni-P, Raney nickel, Ni-Mn, Ni-cobalt oxide, Cu-Ag, Cu-Au, Raney silver and other precious metals and alloys, nickel boride, cobalt boride, tungsten carbide, titanium hydroxide Inorganic compounds such as tungsten phosphide, niobium phosphide, transition metal carbides, spinel compounds, silver oxide, tungsten oxide, transition metal perovskite-type ionic crystals, and bacteria, nonionic activators, phthalocyanines, metal phthalocyanines, activated carbon , Quinones and the like are preferable.

【0025】また、負極22としては、Ti,Zn,Fe,Pb,A
l,Co,Hf,V,Nb,Ni,Pd,Pt,Cu,Ag,Cd,In,Ge,Sn,Bi,Th,Ta,C
r,Mo,W,Pr,Bi,U等のその酸化物が半導体特性を示す金
属、および、これらの複合成分系金属、合金等で構成さ
れるのが好ましい。
As the negative electrode 22, Ti, Zn, Fe, Pb, A
l, Co, Hf, V, Nb, Ni, Pd, Pt, Cu, Ag, Cd, In, Ge, Sn, Bi, Th, Ta, C
It is preferable that the oxide thereof such as r, Mo, W, Pr, Bi, and U is composed of a metal exhibiting semiconductor characteristics, and a composite component metal or alloy thereof.

【0026】また、光電極23としては、n型半導体で
あるGaP,GaAs,AlAs,ZnS,AlSb,Inp,CdS,GaSb,InAs,ZnTe,
SiC,BaTiO3,TiO2,ZnO,Ag2S,Ag2Se,Ag2Te,SnO2,ThO2,V2O
5,Nb2O5,Ta2O5,Bi2S3,MoO3,WO3,NaxWO3,LixWO3,KxWO
3(以上、X=0〜1),MnO2,FeS2,HgSe,Bi2Se3,PbCrO4,PbO
x,(x=0〜2),MgO,Mg2AlO4,Al2O3,SiO2,V2O4,FeO,Fe2O
3Fe3O4,CuO,Cu2S,CuS,CuInSe2,CuBr,CuI,ZnSe,ZnTe,GeS
e,SrO,ZrO2,Nb2O5,Nb2O4,Nb2O3,MoO3,MoS,AgI,CdO,InS
e,SnSe,Sb2O4,BaO,Ta2O3,Ta2O5,WO3,HgTe,Tl2S,Bi2S3,B
i2Se3,PbTe,CeO2,Nd2O3等の化合物半導体、Si,Ge,Se等
の無機半導体,アントラセン、テトラセン、ペンタセ
ン、ピレン、ペリレン、アンサンスレン、オバレン、コ
ロネン、ビオランスレン、イソビオランスレン、ピラン
スレン、アンサンスロン、ビオランスロン、イソビオラ
ンスロン、ピランスロン、シアナンスロン、イソダンス
ロンブラック、フラバンスロン、インダンスロン、フタ
ロシアニン、銅フタロシアニン、、石墨等の縮合多環芳
香族化合物、ポリアセチレン、ポリアニリン、ポリパラ
フェニレン、ポリチィオフィン、ポリピロール等の高分
子、および、強誘電性を有するPbZrxTi1-xO3、Pb1-xM2x
NbO6(x=0〜1、M=アルカリ金属)などから構成されるの
が好ましい。
As the photoelectrode 23, GaP, GaAs, AlAs, ZnS, AlSb, Inp, CdS, GaSb, InAs, ZnTe, which are n-type semiconductors, are used.
SiC, BaTiO 3 , TiO 2 , ZnO, Ag 2 S, Ag 2 Se, Ag 2 Te, SnO 2 , ThO 2 , V 2 O
5 , Nb 2 O 5 ,, Ta 2 O 5 , Bi 2 S 3 , MoO 3 , WO 3 , Na x WO 3 , LixWO 3 , K x WO
3 (above, X = 0 to 1), MnO 2 , FeS 2 , HgSe, Bi 2 Se 3 , PbCrO 4 ,, PbO
x , (x = 0 ~ 2), MgO, Mg 2 AlO 4 ,, Al 2 O 3 , SiO 2 ,, V 2 O 4 ,, FeO, Fe 2 O
3 Fe 3 O 4 , CuO, Cu 2 S, CuS, CuInSe 2 , CuBr, CuI, ZnSe, ZnTe, GeS
e, SrO, ZrO 2 , Nb 2 O 5 , Nb 2 O 4 , Nb 2 O 3 , MoO 3 , MoS, AgI, CdO, InS
e, SnSe, Sb 2 O 4 ,, BaO, Ta 2 O 3 ,, Ta 2 O 5 ,, WO 3 , HgTe, Tl 2 S, Bi 2 S 3 ,, B
Compound semiconductors such as i 2 Se 3 , PbTe, CeO 2 and Nd 2 O 3 , inorganic semiconductors such as Si, Ge and Se, anthracene, tetracene, pentacene, pyrene, perylene, anthanthrene, ovaren, coronene, violanthrene, isobio Condensed polycyclic aromatic compounds such as lanthrene, pyranthrene, anthanthrone, violanthrone, isobiolanthrone, pyranthrone, cyananthrone, isodanthrone black, flavanthrone, indanthrone, phthalocyanine, copper phthalocyanine, and graphite, polyacetylene, polyaniline , Polymers such as polyparaphenylene, polythiophene, polypyrrole, and ferroelectric PbZr x Ti 1 -x O 3 , Pb 1 - x M 2x
It is preferably composed of NbO 6 (x = 0 to 1, M = alkali metal) and the like.

【0027】なお、互いに電気的に接続される負極22
と光電極23との組合わせは、該光電極23と電解質2
4との接触界面における光電極23の伝導帯下端の電位
レベルが負極活物質の酸化還元電位よりも卑な電位を構
成する組合わせであれば良く、特に部材の種類には限定
されない。
The negative electrode 22 electrically connected to each other
And the photoelectrode 23 are combined so that the photoelectrode 23 and the electrolyte 2
The potential level at the lower end of the conduction band of the photoelectrode 23 at the contact interface with 4 is a combination that constitutes a base potential lower than the redox potential of the negative electrode active material, and is not particularly limited to the type of member.

【0028】また、本実施例の電解質24として、水酸
化カリウム、水酸化ナトリウム、塩化アンモニウム等の
塩基や、その他弱酸等の液状電解質が用いられる。ま
た、充電性能は低下するが、硫酸、塩酸等の強酸や塩を
使うこともできる。なお、本実施例においては、上述し
たように液状の電解質24を用いているが、電解質24
は、液状に限定されることなく、この電解質24を介す
る正極21と負極22間の電子移動が妨げられないもの
であれば、固体状やペースト状等どのような形態の電解
質でも用いることができる。
Further, as the electrolyte 24 of this embodiment, a base such as potassium hydroxide, sodium hydroxide or ammonium chloride, or a liquid electrolyte such as a weak acid is used. Further, although the charging performance is lowered, a strong acid or salt such as sulfuric acid or hydrochloric acid can be used. In this embodiment, the liquid electrolyte 24 is used as described above, but the electrolyte 24
Is not limited to a liquid, and any form of electrolyte such as solid or paste can be used as long as the electron transfer between the positive electrode 21 and the negative electrode 22 through the electrolyte 24 is not hindered. ..

【0029】セパレータ25は、ガラス繊維やポリアミ
ド系繊維不織布、ポリオレフィン系繊維不織布、セルロ
ース、合成樹脂等の電解質に対する耐久性を有するもの
であれば特に限定されない。
The separator 25 is not particularly limited as long as it has durability against electrolytes such as glass fiber, polyamide fiber nonwoven fabric, polyolefin fiber nonwoven fabric, cellulose and synthetic resin.

【0030】電池ケース28は、ABS樹脂やフッ素樹
脂等の電解質24に侵されない材質であれば特に限定さ
れない。ただし、電池ケース28の負極側に位置する受
光面部分28aは、少なくとも可視光の一部や紫外光の
一部を透過する(無色あるいは有色の)部材、例えば、
ガラス、石英ガラス、アクリル、スチロール等からなる
透明板や透明フィルム等で構成される。もちろん電池ケ
ース28全体をこれら透明板や透明フィルム等の部材で
構成してもよい。このように、受光面部分28aを少な
くとも可視光の一部や紫外光の一部が透過される構成と
したのは、光充電反応を進行させるために、照射光を負
極22表面に到達させる際、この照射光が電池ケース2
8によって吸収あるいは反射されて、負極22表面に到
達する光エネルギーが極端に低下するのを防止するため
である。
The battery case 28 is not particularly limited as long as it is a material such as ABS resin or fluororesin that is not attacked by the electrolyte 24. However, the light-receiving surface portion 28a located on the negative electrode side of the battery case 28 is a member (colorless or colored) that transmits at least a part of visible light or a part of ultraviolet light, for example,
It is composed of a transparent plate or transparent film made of glass, quartz glass, acrylic, styrene, or the like. Of course, the entire battery case 28 may be made of such members as a transparent plate and a transparent film. As described above, the light receiving surface portion 28a is configured to transmit at least a part of visible light or a part of ultraviolet light when the irradiation light reaches the surface of the negative electrode 22 in order to proceed the photocharge reaction. , This irradiation light is the battery case 2
This is to prevent the light energy, which is absorbed or reflected by 8 and reaches the surface of the negative electrode 22, from extremely decreasing.

【0031】一方、空気中の酸素の還元に基づく放電反
応を円滑に進行させるためには、該酸素が酸素触媒より
なる正極21表面へ拡散移動しなければならない。この
様な酸素の拡散移動を実現することを目的として、本実
施例の電池は、電池ケース28の正極21側の面28b
に、小径の空気孔30を少なくとも1つ以上設ける構成
とした。この空気孔30は、空気中からの酸素取り込み
口として働くものであるので、空気を取り込むことがで
きれば、大径の空気孔としても開口部としてもよい。
On the other hand, in order for the discharge reaction based on the reduction of oxygen in the air to proceed smoothly, the oxygen must diffuse and move to the surface of the positive electrode 21 made of an oxygen catalyst. For the purpose of realizing such diffusive transfer of oxygen, the battery of the present embodiment has a surface 28b of the battery case 28 on the positive electrode 21 side.
In addition, at least one small air hole 30 is provided. The air hole 30 functions as an oxygen intake port from the air, and thus may be a large diameter air hole or an opening as long as the air can be taken in.

【0032】溌水膜29は、正極21と、電池ケース2
8の該正極21側の面28bとの間に設けられている。
この溌水膜29は、上記電池ケース28中の電解質24
が、正極21中の孔を通過し、さらにこの電池ケース2
8に形成された空気孔30を通して光空気2次電池の外
部へ透過し、流出するのを(その溌水性により)防止す
る働きをするとともに、酸素と電解質24および正極2
1(酸素触媒)とで構成される気−液−固三相界面の場
の増大にも寄与している。
The water repellent film 29 is composed of the positive electrode 21 and the battery case 2
8 is provided between the positive electrode 21 and the surface 28b on the positive electrode 21 side.
This water repellent film 29 is used for the electrolyte 24 in the battery case 28.
Pass through the hole in the positive electrode 21, and the battery case 2
Oxygen and the electrolyte 24 and the positive electrode 2 as well as the function of preventing the permeation and the outflow (due to the water repellent property) of the light-air secondary battery through the air holes 30 formed in the battery 8.
It also contributes to the increase of the field at the gas-liquid-solid three-phase interface composed of 1 (oxygen catalyst).

【0033】上記溌水膜(溌水板)29としては、例え
ば多孔性四フッ化エチレン等のフッ素系樹脂やシリコン
系樹脂等で構成するのが好ましい。
The water-repellent film (water-repellent plate) 29 is preferably made of, for example, a fluororesin such as porous tetrafluoroethylene or a silicon resin.

【0034】なお、上記溌水膜29の代りに、溌水板を
用いて本実施例の光空気2次電池電池を構成してもよ
い。また、これら溌水膜29や溌水板を設ける代りに、
酸素触媒中に溌水剤を混入させて酸素触媒と溌水剤とか
ら正極21を構成し、上記溌水膜29(溌水板)と同様
の機能を正極21に付与してもよい。この場合には、上
記気−液−固三相界面場の増大効果は更に大きくなる。
Instead of the water-repellent film 29, a water-repellent plate may be used to form the optical-air secondary battery cell of this embodiment. Also, instead of providing these water repellent film 29 and water repellent plate,
The water repellent may be mixed in the oxygen catalyst to form the positive electrode 21 from the oxygen catalyst and the water repellent, and the positive electrode 21 may be provided with the same function as that of the water repellent film 29 (water repellent plate). In this case, the effect of increasing the gas-liquid-solid three-phase interface field is further increased.

【0035】なお、上述した空気孔30が小孔で構成さ
れる場合、空気孔30から取り込んだ酸素を正極21面
全体へ一様に拡散させるために、電池ケース28の正極
21側の面28bと溌水膜29または溌水剤を含む正極
21との間にセルロース等からなる拡散紙を設けてもよ
い。
When the air holes 30 are formed of small holes, the surface 28b of the battery case 28 on the side of the positive electrode 21 is formed so that the oxygen taken in from the air holes 30 is uniformly diffused over the entire surface of the positive electrode 21. A diffusion paper made of cellulose or the like may be provided between the water repellent film 29 or the positive electrode 21 containing the water repellent agent.

【0036】図3は、本発明の第2の実施例を説明する
図であって、電池ケース28の、正極21側の面28b
の部分を酸素透過性部材33で構成されていることを除
けば、他の構成は第1の実施例と同様である。上記電池
ケース28の正極21側の面28b部分を酸素透過性部
材33で構成したのは、電池外部の酸素を酸素触媒より
なる正極21表面へ拡散移動させるためで、先の実施例
において電池ケース28に空気孔30を形成した趣旨と
同様である。
FIG. 3 is a diagram for explaining the second embodiment of the present invention, in which the positive electrode 21 side surface 28b of the battery case 28 is used.
The other structure is the same as that of the first embodiment except that the part of 3 is composed of the oxygen permeable member 33. The surface 28b of the battery case 28 on the positive electrode 21 side is formed of the oxygen permeable member 33 in order to diffuse and move oxygen outside the battery to the surface of the positive electrode 21 made of an oxygen catalyst. This is the same as the purpose of forming the air hole 30 in 28.

【0037】上記酸素透過性部材としては、例えばエチ
ルセルロース,セルロース,アセテート、およびブチレ
ート等の材料により構成されるのが好ましいが、酸素透
過性を有する部材であればこれらに限定されるものでは
ない。
The oxygen permeable member is preferably made of a material such as ethyl cellulose, cellulose, acetate and butyrate, but is not limited to these as long as it has oxygen permeability.

【0038】なお、上述した2つの実施例の光空気2次
電池では、電池ケース28内に酸素を取り入れるため
に、電池ケース28に空気孔30を設けた構成とした
り、電池ケース28の一部を酸素透過性部材により構成
したが、上記構成とせず、電池ケース28内に存在する
酸素と、充電により生成する酸素のみを利用して放電反
応を進行させることも可能である。従って、電池ケース
28(面28b)に空気孔30を設けたり、この面28
b部分を酸素透過性の部材で構成することは必須ではな
い。但し、この場合には、外部からの酸素取り込みが不
可能となるため、電池の放電容量、即ちエネルギー密度
が上記実施例に比べて低下する。
In the photo-air secondary batteries of the above-mentioned two embodiments, in order to take oxygen into the battery case 28, the battery case 28 is provided with an air hole 30 or a part of the battery case 28. However, it is also possible to proceed with the discharge reaction by using only the oxygen existing in the battery case 28 and the oxygen generated by the charge, instead of the above structure. Therefore, the air holes 30 are provided in the battery case 28 (the surface 28b),
It is not essential that the portion b be made of an oxygen permeable member. However, in this case, since it is impossible to take in oxygen from the outside, the discharge capacity of the battery, that is, the energy density is reduced as compared with the above embodiment.

【0039】以上説明したように、第1の実施例および
第2の実施例に示した構成をとることによって、従来の
光2次電池にはない、空気中の酸素をエネルギー源とし
た放電と、光エネルギーによる充電が可能で、充電器を
必要とせず、省エネルギー性に優れ、高エネルギー密度
の光空気2次電池を提供することができる。
As described above, by adopting the configurations shown in the first and second embodiments, the discharge using oxygen in the air as an energy source, which is not found in the conventional photo secondary battery, can be performed. It is possible to provide a light-air secondary battery that can be charged by light energy, does not require a charger, is excellent in energy saving, and has high energy density.

【0040】図4は、本発明の第3の実施例を説明する
図であって、光電極23の電池ケース側の面と電池ケー
ス28の受光面28aとの間に電解質24が介在せず、
光電極23の電池ケース側の面が直接電解質24と接触
しない構造としたこと、(すなわち光電極23の電池ケ
ース側の面と上記電池ケース受光面28aとを接触させ
たこと)を除けば、他の構成は第1の実施例と同様であ
る。なお、上記第2の実施例を本実施例に述べた構造と
してもよい。
FIG. 4 is a diagram for explaining the third embodiment of the present invention, in which the electrolyte 24 is not interposed between the surface of the photoelectrode 23 on the battery case side and the light receiving surface 28a of the battery case 28. ,
Except that the surface of the photoelectrode 23 on the battery case side does not directly contact the electrolyte 24 (that is, the surface of the photoelectrode 23 on the battery case side and the battery case light-receiving surface 28a are in contact), The other structure is similar to that of the first embodiment. The second embodiment may have the structure described in this embodiment.

【0041】図5は、本発明の第4の実施例を説明する
図であって、電池ケース28の受光面28aが光電極2
3で構成され、光電極23が電池ケースの一部を兼ねた
構造であることを除けば、他の構成は第1の実施例と同
様である。また、上記第2の実施例を本実施例に述べた
構造としてもよい。
FIG. 5 is a view for explaining the fourth embodiment of the present invention, in which the light receiving surface 28a of the battery case 28 is the photoelectrode 2
3 is the same as that of the first embodiment except that the photoelectrode 23 also serves as a part of the battery case. The second embodiment may have the structure described in this embodiment.

【0042】上記第3の実施例の光空気2次電池にあっ
ては、照射光が電解質24を介することなく光電極23
上に到達する構造となっているため、電解質24によ
り、照射光の一部が吸収されることがないので、第1の
実施例や第2の実施例の光空気2次電池に比べ、光充電
効率を上昇させることができる。さらに上記第4の実施
例の光空気2次電池は、照射光が電解質24だけでな
く、電池ケース28の受光面28a部分をも介すること
なく光電極23上に直接到達する構造となっているた
め、光充電効率をより上昇させることができる。
In the photo-air secondary battery of the third embodiment, the photoelectrode 23 does not have irradiation light passing through the electrolyte 24.
Since the electrolyte 24 does not absorb a part of the irradiation light because it has a structure that reaches the upper side, compared with the optical air secondary batteries of the first and second embodiments, The charging efficiency can be increased. Further, the photo-air secondary battery of the fourth embodiment has a structure in which the irradiation light directly reaches the photoelectrode 23 without passing through not only the electrolyte 24 but also the light receiving surface 28a of the battery case 28. Therefore, the light charging efficiency can be further increased.

【0043】また、以上述べたように、第3の実施例お
よび第4の実施例の光空気2次電池にあっては、照射光
が電解質24を介することなく光電極23上に到達する
構造となっているため、電解質24として光吸収性を有
するものを選択することが可能となる。
Further, as described above, in the photo-air secondary batteries of the third and fourth embodiments, the irradiation light reaches the photoelectrode 23 without passing through the electrolyte 24. Therefore, it is possible to select the electrolyte 24 having a light absorbing property.

【0044】以下に、上述した4つの実施例における光
空気2次電池の充放電時の動作を、まとめて簡単に説明
する。まず放電時は、負極22上で、負極22金属と電
解質24中の水酸イオンとが反応して、最終的に金属酸
化物と水とが生成するとともに、負極端子27を通じて
電子を負荷に供給する。
The operation during charging / discharging of the photo-air secondary battery in the above-mentioned four embodiments will be briefly described below. First, during discharge, the metal of the negative electrode 22 reacts with the hydroxide ions in the electrolyte 24 on the negative electrode 22, and finally metal oxide and water are generated, and electrons are supplied to the load through the negative electrode terminal 27. To do.

【0045】一方、正極21上では、空気中から取り込
んだ酸素と電解質24と酸素触媒(正極)21により形
成される三相界面において、酸素と電解質24中の水、
および、負極から負荷を通して供給(放出)されてきた
電子とが反応して、水酸イオンを生成する。この放電反
応においては、電池系全体では正極21と負極22での
反応が相殺される結果、電解質24の減少は全く起きな
い。また、正極活物質である酸素は、電池ケース28の
面28bを介して空気中から取り込むため、その消費は
問題とならない。結局、本放電反応によって消費される
のは負極22の金属であり、金属酸化物が生成する。従
って、本実施例の光空気2次電池を充電するということ
は、該金属酸化物を元の金属に還元するということには
ほかならない。
On the other hand, on the positive electrode 21, at the three-phase interface formed by oxygen taken in from the air, the electrolyte 24 and the oxygen catalyst (positive electrode) 21, oxygen and water in the electrolyte 24,
And, the electrons supplied (released) from the negative electrode through the load react to generate hydroxide ions. In this discharge reaction, the reactions in the positive electrode 21 and the negative electrode 22 are canceled in the entire battery system, so that the electrolyte 24 does not decrease at all. Further, since oxygen, which is the positive electrode active material, is taken from the air through the surface 28b of the battery case 28, its consumption is not a problem. After all, what is consumed by the main discharge reaction is the metal of the negative electrode 22, and a metal oxide is produced. Therefore, charging the photo-air secondary battery of this embodiment is nothing but reducing the metal oxide to the original metal.

【0046】充電時は、n型半導体よりなる光電極23
と電解質24との接触界面において、エネルギーバンド
が電解質24側へ向って上方曲りとなる光電極23の表
面に、太陽や蛍光燈等の光エネルギーを照射し、伝導帯
に電子を励起して、価電子帯にホールを生む。このホー
ルは、上記バンドの曲りに添って電解質24側へ運ば
れ、負極22表面で水酸イオンと反応して酸素と水を生
成する。一方、伝導帯に励起された電子は、バンドの曲
りに添って、接続導体31を経て負極22へ移動し、や
がて、電解質24と接触する負極22表面に達する。そ
こで電解質24中の水と反応して、水酸イオンを生成す
るとともに、負極22の放電生成物である金属酸化物を
金属に還元する。以上の経過を経て、光充電反応が進行
する。
During charging, the photoelectrode 23 made of an n-type semiconductor
At the contact interface between the electrolyte and the electrolyte 24, the surface of the photoelectrode 23 whose energy band bends upward toward the electrolyte 24 is irradiated with light energy of the sun or a fluorescent lamp to excite electrons in the conduction band. Create a hole in the valence band. This hole is carried to the electrolyte 24 side along with the bending of the band, and reacts with the hydroxide ion on the surface of the negative electrode 22 to generate oxygen and water. On the other hand, the electrons excited in the conduction band move to the negative electrode 22 via the connecting conductor 31 along with the bending of the band, and eventually reach the surface of the negative electrode 22 in contact with the electrolyte 24. Therefore, it reacts with water in the electrolyte 24 to generate hydroxide ions, and at the same time, reduces the metal oxide, which is a discharge product of the negative electrode 22, to a metal. The photocharge reaction proceeds through the above process.

【0047】(実験例)正極21の触媒、負極22、お
よび光電極23に、それぞれ白金(Pt)、重さ2gの
コバルト(Co)粒子を焼結して作成したコバルト板、
およびガリウムリン(GaP)を用い、さらに電解質2
4として1mol/リットルの水酸化カリウム(KO
H)を使用し、直径25mm、厚さ4mmの寸法を有す
る第1の実施例のGaP-Co|KOH|Pt(O2)系光空気2次
電池を試作し、この試作した光空気2次電池が、光充電
および空気放電可能な光空気2次電池として機能するこ
とを確認した。
Experimental Example A cobalt plate prepared by sintering platinum (Pt) and cobalt (Co) particles weighing 2 g on the catalyst of the positive electrode 21, the negative electrode 22, and the photoelectrode 23, respectively.
And gallium phosphide (GaP), and further electrolyte 2
4 as 1 mol / liter potassium hydroxide (KO
H) was used, and a GaP-Co | KOH | Pt (O 2 ) system photo-air secondary battery of the first embodiment having a diameter of 25 mm and a thickness of 4 mm was prototyped. It was confirmed that the battery functions as a photo-air secondary battery capable of being photocharged and air-discharged.

【0048】試作した上記GaP-Co/O2系光空気2次電池
における充放電挙動の測定結果を図6に示す。図6中、
電圧値の経時変化は、光充電→開放→放電→光充電→開
放→放電の各測定状態に対応しており、この一連の測定
を行った様子を示した。図6中1V付近への電池電圧の
急激な立上がりは、充電による電圧回復過程である。こ
の実験結果により、放電後の負極活物質表面への光照射
による電池電圧の回復が観測され、繰返し充放電可能で
あることが判明した。また、この試作した光空気2次電
池は、光充電と放電とを繰返しても、放電容量の低下が
見られず、優れた寿命特性を示した。
FIG. 6 shows the measurement results of charge / discharge behavior of the above-mentioned GaP—Co / O 2 system photo-air secondary battery that was prototyped. In FIG.
The change with time of the voltage value corresponds to each measurement state of photocharge → open → discharge → photocharge → open → discharge, and the series of measurements are shown. The rapid rise of the battery voltage near 1 V in FIG. 6 is the voltage recovery process by charging. As a result of this experiment, recovery of the battery voltage by light irradiation on the surface of the negative electrode active material after discharge was observed, and it was found that repeated charge and discharge was possible. In addition, this prototyped photo-air secondary battery exhibited excellent life characteristics without a decrease in discharge capacity even after repeated photocharging and discharging.

【0049】なお、上記充放電挙動の測定には、キセノ
ン(Xe)光源を使用した。本測定に使用した電池は、
光充放電機能の確認のみを目的として試作したものであ
り、負極のさらなる多孔化や最適設計により上記放電容
量は増大される。また、本実験において試作し、測定に
使用した電池は、光充放電機能の確認のみを目的として
試作したものであり、負極22の多孔化や最適設計によ
り上記放電容量は大幅に増大される。
A xenon (Xe) light source was used for the measurement of the charge / discharge behavior. The battery used for this measurement is
This is a prototype manufactured only for the purpose of confirming the light charging / discharging function, and the discharge capacity is increased by further making the negative electrode porous and by optimal design. Further, the battery prototyped in this experiment and used for the measurement is a prototype only for the purpose of confirming the light charging / discharging function, and the discharge capacity is significantly increased by the porosity of the negative electrode 22 and the optimum design.

【0050】[0050]

【発明の効果】以上説明したように、本発明の光空気2
次電池にあっては、上記負極部材をなす金属の酸化反応
により放電され、電解質中にn型半導体光電極を浸漬す
ることで形成されるエネルギーバンドの曲りを利用し
て、光エネルギー→電気化学エネルギーへの変換を行っ
て充電する構成としたので、放電時には、例えば空気中
の酸素により負極部材の金属が酸化されることにより放
電される。また、充電時には、上記光電極に光エネルギ
ーを作用させて、伝導帯に電子を励起し、価電子帯にホ
ールを生じせしめ、このホールを、上記エネルギーバン
ドの曲りに添って電解質側へ運び、負極表面で水酸イオ
ンと反応させて酸素と水を生成するとともに、伝導帯に
励起された電子を、エネルギーバンドの曲りに添って負
極へ移動させ、この負極表面で電解質中の水と反応して
上記放電で酸化された負極金属を還元する。従って、本
発明の光空気2次電池は、電気と光の何れのエネルギー
形態でも充電可能となる。
As described above, the optical air 2 of the present invention is used.
In the secondary battery, light energy → electrochemistry is obtained by utilizing the bending of the energy band formed by immersing the n-type semiconductor photoelectrode in the electrolyte due to the oxidation reaction of the metal forming the negative electrode member. Since the configuration is such that the energy is converted to charge and the battery is charged, during discharge, for example, oxygen in the air oxidizes the metal of the negative electrode member, resulting in discharge. Further, at the time of charging, light energy is applied to the photoelectrode to excite electrons in the conduction band to generate holes in the valence band, which are carried to the electrolyte side along the bend of the energy band, On the surface of the negative electrode, oxygen and water are generated by reacting with hydroxide ions, and electrons excited in the conduction band are moved to the negative electrode along the bend of the energy band, and react with water in the electrolyte on the surface of the negative electrode. To reduce the negative electrode metal oxidized by the above discharge. Therefore, the photo-air secondary battery of the present invention can be charged in any energy form of electricity and light.

【0051】また、本発明の光空気2次電池にあって
は、正極に酸素触媒を用いているので、空気中の酸素を
エネルギー源(活物質)とした放電が可能である。従っ
て、実質的に正極活物質は空気中から簡単に充分な量が
補給でき、高エネルギー密度で、経済性や省エネルギー
性に優れた光空気2次電池を実現できる。
Further, in the photo-air secondary battery of the present invention, since the oxygen catalyst is used for the positive electrode, it is possible to perform discharge using oxygen in the air as an energy source (active material). Therefore, it is possible to substantially replenish the positive electrode active material from the air in a sufficient amount, and it is possible to realize a photo-air secondary battery having a high energy density and being excellent in economical efficiency and energy saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る第1実施例の光空気2次電池の外
観図を示したものである。
FIG. 1 is an external view of a photo-air secondary battery according to a first embodiment of the present invention.

【図2】図1に示す第1実施例の光空気2次電池のX−
X’線に添う断面図を示したものである。
FIG. 2 is a view of X- of the photo-air secondary battery of the first embodiment shown in FIG.
It is a sectional view taken along the line X '.

【図3】本発明の第2の実施例を示す光空気2次電池の
断面図である。
FIG. 3 is a sectional view of a photo-air secondary battery showing a second embodiment of the present invention.

【図4】本発明の第3の実施例を示す光空気2次電池の
断面図である。
FIG. 4 is a sectional view of a photo-air secondary battery showing a third embodiment of the present invention.

【図5】本発明の第4の実施例を示す光空気2次電池の
断面図である。
FIG. 5 is a sectional view of a photo-air secondary battery showing a fourth embodiment of the present invention.

【図6】本発明の実施例として試作したGaP-Co|KOH|P
t(O2)系光空気2次電池に関する電池電圧の測定結果
を示すもので、本試作電池の充放電挙動を示すグラフで
ある。
FIG. 6 GaP-Co | KOH | P prototype manufactured as an example of the present invention
7 is a graph showing the battery voltage measurement results for a t (O 2 ) based photo-air secondary battery, and is a graph showing the charge / discharge behavior of the prototype battery.

【図7】従来の光2次電池の外観図を示したものであ
る。
FIG. 7 is an external view of a conventional optical secondary battery.

【図8】図7の等価回路を示したものである。FIG. 8 shows an equivalent circuit of FIG.

【図9】従来型光蓄電池の構成図を示したものである。FIG. 9 is a diagram showing a configuration of a conventional light storage battery.

【図10】第1例の従来型光化学2次電池の構成図を示
したものである。
FIG. 10 is a configuration diagram of a conventional photochemical secondary battery of Example 1.

【図11】第2例の従来型光化学2次電池の簡単な構成
とエネルギー準位図を示したものである。
FIG. 11 shows a simple structure and energy level diagram of a conventional photochemical secondary battery of a second example.

【符号の説明】[Explanation of symbols]

21…正極 22…負極 23…光電極 24…電解質 26…正極端子 27…負極端子 28…電池ケース 28a…受光部 29…溌水膜(溌水板) 30…空気孔 31…接続導体 21 ... Positive electrode 22 ... Negative electrode 23 ... Photoelectrode 24 ... Electrolyte 26 ... Positive electrode terminal 27 ... Negative electrode terminal 28 ... Battery case 28a ... Light receiving part 29 ... Water repellent film (water repellent plate) 30 ... Air hole 31 ... Connection conductor

【手続補正書】[Procedure amendment]

【提出日】平成4年12月28日[Submission date] December 28, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Name of item to be corrected] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0025】また、負極22としては、Ti,Zn,fe,Pb,A
l,Co,Hf,V,Nb,Ni,Pd,Pt,Cu,Ag,Cd,In,Ge,Sn,Bi,Th,Ta,C
r,Mo,W,Pr,Bi,U等の金属やその酸化物、および、これら
の複合成分系金属、合金等で構成されるのが好ましい。
As the negative electrode 22, Ti, Zn, fe, Pb, A
l, Co, Hf, V, Nb, Ni, Pd, Pt, Cu, Ag, Cd, In, Ge, Sn, Bi, Th, Ta, C
It is preferable to be composed of a metal such as r, Mo, W, Pr, Bi, U, or an oxide thereof, or a metal, alloy, or the like of a composite component of these.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾形 努 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Tsutomu Ogata 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 金属製の負極部材と、酸素触媒を有する
正極部材と、該負極部材と該正極部材とに接触する電解
質と、該負極部材に電気的に接続され、且つ該電解質と
接触するn型半導体よりなる光電極部材と、該負極部材
に電気的に接続されてなる負極端子と、該正極部材に電
気的に接続されてなる正極端子と、少なくとも可視光の
一部または紫外光の一部を入射する受光部を有し、上記
負極部材と上記正極部材と上記電解質とが収容される電
池ケースとを具備し、 上記負極部材をなす金属と、空気中の酸素と上記電解質
中の酸素の少なくとも一方との酸化反応により放電さ
れ、上記光電極部材に上記受光部から入射された光エネ
ルギーを作用させて、該光電極部材に接続された負極部
材を還元して充電を行うことを特徴とする光空気2次電
池。
1. A negative electrode member made of a metal, a positive electrode member having an oxygen catalyst, an electrolyte in contact with the negative electrode member and the positive electrode member, and electrically connected to the negative electrode member and in contact with the electrolyte. A photoelectrode member made of an n-type semiconductor, a negative electrode terminal electrically connected to the negative electrode member, a positive electrode terminal electrically connected to the positive electrode member, and at least a part of visible light or ultraviolet light. It has a light-receiving part for entering a part thereof, and comprises a battery case accommodating the negative electrode member, the positive electrode member, and the electrolyte, wherein the metal forming the negative electrode member, oxygen in the air and the electrolyte It is discharged by an oxidation reaction with at least one of oxygen, and the light energy incident on the photoelectrode member from the light receiving portion is acted on to reduce the negative electrode member connected to the photoelectrode member to perform charging. Characteristic light air secondary Pond.
【請求項2】 上記光電極の受光部側と上記電池ケース
受光部とを接触させたことを特徴とする請求項1記載の
光空気2次電池。
2. The photo-air secondary battery according to claim 1, wherein the light receiving portion side of the photoelectrode and the light receiving portion of the battery case are brought into contact with each other.
【請求項3】 電池ケースの受光部が、光電極で構成さ
れたことを特徴とする請求項1記載の光空気2次電池。
3. The photo-air secondary battery according to claim 1, wherein the light receiving portion of the battery case is composed of a photoelectrode.
【請求項4】 電池ケースが、正極部材の一部に外部の
空気を接触させる空気孔を、正極部材近傍に少なくとも
一つ以上具備してなることを特徴とする請求項1、2又
は3記載の光空気2次電池。
4. The battery case according to claim 1, 2 or 3, wherein at least one air hole for contacting external air with a part of the positive electrode member is provided in the vicinity of the positive electrode member. Light air secondary battery.
【請求項5】 電池ケースの、少なくとも正極部材近傍
部分が、酸素透過性部材よりなることを特徴とする請求
項1、2又は3記載の光空気2次電池。
5. The photo-air secondary battery according to claim 1, wherein at least a portion near the positive electrode member of the battery case is made of an oxygen permeable member.
【請求項6】 正極部材が、酸素触媒と、電池ケースの
空気孔または酸素透過性部材よりなる部分を通して、電
解質が電池外部へ流出し、透過するのを防止する溌水剤
とで構成されることを特徴とする請求項1,2,3,4
又は5記載の光空気2次電池。
6. The positive electrode member is composed of an oxygen catalyst and a water repellent agent that prevents the electrolyte from flowing out of the battery and permeating to the outside of the battery through an air hole of the battery case or a portion formed by the oxygen permeable member. Claims 1, 2, 3, 4 characterized in that
Alternatively, the light-air secondary battery according to item 5.
【請求項7】 正極部材と電池ケースとの間に、該電池
ケースの空気孔または酸素透過性部材よりなる部分を通
して、電解質が電池外部へ流出し、透過するのを防止す
る溌水膜または溌水板を設けたことを特徴とする請求項
1、2又は3記載の光空気2次電池。
7. A water-repellent film or membrane for preventing the electrolyte from flowing out and permeating to the outside of the battery between the positive electrode member and the battery case through the air hole of the battery case or a portion made of an oxygen permeable member. The optical air secondary battery according to claim 1, 2 or 3, wherein a water plate is provided.
【請求項8】 正極部材と電池ケースとの間に、酸素を
該正極部材表面に一様に拡散するための拡散紙を設けた
ことを特徴とする請求項6記載の光空気2次電池。
8. The photo-air secondary battery according to claim 6, wherein a diffusion paper for uniformly diffusing oxygen on the surface of the positive electrode member is provided between the positive electrode member and the battery case.
【請求項9】 溌水膜または溌水板と電池ケースとの間
に、酸素を正極部材表面に一様に拡散するための拡散紙
を設けたことを特徴とする請求項7記載の光空気2次電
池。
9. The light-air according to claim 7, wherein a diffusion paper for uniformly diffusing oxygen on the surface of the positive electrode member is provided between the water repellent film or the water repellent plate and the battery case. Secondary battery.
JP4008716A 1992-01-21 1992-01-21 Light air secondary battery Expired - Lifetime JP2998765B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4008716A JP2998765B2 (en) 1992-01-21 1992-01-21 Light air secondary battery
US08/005,301 US5346785A (en) 1992-01-21 1993-01-19 Photochargeable air battery
EP93400134A EP0553023B1 (en) 1992-01-21 1993-01-20 Photochargeable air battery
DE69313152T DE69313152T2 (en) 1992-01-21 1993-01-20 Air battery rechargeable by photo energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4008716A JP2998765B2 (en) 1992-01-21 1992-01-21 Light air secondary battery

Publications (2)

Publication Number Publication Date
JPH05198319A true JPH05198319A (en) 1993-08-06
JP2998765B2 JP2998765B2 (en) 2000-01-11

Family

ID=11700665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4008716A Expired - Lifetime JP2998765B2 (en) 1992-01-21 1992-01-21 Light air secondary battery

Country Status (1)

Country Link
JP (1) JP2998765B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508213A (en) * 2010-12-10 2014-04-03 ユニバーシティー オブ ウロンゴング Improvement regarding multi-layer water splitting apparatus and manufacturing method thereof
JP5815157B2 (en) * 2013-11-08 2015-11-17 パナソニック株式会社 Electrochemical devices
US10577700B2 (en) 2012-06-12 2020-03-03 Aquahydrex Pty Ltd Breathable electrode structure and method for use in water splitting
US10637068B2 (en) 2013-07-31 2020-04-28 Aquahydrex, Inc. Modular electrochemical cells
US11005117B2 (en) 2019-02-01 2021-05-11 Aquahydrex, Inc. Electrochemical system with confined electrolyte

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508213A (en) * 2010-12-10 2014-04-03 ユニバーシティー オブ ウロンゴング Improvement regarding multi-layer water splitting apparatus and manufacturing method thereof
US9708719B2 (en) 2010-12-10 2017-07-18 Aquahydrex Pty Ltd Multi-layer water-splitting devices
US10428431B2 (en) 2010-12-10 2019-10-01 Aquahydrex Pty Ltd Multi-layer water-splitting devices
US10577700B2 (en) 2012-06-12 2020-03-03 Aquahydrex Pty Ltd Breathable electrode structure and method for use in water splitting
US10637068B2 (en) 2013-07-31 2020-04-28 Aquahydrex, Inc. Modular electrochemical cells
US11018345B2 (en) 2013-07-31 2021-05-25 Aquahydrex, Inc. Method and electrochemical cell for managing electrochemical reactions
JP5815157B2 (en) * 2013-11-08 2015-11-17 パナソニック株式会社 Electrochemical devices
US11005117B2 (en) 2019-02-01 2021-05-11 Aquahydrex, Inc. Electrochemical system with confined electrolyte
US11682783B2 (en) 2019-02-01 2023-06-20 Aquahydrex, Inc. Electrochemical system with confined electrolyte

Also Published As

Publication number Publication date
JP2998765B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
US7122873B2 (en) Hybrid solid state/electrochemical photoelectrode for hyrodrogen production
US4452867A (en) Storage battery containing voltage reducing means
US8821700B2 (en) Photoelectrochemical cell and energy system using same
US4916035A (en) Photoelectrochemical cells having functions as a solar cell and a secondary cell
EP0553023B1 (en) Photochargeable air battery
US4064326A (en) Photo-electrochemical cell containing chalcogenide redox couple and having storage capability
JP2998765B2 (en) Light air secondary battery
JP3304006B2 (en) Photochemical secondary battery
JP2006040722A (en) Secondary battery
JP3346449B2 (en) Photohydrogenated air secondary battery
JP3025798B2 (en) Photochemical secondary battery and method of manufacturing photochemical secondary battery
JP3301454B2 (en) Photochemical secondary battery
JP3194448B2 (en) Light air secondary battery
JP3194449B2 (en) Light air secondary battery
JP3273477B2 (en) Light air secondary battery
JPH06223889A (en) Light-air secondary battery
WO1994000887A1 (en) Photoelectrochemical cell including nanocrystalline semiconductor layer
JP3196151B2 (en) Light air secondary battery
JPH06215807A (en) Light secondary battery
JPH0785895A (en) Photochemical secondary battery
JP3306685B2 (en) Sealed type photo-oxygen secondary battery
US4196263A (en) Semiconductor devices with enhanced properties
JPS626311B2 (en)
JP2511905B2 (en) Optical secondary battery
Li et al. Fabrication and characterization of miniaturized photo-electro-chemical solar cells

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 13