JPH06223889A - Light-air secondary battery - Google Patents

Light-air secondary battery

Info

Publication number
JPH06223889A
JPH06223889A JP864693A JP864693A JPH06223889A JP H06223889 A JPH06223889 A JP H06223889A JP 864693 A JP864693 A JP 864693A JP 864693 A JP864693 A JP 864693A JP H06223889 A JPH06223889 A JP H06223889A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
oxygen
air
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP864693A
Other languages
Japanese (ja)
Inventor
Takaharu Akuto
敬治 阿久戸
Naoki Kato
直樹 加藤
Tsutomu Ogata
努 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP864693A priority Critical patent/JPH06223889A/en
Publication of JPH06223889A publication Critical patent/JPH06223889A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To eliminate the installation of a charger, and to raise the energy density. CONSTITUTION:A light-air secondary battery has a positive electrode 21 having oxygen catalyst, a negative electrode 22, the electrolyte 23, which contacts with the positive electrode 21 and the negative electrode 22, and a battery case 27 for housing the positive electrode 21 and the negative electrode 22 and the electrolyte 23. The negative electrode 22 has a negative electrode member 22a made of metal and a n-type semiconductor part 22b electrically connected to the negative member 22a. The battery case 27 is provided with a light receiving part 27a, through which the light enter the negative electrode member 22a. Discharge is performed by the oxidation of the negative electrode member 22a and the reduction of the oxygen. The light energy is made to work to the n-type semiconductor part 22b to deoxidize the negative electrode member 22a, which is oxidized by the discharge, for charge. Since the optical charge is performed by the n-type semiconductor part, a discharger is not required, and since the negative electrode member is oxidized for discharge by using oxygen as the energy source, energy density of a light-air secondary battery is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充電と放電の双方が可
能な2次電池に係わり、空気中の酸素をエネルギー源と
して放電し、光エネルギーにより充電する光空気2次電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery capable of both charging and discharging, and relates to a photo-air secondary battery which is discharged by using oxygen in the air as an energy source and is charged with light energy. .

【0002】[0002]

【従来の技術】太陽可視光等の光エネルギーで2次電池
を充電する試みは、以前からなされており、この種の電
池としては、アモルファスシリコン太陽電池とニッケル
−カドミウム蓄電池や鉛蓄電池等の2次電池を組合せた
太陽光蓄電池が知られている。
2. Description of the Related Art Attempts have been made to charge a secondary battery with light energy such as visible light from the sun, and examples of this type of battery include an amorphous silicon solar battery, a nickel-cadmium storage battery, a lead storage battery and the like. A solar battery that combines a secondary battery is known.

【0003】この光2次電池を図4ないし図5を参照し
て説明する。図4は従来の光2次電池の斜視図であり、
図5は図4の光2次電池の等価回路図である。図4、図
5に示す光2次電池は、太陽電池1と、この太陽電池1
で得られた電力を貯蔵する蓄電池2と、太陽電池1に生
じた電圧を調整する電圧調整回路3と、蓄電池2から太
陽電池1に電流が流れるのを防止する逆流防止ダイオー
ド4とから構成されている。光2次電池は、太陽電池1
で発電し、この太陽電池1で得られた電力を蓄電池2に
貯蔵させる二段階型(間接型)方式に構成されている。
This optical secondary battery will be described with reference to FIGS. FIG. 4 is a perspective view of a conventional optical secondary battery,
FIG. 5 is an equivalent circuit diagram of the optical secondary battery of FIG. The optical secondary battery shown in FIGS. 4 and 5 includes a solar cell 1 and the solar cell 1.
The storage battery 2 for storing the electric power obtained in 1., the voltage adjustment circuit 3 for adjusting the voltage generated in the solar cell 1, and the backflow prevention diode 4 for preventing the current from flowing from the storage battery 2 to the solar cell 1. ing. Photovoltaic secondary battery is solar cell 1
It is configured in a two-stage type (indirect type) system in which the electric power generated by the solar cell 1 is stored in the storage battery 2.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
光2次電池にあっては、電圧調整回路3や逆流防止ダイ
オード4等の構成部品が必須であるため、光2次電池の
構造が複雑で大きなものとなるという欠点を有してい
る。
However, in the conventional photo-rechargeable battery, since the components such as the voltage adjusting circuit 3 and the backflow prevention diode 4 are essential, the structure of the photo-rechargeable battery is complicated. It has the drawback of being large.

【0005】また、従来の光2次電池を適正に機能させ
るには、太陽電池1で発電した電力を蓄電池2へ充電す
るのに適した電圧に調整する必要があり、この調整のた
めに消費されるエネルギー損失が大であるという問題が
あった。また、上記光2次電池は、光→電気→電気化学
の3段階のエネルギー変換ステップを経るため、このエ
ネルギー変換ステップのための構成部品数の増加や、あ
るいはこのエネルギー変換ステップに起因するエネルギ
ーロスの増大といった問題も有している。さらに、太陽
電池1を製造するには、pn接合設備等の比較的高度の
製造設備が必要となるなど、太陽電池1の製造上の困難
性も有している。
Further, in order for the conventional optical secondary battery to function properly, it is necessary to adjust the electric power generated by the solar cell 1 to a voltage suitable for charging the storage battery 2, which is consumed for this adjustment. There was a problem that the energy loss was large. In addition, since the above photo secondary battery undergoes three steps of energy conversion steps of light → electricity → electrochemistry, an increase in the number of components for this energy conversion step or energy loss resulting from this energy conversion step. It also has the problem of increasing Furthermore, there are also difficulties in manufacturing the solar cell 1, such as the manufacturing of the solar cell 1 requires relatively high-level manufacturing equipment such as a pn junction equipment.

【0006】一方、図6は、従来の光蓄電池を示す図で
ある。この光蓄電池は、透明ガラス基板7と、p型半導
体8と、i型半導体9と、集電体10、11と、陰極1
2と、陽極13と、固体電解質14と、パッシベーショ
ン層15と、透明電極16とを具備してなる電池であ
る。この光蓄電池においても、上述の説明と同様、構造
が複雑であり、半導体電極製造の問題やエネルギー密度
が小さいといった欠点がある。
On the other hand, FIG. 6 is a diagram showing a conventional light storage battery. This light storage battery includes a transparent glass substrate 7, a p-type semiconductor 8, an i-type semiconductor 9, current collectors 10 and 11, and a cathode 1.
2 is a battery including an anode 13, a solid electrolyte 14, a passivation layer 15, and a transparent electrode 16. Similar to the above description, this light storage battery also has the drawbacks that the structure is complicated, the problem of semiconductor electrode manufacturing and the energy density are small.

【0007】図7は、従来の光化学2次電池の構成図を
示したものである。図中符号17は電池容器、17aは
電池容器を密閉するための蓋、18はセパレータ、19
はn型半導体部よりなる光電極、20aは充電用の電
極、20bは放電用の電極である。図8は、光化学2次
電池の簡単な構成とエネルギー準位図を示したものであ
る。
FIG. 7 is a block diagram of a conventional photochemical secondary battery. In the figure, reference numeral 17 is a battery container, 17a is a lid for sealing the battery container, 18 is a separator, 19
Is a photoelectrode made of an n-type semiconductor portion, 20a is a charging electrode, and 20b is a discharging electrode. FIG. 8 shows a simple structure and energy level diagram of a photochemical secondary battery.

【0008】これらの光化学2次電池は、半導体−電解
質界面の電気化学特性を利用したものであり、即ち、半
導体電極を電解質と接触させた時に生じるエネルギーバ
ンドの曲りを利用して光エネルギーを電気化学的に蓄積
するものである。図7に示す光化学2次電池の光変換部
は、半導体電極19を電解質Sに浸漬させるだけで構成
されており、この点、太陽電池等の必要な図4や図5に
示した従来の光空気2次電池に比べ優れている。
These photochemical secondary batteries utilize the electrochemical characteristics of the semiconductor-electrolyte interface, that is, the light energy is converted into electricity by utilizing the bending of the energy band generated when the semiconductor electrode is brought into contact with the electrolyte. It is chemically accumulated. The light conversion part of the photochemical secondary battery shown in FIG. 7 is configured only by immersing the semiconductor electrode 19 in the electrolyte S, and in this respect, the conventional light shown in FIG. 4 and FIG. Superior to secondary air batteries.

【0009】しかし、これらの電池の反応は電解質の酸
化還元反応に基づくものであり、容量増大の為には多量
の電解質が必要となり、基本的には大きなエネルギー密
度が望めないという欠点が有った。また、図8に示すよ
うに、放電から充電に移る(あるいは、その逆)には、
スイッチ等を使用して電極の接続を切り替えなければな
らないといった欠点が有った。
However, the reactions of these batteries are based on the oxidation-reduction reaction of the electrolyte, and a large amount of electrolyte is required to increase the capacity, and basically there is a drawback that a large energy density cannot be expected. It was In addition, as shown in FIG. 8, when shifting from discharging to charging (or vice versa),
There was a drawback that the connection of the electrodes had to be switched using a switch or the like.

【0010】本発明は、上記事情に鑑みてなされたもの
で、酸素をエネルギー源として放電し、光エネルギーに
より充電し、充電器を必要としない省エネルギー性に優
れ、高エネルギー密度の光空気2次電池を提供すること
を目的としている。
The present invention has been made in view of the above circumstances, and discharges oxygen as an energy source and charges it with light energy, which does not require a charger, is excellent in energy saving, and has high energy density. Intended to provide batteries.

【0011】[0011]

【課題を解決するための手段】請求項1記載の光空気2
次電池は、正極と、負極と、これら正極と負極とに接触
する電解質と、上記正極と上記負極と上記電解質とが収
容される電池ケースとを有し、上記正極は酸素触媒を有
する構成にされ、上記負極は、金属製の負極部材と、該
負極部材に電気的に接続されたn型半導体部とを有する
構成にされ、上記電池ケースには、上記負極のn型半導
体部に光を入射する受光部が設けられ、上記負極部材の
酸化反応と酸素の還元反応とにより放電され、上記n型
半導体部に光エネルギーを作用させて、放電により酸化
した負極部材を還元させて充電されることを特徴とする
ものである。
A light-air 2 according to claim 1
The secondary battery has a positive electrode, a negative electrode, an electrolyte in contact with the positive electrode and the negative electrode, a battery case accommodating the positive electrode, the negative electrode, and the electrolyte, the positive electrode has a configuration having an oxygen catalyst. The negative electrode is configured to have a negative electrode member made of metal and an n-type semiconductor portion electrically connected to the negative electrode member, and the battery case is provided with light to the n-type semiconductor portion of the negative electrode. An incident light receiving portion is provided, and is discharged by an oxidation reaction and a reduction reaction of oxygen of the negative electrode member, and light energy is applied to the n-type semiconductor portion to reduce the negative electrode member oxidized by the discharge to be charged. It is characterized by that.

【0012】請求項2記載の光空気2次電池は、請求項
1記載の光空気2次電池であって、上記金属製の負極部
材の少なくとも一部が、該金属の酸化物、又は複数の金
属よりなる複合成分系金属や合金よりなることを特徴と
するものである。
The photo-air secondary battery according to claim 2 is the photo-air secondary battery according to claim 1, wherein at least a part of the metal negative electrode member is an oxide of the metal or a plurality of metal oxides. It is characterized in that it is composed of a composite component type metal or alloy made of metal.

【0013】請求項3記載の光空気2次電池は、請求項
1または2記載の光空気2次電池であって、電池ケース
には、該正極に外部の空気を接触させる空気孔が正極近
傍に配設されていることを特徴とするものである。
The photo-air secondary battery according to claim 3 is the photo-air secondary battery according to claim 1 or 2, wherein the battery case has an air hole for contacting external air with the positive electrode in the vicinity of the positive electrode. It is characterized in that it is disposed in.

【0014】請求項4記載の光空気2次電池は、請求項
1または2記載の光空気2次電池であって、電池ケース
の正極近傍部分が、酸素透過性部材よりなることを特徴
とするものである。
The photo-air secondary battery according to claim 4 is the photo-air secondary battery according to claim 1 or 2, wherein the portion near the positive electrode of the battery case is made of an oxygen permeable member. It is a thing.

【0015】請求項5記載の光空気2次電池は、請求項
3又は4記載の光空気2次電池であって、正極が、酸素
触媒と、電池ケースの空気孔または酸素透過性部材より
なる部分を通して電池ケース内の電解質の電池外部への
流出と透過とを防止する撥水剤とで構成されていること
を特徴とするものである。
A photo-air secondary battery according to claim 5 is the photo-air secondary battery according to claim 3 or 4, wherein the positive electrode comprises an oxygen catalyst and an air hole or an oxygen-permeable member of the battery case. It is characterized in that it is composed of a water repellent which prevents the electrolyte in the battery case from flowing out and permeating to the outside of the battery through the portion.

【0016】請求項6記載の光空気2次電池は、請求項
3又は4記載の光空気2次電池であって、正極と電池ケ
ースとの間に、該電池ケースの空気孔または酸素透過性
部材よりなる部分を通して電解質の電池ケース内から電
池外部への流出と透過とを防止する撥水膜または撥水板
が設けられたことを特徴とするものである。
The photo-air secondary battery according to claim 6 is the photo-air secondary battery according to claim 3 or 4, wherein an air hole or oxygen permeability of the battery case is provided between the positive electrode and the battery case. It is characterized in that a water repellent film or a water repellent plate is provided for preventing the electrolyte from flowing out and permeating from the inside of the battery case to the outside of the battery through the portion formed of the member.

【0017】請求項7記載の光空気2次電池は、請求項
3〜6いずれか記載の光空気2次電池であって、正極と
電池ケースとの間に、酸素を正極表面に一様に拡散せし
める拡散紙が設けられたことを特徴とするものである。
The photo-air secondary battery according to claim 7 is the photo-air secondary battery according to any one of claims 3 to 6, wherein oxygen is uniformly distributed on the surface of the positive electrode between the positive electrode and the battery case. It is characterized in that a diffusion paper for diffusing is provided.

【0018】請求項8記載の光空気2次電池は、請求項
6記載の光空気2次電池であって、撥水膜または撥水板
と電池ケースとの間に、酸素を正極表面に一様に拡散せ
しめる拡散紙が設けられたことを特徴とするものであ
る。
The photo-air secondary battery according to claim 8 is the photo-air secondary battery according to claim 6, wherein oxygen is applied to the surface of the positive electrode between the water-repellent film or the water-repellent plate and the battery case. It is characterized in that a diffusing paper for diffusing is provided.

【0019】[0019]

【作用】本発明の光空気2次電池にあっては、以下の作
用を有する。請求項1記載の光空気2次電池では、上記
負極の金属製負極部材の酸化反応により放電され、電解
質中にn型半導体部を浸漬することで形成されるエネル
ギーバンドの曲りを利用して、光エネルギー→電気化学
エネルギーへの変換を行い、光エネルギーにより充電さ
れる構成としたので、放電時には、酸素により金属製の
負極部材が酸化され、酸素が還元されることにより放電
される。
The optical air secondary battery of the present invention has the following actions. In the photo-air secondary battery according to claim 1, utilizing the bending of the energy band formed by immersing the n-type semiconductor portion in the electrolyte, which is discharged by the oxidation reaction of the metal negative electrode member of the negative electrode, Since the light energy is converted to the electrochemical energy and the energy is charged by the light energy, at the time of discharging, the negative electrode member made of metal is oxidized by oxygen, and oxygen is reduced to discharge.

【0020】また、充電時には、上記負極のn型半導体
部に光エネルギーを作用させることにより、伝導帯に電
子を励起して価電子帯にホールを生じせしめ、このホー
ルを上記エネルギーバンドの曲りに添って電解質側へ運
び、負極部材の表面で上記ホールと水酸イオンと反応さ
せて酸素と水を生成する。一方、伝導帯に励起された電
子をエネルギーバンドの曲りに添って負極へ移動させ、
負極部材の表面で上記電子と上記放電で酸化された負極
部材とを反応させ、この負極部材を還元する。従って、
電気と光の何れのエネルギー形態でも充電可能である等
の特徴を有する。
At the time of charging, light energy is applied to the n-type semiconductor portion of the negative electrode to excite electrons in the conduction band and generate holes in the valence band, which are bent in the energy band. It is carried to the electrolyte side, and is reacted with the holes and hydroxide ions on the surface of the negative electrode member to generate oxygen and water. On the other hand, the electrons excited in the conduction band are moved to the negative electrode along the bending of the energy band,
The electrons are reacted with the negative electrode member oxidized by the discharge on the surface of the negative electrode member, and the negative electrode member is reduced. Therefore,
It has a feature that it can be charged in any energy form of electricity and light.

【0021】請求項2記載の光空気2次電池は、請求項
1記載の作用を有するとともに、上記金属製の負極部材
の少なくとも一部が、該金属の酸化物、又は複数の金属
よりなる複合成分系金属や合金よりなるから、負極部材
が半導体特性を示し、この半導体特性を示す負極部材が
光充電反応を促進する。
A light-air secondary battery according to a second aspect of the invention has the function of the first aspect, and at least a part of the metal negative electrode member is an oxide of the metal or a composite of a plurality of metals. Since it is made of a component metal or alloy, the negative electrode member exhibits semiconductor characteristics, and the negative electrode member having this semiconductor characteristic promotes the photocharge reaction.

【0022】請求項3記載の光空気2次電池では、請求
項1または2記載の作用を有するとともに、電池ケース
に配設された空気孔を外部の空気が通り、この空気が正
極近傍の空気孔を通して正極に接触する。
According to the third aspect of the present invention, the light-air secondary battery has the function of the first or second aspect, and outside air passes through the air holes provided in the battery case, and this air is in the vicinity of the positive electrode. Contact the positive electrode through the hole.

【0023】請求項4記載の光空気2次電池では、請求
項1または2記載の作用を有するとともに、電池ケース
の酸素透過性部材を外部の空気が通り、この空気が正極
近傍の酸素透過性部材を通過して正極に接触する。
According to the fourth aspect of the present invention, in addition to the operation of the first or second aspect, the outside air passes through the oxygen permeable member of the battery case, and this air is oxygen permeable near the positive electrode. It passes through the member and contacts the positive electrode.

【0024】請求項5記載の光空気2次電池では、請求
項3又は4記載の作用を有するとともに、酸素触媒で酸
素が還元され、電池ケースの空気孔または酸素透過性部
材よりなる部分から電池外部への電解質の流出と透過と
が撥水剤で防止される。
According to the fifth aspect of the present invention, in addition to the function of the third or fourth aspect, oxygen is reduced by the oxygen catalyst, and the cell is formed from the air hole of the battery case or the portion including the oxygen permeable member. Outflow and permeation of the electrolyte to the outside are prevented by the water repellent.

【0025】請求項6記載の光空気2次電池では、請求
項3又は4記載の作用を有するとともに、正極と電池ケ
ースとの間に設けた撥水膜または撥水板が、電池ケース
の空気孔または酸素透過性部材よりなる部分を通して電
解質の電池ケース内から電池外部への流出と透過とを防
止する。
In the photo-air secondary battery according to claim 6, the water-repellent film or the water-repellent plate provided between the positive electrode and the battery case has the function of claim 3 or 4, and The electrolyte is prevented from flowing out and permeating from the inside of the battery case to the outside of the battery through the hole or the portion formed of the oxygen permeable member.

【0026】請求項7記載の光空気2次電池では、請求
項3〜6いずれか記載の作用を有するとともに、正極と
電池ケースとの間に設けた拡散紙が、酸素を正極表面に
一様に拡散せしめる。
According to the seventh aspect of the photo-air secondary battery of the present invention, the diffusion paper provided between the positive electrode and the battery case has the function of any of the third to sixth aspects, and oxygen is uniformly distributed on the surface of the positive electrode. Spread.

【0027】請求項8記載の光空気2次電池では、請求
項6記載の作用を有するとともに、撥水膜または撥水板
が電解質の電池外部への流出と透過とを防止するととも
に、拡散紙が酸素を正極表面に一様に拡散せしめる。
According to the eighth aspect of the photo-air secondary battery, in addition to having the function of the sixth aspect, the water-repellent film or the water-repellent plate prevents the electrolyte from flowing out and permeating to the outside of the battery, and the diffusion paper Diffuses oxygen uniformly over the surface of the positive electrode.

【0028】[0028]

【実施例】図1および図2は、本発明に係る光空気2次
電池の第1の実施例を示す図で、図中符号21は多孔性
酸素触媒よりなる正極、22は負極、23は正極21と
負極22とに接触する電解質、24はセパレータ、25
は正極21に電気的に接続された正極端子、26は負極
22に電気的に接続された負極端子、27は電池ケー
ス、28は撥水膜である。
1 and 2 are views showing a first embodiment of a photo-air secondary battery according to the present invention, in which reference numeral 21 is a positive electrode made of a porous oxygen catalyst, 22 is a negative electrode, and 23 is a negative electrode. Electrolyte in contact with the positive electrode 21 and the negative electrode 22, 24 is a separator, 25
Is a positive electrode terminal electrically connected to the positive electrode 21, 26 is a negative electrode terminal electrically connected to the negative electrode 22, 27 is a battery case, and 28 is a water-repellent film.

【0029】電池ケース27は、角箱状に形成されてお
り、表面を兼ねる光透過材等からなる受光部27aと、
裏面に設けられた板状の底部27bとを有し、この底部
27bには多数の空気孔29が形成されている。電池ケ
ース27には、底部27b側に配設された正極21と、
受光部27a側に配設された負極22と、これら正極2
1と負極22との間、および受光部27aと負極22と
の間に充満された液状電解質23と、上記正極21と負
極22との間に設けられ、電解質23が通過可能なガラ
ス繊維等からなるセパレータ24とが収納されている。
なお、前記電池ケース27を角箱状に形成したが、本願
はこれに限定するものでなく、円柱状等の形状でもよ
い。
The battery case 27 is formed in the shape of a rectangular box, and has a light-receiving portion 27a made of a light-transmitting material which also serves as a surface,
It has a plate-shaped bottom portion 27b provided on the back surface, and a large number of air holes 29 are formed in this bottom portion 27b. In the battery case 27, the positive electrode 21 arranged on the bottom portion 27b side,
The negative electrode 22 arranged on the light receiving portion 27a side and the positive electrode 2
1 and the negative electrode 22, and between the light receiving part 27a and the negative electrode 22, and the liquid electrolyte 23 filled between the positive electrode 21 and the negative electrode 22, and the glass fiber or the like through which the electrolyte 23 can pass. And a separator 24 that is
Although the battery case 27 is formed in the shape of a rectangular box, the present invention is not limited to this and may have a cylindrical shape or the like.

【0030】負極22は、負極端子26に接続された金
属製の負極部材22aと、この負極部材22aの表面に
一体に配設され、該負極部材22aに電気的に接続され
たn型半導体部22bとを有する構成にされている。負
極部材22aは正極21に対向する位置に配設され、n
型半導体部22bは電池ケース27の受光部27aに対
向する位置に配設されている。また、負極部材22aと
n型半導体部22bとの間はオーミックコンタクトをと
り、これら負極部材22aとn型半導体部22bとで一
体型の負極22が構成される。撥水膜28は、電池ケー
ス27の底部27bと正極21との間に配設され、通気
性を有するとともに、電解質23が外部へ流出するのを
防止する構成にされている。
The negative electrode 22 is a metal negative electrode member 22a connected to the negative electrode terminal 26, and an n-type semiconductor portion which is integrally disposed on the surface of the negative electrode member 22a and electrically connected to the negative electrode member 22a. 22b. The negative electrode member 22a is disposed at a position facing the positive electrode 21, and n
The mold semiconductor portion 22b is arranged at a position facing the light receiving portion 27a of the battery case 27. Further, an ohmic contact is established between the negative electrode member 22a and the n-type semiconductor portion 22b, and the negative electrode member 22a and the n-type semiconductor portion 22b form an integrated negative electrode 22. The water-repellent film 28 is disposed between the bottom portion 27b of the battery case 27 and the positive electrode 21, has air permeability, and is configured to prevent the electrolyte 23 from flowing out.

【0031】本実施例の光空気2次電池では、空気中の
酸素の還元に基づく放電反応を円滑に進行させるため、
酸素と電解質23および正極21(酸素触媒)とで構成
される気−液−固三相界面の場を効果的に形成すること
が必要である。従って、該三相界面場の増大を目的とし
て、正極21が多孔性の酸素触媒で構成されている。た
だし、低率(低電流)放電で使用する電池を構成する場
合には、必ずしも多孔性である必要はなく、板状の正極
21を用いてもよい。
In the photo-air secondary battery of this embodiment, since the discharge reaction based on the reduction of oxygen in the air is allowed to proceed smoothly,
It is necessary to effectively form a gas-liquid-solid three-phase interface field composed of oxygen, the electrolyte 23, and the positive electrode 21 (oxygen catalyst). Therefore, the positive electrode 21 is composed of a porous oxygen catalyst for the purpose of increasing the three-phase interface field. However, when a battery used for low rate (low current) discharge is constructed, it does not necessarily have to be porous, and a plate-shaped positive electrode 21 may be used.

【0032】上記正極21は、カーボン(多孔炭素)や
多孔ニッケル、および、これらにPtやPdを担持した
多孔性酸素触媒(Pt−C,Pd−C,Pt−Ni,P
d−Ni)、さらに、Pt,Pd,Ir,Rh,Os,
Ru,Pt−Co,Pt−Au,Pt−Sn,Pd−A
u,Ru−Ta,Pt−Pd−Au,Pt−酸化物,A
u,Ag,Ag−C,Ni−P,Ag−Ni−P,ラネ
ーニッケル,Ni−Mn,Ni−酸化コバルト、Cu−
Ag,Cu−Au,ラネー銀等の貴金属および合金,ホ
ウ化ニッケル,ホウ化コバルト,炭化タングステン,水
酸化チタン,リン化タングステン,リン化ニオブ,遷移
金属の炭化物,スピネル化合物,酸化銀,酸化タングス
テン,遷移金属のペロブスカイト型イオン結晶等の無機
化合物、および、バクテリア、非イオン活性剤、フタロ
シアニン,金属フタロシアニン,活性炭,キノン類等の
有機化合物のいずれかで構成されるのが好ましい。
The positive electrode 21 is made of carbon (porous carbon) or porous nickel, and a porous oxygen catalyst (Pt-C, Pd-C, Pt-Ni, P) on which Pt or Pd is supported.
d-Ni), and further Pt, Pd, Ir, Rh, Os,
Ru, Pt-Co, Pt-Au, Pt-Sn, Pd-A
u, Ru-Ta, Pt-Pd-Au, Pt-oxide, A
u, Ag, Ag-C, Ni-P, Ag-Ni-P, Raney nickel, Ni-Mn, Ni-cobalt oxide, Cu-
Noble metals and alloys such as Ag, Cu-Au, and Raney silver, nickel boride, cobalt boride, tungsten carbide, titanium hydroxide, tungsten phosphide, niobium phosphide, transition metal carbides, spinel compounds, silver oxide, tungsten oxide. , An inorganic compound such as a perovskite type ionic crystal of a transition metal, or an organic compound such as a bacterium, a nonionic activator, a phthalocyanine, a metal phthalocyanine, activated carbon or a quinone.

【0033】また、負極22をなす負極部材22aの材
料としては、Ti,Zn,Fe,Pb,Al,Co,H
f,V,Nb,Ni,Pd,Pt,Cu,Ag,Cd,
In,Ge,Sn,Bi,Th,Ta,Cr,Mo,
W,Pr,Bi,U等の金属、又は該金属の少なくとも
一部が該金属の酸化物、および、これらの複合成分系金
属、合金等で構成される。
The material of the negative electrode member 22a which constitutes the negative electrode 22 is Ti, Zn, Fe, Pb, Al, Co, H.
f, V, Nb, Ni, Pd, Pt, Cu, Ag, Cd,
In, Ge, Sn, Bi, Th, Ta, Cr, Mo,
Metals such as W, Pr, Bi and U, or at least a part of the metal is composed of an oxide of the metal, and a composite component metal or alloy thereof.

【0034】負極22のn型半導体部22bとしては、
n型半導体であるGap、GaAs、AlAs、Zn
S、AlSb、InP、CdS、GaSb、InAs、
ZnTe、SiC、BaTiO3、TiO2、ZnO、A
2S、Ag2Se、Ag2Te、SnO2、ThO2、V2
5、Nb25、Ta25、Bi23、MoO3、W
3、NaXWO3、LiXWO3、KXWO3(以上、X=
0〜1)、MnO2、FeS2、HgSe、Bi2Se3
PbCrO4、PbOX(X=0〜2)、MgO、Mg2
AlO4、Al23、SiO2、V24、FeO、Fe2
3、Fe34、CuO、Cu2S、CuS、CuInS
2、CuBr、CuI、 ZnSe、ZnTe、GeS
e、SrO、ZrO2、Nb25、Nb23、MoO3
MoS、AgI、CdO、InSe、SnSe、Sb2
4、BaO、Ta23、Ta25、WO3、HgTe、
Tl2S、Bi23、Bi2Se3、 PbTe、Ce
2、Nd23等の化合物半導体、Si、Ge、Se等
の無機半導体,アントラセン、テトラセン、ペンタセ
ン、ピレン、ペリレン、アンサンスレン、オバレン、コ
ロネン、ビオランスレン、イソビオランスレン、ピラン
スレン、アンサンスロン、ビオランスロン、イソビオラ
ンスロン、ピランスロン、シアナンスロン、イソダンス
ロンブラック、フラバンスロン、インダンスロン、フタ
ロシアニン、銅フタロシアニン、、石墨等の縮合多環芳
香族化合物、ポリアセチレン、ポリアニリン、ポリパラ
フェニレン、ポリチィオフィン、ポリピロール等の高分
子、強誘電性を有するPbZrXTi1-X3、Pb1-X
2XNbO6(x=0〜1、M=アルカリ金属)などから
構成されるのが好ましい。
As the n-type semiconductor portion 22b of the negative electrode 22,
Gap, GaAs, AlAs, Zn, which are n-type semiconductors
S, AlSb, InP, CdS, GaSb, InAs,
ZnTe, SiC, BaTiO 3 , TiO 2 , ZnO, A
g 2 S, Ag 2 Se, Ag 2 Te, SnO 2 , ThO 2 , V 2
O 5 , Nb 2 O 5 , Ta 2 O 5 , Bi 2 S 3 , MoO 3 , W
O 3 , Na X WO 3 , Li X WO 3 , K X WO 3 (above, X =
0-1), MnO 2 , FeS 2 , HgSe, Bi 2 Se 3 ,
PbCrO 4 , PbO x (X = 0 to 2), MgO, Mg 2
AlO 4 , Al 2 O 3 , SiO 2 , V 2 O 4 , FeO, Fe 2
O 3 , Fe 3 O 4 , CuO, Cu 2 S, CuS, CuInS
e 2 , CuBr, CuI, ZnSe, ZnTe, GeS
e, SrO, ZrO 2 , Nb 2 O 5 , Nb 2 O 3 , MoO 3 ,
MoS, AgI, CdO, InSe, SnSe, Sb 2
O 4 , BaO, Ta 2 O 3 , Ta 2 O 5 , WO 3 , HgTe,
Tl 2 S, Bi 2 S 3 , Bi 2 Se 3 , PbTe, Ce
Compound semiconductors such as O 2 and Nd 2 O 3 , inorganic semiconductors such as Si, Ge, and Se, anthracene, tetracene, pentacene, pyrene, perylene, anthanthrene, ovaren, coronene, violanthrene, isoviolanthrene, pyranthrene, anthanthrone , Condensed polycyclic aromatic compounds such as violanthrone, isobiolanthrone, pyranthrone, cyananthrone, isodanthrone black, flavanthrone, indanthrone, phthalocyanine, copper phthalocyanine, and graphite, polyacetylene, polyaniline, polyparaphenylene, polythiophene, PbZr X Ti 1-X O 3 with a high molecular ferroelectric such as polypyrrole, Pb 1-X M
2X NbO 6 (x = 0~1, M = alkali metal) preferably constructed from such.

【0035】負極22の負極部材22aとn型半導体部
22bとの組合わせは、該n型半導体部22bと電解質
23との接触界面におけるn型半導体部22bの伝導帯
下端の電位レベルが負極活物質の酸化還元電位よりも卑
な電位を構成する組合わせであれば良く、特に部材の種
類には限定されない。
The combination of the negative electrode member 22a of the negative electrode 22 and the n-type semiconductor portion 22b is such that the potential level at the lower end of the conduction band of the n-type semiconductor portion 22b at the contact interface between the n-type semiconductor portion 22b and the electrolyte 23 is negative. Any combination may be used as long as it is a combination that forms a base potential lower than the redox potential of the substance, and the type of the member is not particularly limited.

【0036】また、本実施例の電解質23として、水酸
化カリウム、水酸化ナトリウム、塩化アンモニウム等の
塩基や、その他弱酸等の液状電解質が用いられる。ま
た、充電性能は低下するが、硫酸、塩酸等の強酸や塩を
使うこともできる。なお、本実施例においては、上述し
たように液状の電解質23を用いているが、電解質23
は、液状に限定されることなく、この電解質23を介す
る正極21と負極22間の電子移動が妨げられないもの
であれば、固体状やペースト状等どのような形態の電解
質でも用いることができる。
Further, as the electrolyte 23 of this embodiment, a base such as potassium hydroxide, sodium hydroxide or ammonium chloride, or a liquid electrolyte such as a weak acid is used. Further, although the charging performance is lowered, a strong acid or salt such as sulfuric acid or hydrochloric acid can be used. In this embodiment, the liquid electrolyte 23 is used as described above, but the electrolyte 23
Is not limited to a liquid, and any form of electrolyte such as solid or paste can be used as long as the electron transfer between the positive electrode 21 and the negative electrode 22 through the electrolyte 23 is not hindered. .

【0037】セパレータ24は、ガラス繊維やポリアミ
ド系繊維不織布、ポリオレフィン系繊維不織布、セルロ
ース、合成樹脂等の電解質に対する耐久性を有するもの
であれば特に限定されない。
The separator 24 is not particularly limited as long as it has durability against electrolytes such as glass fiber, polyamide fiber nonwoven fabric, polyolefin fiber nonwoven fabric, cellulose and synthetic resin.

【0038】電池ケース27は、ABS樹脂やフッ素樹
脂等の電解質23に侵されない材質であれば特に限定さ
れない。ただし、電池ケース27の負極22側に位置す
る受光部27a部分は、少なくとも可視光の一部や紫外
光の一部を透過する(無色あるいは有色の)部材、例え
ば、ガラス、石英ガラス、アクリル、スチロール等から
なる透明板や透明フィルム等で構成される。もちろん電
池ケース27全体をこれら透明板や透明フィルム等の部
材で構成してもよい。
The battery case 27 is not particularly limited as long as it is a material that is not attacked by the electrolyte 23 such as ABS resin or fluororesin. However, the light receiving portion 27a located on the negative electrode 22 side of the battery case 27 is a member (colorless or colored) that transmits at least part of visible light or part of ultraviolet light, such as glass, quartz glass, acrylic, It is composed of a transparent plate such as styrene or a transparent film. Of course, the entire battery case 27 may be made of such a member as a transparent plate or a transparent film.

【0039】このように受光部27a部分を光が透過さ
れる構成としたのは、光充電反応を進行させるために、
負極部材22aの表面に照射光を到達させる際、この照
射光が電池ケース27によって吸収あるいは反射され
て、負極部材22aの表面に到達する光エネルギーが極
端に低下するのを防止するためである。
The light receiving portion 27a is configured to transmit light in this manner in order to promote the photocharge reaction.
This is because when the irradiation light reaches the surface of the negative electrode member 22a, the irradiation light is prevented from being absorbed or reflected by the battery case 27 and the light energy reaching the surface of the negative electrode member 22a being extremely reduced.

【0040】一方、空気中の酸素の還元に基づく放電反
応を円滑に進行させるためには、空気中の酸素が酸素触
媒よりなる正極21表面へ拡散移動しなければならな
い。この様な酸素の拡散移動を実現することを目的とし
て、本実施例の光空気2次電池は、電池ケース27の底
部27bに、小径の空気孔29を少なくとも1つ以上形
成する構成とした。この空気孔29は、空気中からの酸
素取り込み口として働くものであるので、空気を取り込
むことができれば、大径の空気孔としても開口部として
もよい。
On the other hand, in order for the discharge reaction based on the reduction of oxygen in the air to proceed smoothly, the oxygen in the air must diffuse and move to the surface of the positive electrode 21 made of an oxygen catalyst. For the purpose of realizing such diffusive movement of oxygen, the photo-air secondary battery of the present embodiment has a structure in which at least one small air hole 29 is formed in the bottom portion 27b of the battery case 27. Since the air hole 29 functions as an oxygen intake port from the air, it may be an air hole having a large diameter or an opening as long as it can take in air.

【0041】撥水膜28は、正極21と、電池ケース2
7の底部27bとの間に設けられている。撥水膜28
は、正極21の孔を通過した電解質23が空気孔29を
通して光空気2次電池の外部へ透過し、流出するのを
(その撥水性により)防止するとともに、酸素と電解質
23及び正極21とで構成される三相界面場の増大にも
寄与している。撥水膜(撥水板)28としては、例えば
多孔性四フッ化エチレン等のフッ素系樹脂やシリコン系
樹脂等で構成するのが好ましい。
The water repellent film 28 is formed on the positive electrode 21 and the battery case 2.
7 is provided between the bottom 27b and the bottom 27b. Water repellent film 28
Prevents the electrolyte 23, which has passed through the holes of the positive electrode 21, from passing through the air holes 29 to the outside of the photo-air secondary battery and flowing out (due to its water repellency). It also contributes to the increase in the composed three-phase interface field. The water-repellent film (water-repellent plate) 28 is preferably made of, for example, a fluorine-based resin such as porous tetrafluoroethylene or a silicon-based resin.

【0042】なお、上記撥水膜28の代りに撥水板を用
いて本実施例の光空気2次電池を構成してもよい。ま
た、これら撥水膜28や撥水板を設ける代りに、酸素触
媒中に撥水剤を混入させて酸素触媒と撥水剤とから正極
21を構成し、これら酸素触媒と撥水剤とからなる正極
21に撥水膜28(撥水板)と同様の機能を付与しても
よい。この場合には、上記三相界面場の増大効果は更に
大きくなる。
A water-repellent plate may be used in place of the water-repellent film 28 to form the photo-air secondary battery of this embodiment. Further, instead of providing the water-repellent film 28 and the water-repellent plate, a water-repellent agent is mixed in the oxygen catalyst to form the positive electrode 21 from the oxygen catalyst and the water-repellent agent. The same function as that of the water repellent film 28 (water repellent plate) may be given to the positive electrode 21. In this case, the effect of increasing the three-phase interface field is further increased.

【0043】なお、空気孔29が小さく形成される場
合、空気孔29から取り込んだ酸素を正極21面全体へ
一様に拡散させるために、電池ケース27の正極21側
の底部27bと撥水膜28または撥水剤を含む正極21
との間にセルロース等からなる拡散紙30を設けてもよ
い。
When the air holes 29 are formed small, the bottom 27b of the battery case 27 on the positive electrode 21 side and the water repellent film are formed so that the oxygen taken in from the air holes 29 is uniformly diffused over the entire surface of the positive electrode 21. 28 or a positive electrode 21 containing a water repellent agent
A diffusion paper 30 made of cellulose or the like may be provided between and.

【0044】図3は本発明の第2の実施例を説明する図
であり、この第2の実施例は、電池ケース27の正極2
1側の底部27b′部分を酸素透過性部材で構成したも
のである。第2の実施例の他の構成は第1の実施例と同
様である。上記電池ケース27の正極21側の底部27
b′部分を酸素透過性部材で構成したのは、電池外部の
酸素を酸素触媒よりなる正極21表面へ拡散移動させる
ためで、第1の実施例において電池ケース27に空気孔
29を形成した趣旨と同様である。
FIG. 3 is a diagram for explaining a second embodiment of the present invention. This second embodiment is the positive electrode 2 of the battery case 27.
The bottom portion 27b 'on the first side is composed of an oxygen permeable member. The other structure of the second embodiment is similar to that of the first embodiment. The bottom portion 27 of the battery case 27 on the positive electrode 21 side
The b'portion is made of an oxygen permeable member in order to diffuse and move oxygen outside the battery to the surface of the positive electrode 21 made of an oxygen catalyst. In the first embodiment, the air hole 29 is formed in the battery case 27. Is the same as.

【0045】酸素透過性部材は、エチルセルロース,セ
ルロース,アセテート、およびブチレート等の材料によ
り構成されるのが好ましいが、酸素透過性を有する部材
であればこれらに限定されるものではない。
The oxygen permeable member is preferably made of a material such as ethyl cellulose, cellulose, acetate and butyrate, but is not limited to these as long as it has oxygen permeability.

【0046】なお、第1、第2の実施例の光空気2次電
池では、電池ケース27内に酸素を取り入れるために、
電池ケース27に空気孔29を設けた構成としたり、電
池ケース27の一部を酸素透過性部材により構成した
が、上記構成とせず、電池ケース27内に存在する酸素
と、充電により生成する酸素のみを利用して放電反応を
進行させることも可能である。従って、電池ケース27
の底部27bに空気孔29を設けたり、この底部27b
部分を酸素透過性の部材で構成することは必須ではな
い。但し、この場合には、外部からの酸素取り込みが不
可能となるため、電池の放電容量、即ちエネルギー密度
が上記実施例に比べて低下する。
In the light-air secondary batteries of the first and second embodiments, in order to take oxygen into the battery case 27,
Although the air holes 29 are provided in the battery case 27, or a part of the battery case 27 is made of an oxygen permeable member, the oxygen is not present in the above structure, and the oxygen existing in the battery case 27 and the oxygen generated by charging are not included. It is also possible to proceed the discharge reaction by utilizing only. Therefore, the battery case 27
An air hole 29 is provided in the bottom portion 27b of the
It is not essential that the part be made of an oxygen permeable member. However, in this case, since it is impossible to take in oxygen from the outside, the discharge capacity of the battery, that is, the energy density is reduced as compared with the above-mentioned embodiment.

【0047】以下、上述した実施例における光空気2次
電池の充放電時の動作を簡単に説明する。放電時には、
負極22上で、負極22をなす金属製の負極部材22a
と電解質23中の水酸イオンや水分子とが反応して、最
終的に金属酸化物が生成するとともに、負極端子26を
通じて電子を外部負荷に供給する。
The operation during charging / discharging of the photo-air secondary battery in the above embodiment will be briefly described below. When discharged,
On the negative electrode 22, a negative electrode member 22a made of metal and forming the negative electrode 22
Reacts with hydroxide ions and water molecules in the electrolyte 23 to finally generate a metal oxide, and also supplies electrons to the external load through the negative electrode terminal 26.

【0048】一方、正極21上では、空気中から取り込
んだ酸素と電解質23と酸素触媒(正極)21により形
成される三相界面において、酸素と電解質23中の水及
び負極から負荷を通して供給(放出)されてきた電子と
が反応して、水酸イオンを生成する。この放電反応にお
いては、電池系全体では正極21と負極部材22aでの
反応が相殺される結果、電解質23の減少は全く起きな
い。また、正極活物質である酸素は、電池ケース27の
底部27b(27b′)を介して空気中から取り込むた
め、その消費は問題とならない。結局、本放電反応によ
って変化するのは負極22をなす負極部材22aであ
り、放電反応により金属酸化物が生成する。従って、本
実施例の光空気2次電池を充電するということは、該金
属酸化物を還元するということにほかならない。
On the other hand, on the positive electrode 21, at the three-phase interface formed by oxygen taken from the air, the electrolyte 23, and the oxygen catalyst (positive electrode) 21, oxygen and water in the electrolyte 23 and the negative electrode supply (release) through a load. ) Reacts with the generated electrons to generate hydroxide ions. In this discharge reaction, the reactions in the positive electrode 21 and the negative electrode member 22a are canceled out in the entire battery system, so that the electrolyte 23 is not reduced at all. Further, since oxygen, which is the positive electrode active material, is taken in from the air through the bottom portion 27b (27b ') of the battery case 27, its consumption does not pose a problem. After all, what is changed by the main discharge reaction is the negative electrode member 22a forming the negative electrode 22, and the metal oxide is generated by the discharge reaction. Therefore, charging the optical-air secondary battery of this embodiment is nothing but reducing the metal oxide.

【0049】充電時は、負極22のn型半導体部22b
と電解質23との接触界面において、エネルギーバンド
が電解質23側へ向って上方曲りとなるn型半導体部2
2bの表面に太陽や蛍光燈等の光エネルギーを照射し、
n型半導体部22bの伝導帯に電子を励起して価電子帯
にホールを生む。このホールは、上記バンドの曲りに添
って電解質23側へ運ばれ、負極部材22a表面で水酸
イオンと反応して酸素と水を生成する。一方、伝導帯に
励起された電子は、バンドの曲りに添って、負極22の
負極部材22aへ移動し、やがて、電解質23と接触す
る負極部材22aの表面に達する。ここで、上記電子
が、電解質23中の水と反応して水酸イオンを生成する
とともに、負極部材22aの放電生成物である金属酸化
物を還元する。以上の経過を経て、光充電反応が進行す
る。
During charging, the n-type semiconductor portion 22b of the negative electrode 22 is charged.
The n-type semiconductor part 2 in which the energy band bends upward toward the electrolyte 23 at the contact interface between the electrolyte and the electrolyte 23
The surface of 2b is irradiated with light energy such as the sun or a fluorescent lamp,
Electrons are excited in the conduction band of the n-type semiconductor portion 22b to generate holes in the valence band. This hole is carried to the electrolyte 23 side along with the bending of the band, and reacts with the hydroxide ion on the surface of the negative electrode member 22a to generate oxygen and water. On the other hand, the electrons excited in the conduction band move to the negative electrode member 22a of the negative electrode 22 along with the bending of the band, and eventually reach the surface of the negative electrode member 22a in contact with the electrolyte 23. Here, the electrons react with water in the electrolyte 23 to generate hydroxide ions and reduce the metal oxide which is a discharge product of the negative electrode member 22a. The photocharge reaction proceeds through the above process.

【0050】以上説明したように、前記実施例に示した
構成をとることによって、従来の光空気2次電池にはな
い、空気中の酸素をエネルギー源とした放電と光エネル
ギーによる充電が可能で、充電器を必要としない省エネ
ルギー性に優れ、高エネルギー密度の光空気2次電池を
提供することができる。
As described above, by adopting the configuration shown in the above-mentioned embodiment, it is possible to perform discharge using oxygen in the air as an energy source and charge by light energy, which are not present in conventional photo-air secondary batteries. It is possible to provide a photo-air secondary battery that does not require a charger and is excellent in energy saving and has a high energy density.

【0051】そして、負極22にn型半導体部22bを
設けることにより、負極部材22aと別個にn型半導体
部22bを設けるから、活物質として優れた負極部材2
2aの材質に最適なn型半導体部22bを用いるこのと
ができ、光変換効率を向上させた光空気2次電池を得る
ことができる。さらに、負極部材22aとn型半導体部
22bとを一体に構成したので、負極部材22aに間隔
をあけてn型半導体部22bを配設する場合に比べ、光
空気2次電池の構造を簡単にすることができる。
Since the n-type semiconductor portion 22b is provided on the negative electrode 22 to provide the n-type semiconductor portion 22b separately from the negative electrode member 22a, the negative electrode member 2 excellent as an active material is provided.
This can be achieved by using the n-type semiconductor portion 22b that is most suitable for the material of 2a, and a photo-air secondary battery with improved light conversion efficiency can be obtained. Further, since the negative electrode member 22a and the n-type semiconductor portion 22b are integrally formed, the structure of the photo-air secondary battery can be simplified as compared with the case where the n-type semiconductor portion 22b is provided with a space in the negative electrode member 22a. can do.

【0052】[0052]

【発明の効果】以上説明したように、本発明の光空気2
次電池によれば、以下の効果を奏することができる。請
求項1記載の光空気2次電池によれば、正極は酸素触媒
を有する構成にされ、負極は、金属製の負極部材と、該
負極部材に電気的に接続されたn型半導体部とを有する
構成にされ、電池ケースには、負極のn型半導体部に光
を入射する受光部が設けられ、電解質中にn型半導体部
を接触することで形成されるエネルギーバンドの曲りを
利用して、光エネルギー→電気化学エネルギーへの変換
を行って充電する構成としたので、放電時には、酸素に
よる金属製の負極部材が酸化されることにより放電され
る。
As described above, the optical air 2 of the present invention is used.
According to the secondary battery, the following effects can be achieved. According to the photo-air secondary battery of claim 1, the positive electrode is configured to have an oxygen catalyst, and the negative electrode includes a negative electrode member made of metal and an n-type semiconductor portion electrically connected to the negative electrode member. The battery case is provided with a light receiving portion for injecting light into the n-type semiconductor portion of the negative electrode, and the bending of the energy band formed by contacting the n-type semiconductor portion with the electrolyte is utilized. Since the light energy is converted to the electrochemical energy to charge the battery, the metal negative electrode member is oxidized by oxygen during discharging, and thus discharged.

【0053】また、充電時には、n型半導体部に光エネ
ルギーを作用させ、n型半導体部の伝導帯に電子を励起
させて価電子帯にホールを生じせしめる。このホールを
上記エネルギーバンドの曲りに添って電解質側へ運び、
負極部材の表面で水酸イオンと反応させて酸素と水を生
成する。一方、伝導帯に励起された電子をエネルギーバ
ンドの曲りに添って負極部材へ移動させ、この負極部材
の表面で電解質中の水と反応して上記放電で酸化された
負極部材を還元する。従って、本発明の光空気2次電池
は、電気と光の何れのエネルギー形態でも充電可能とな
る。
At the time of charging, light energy is applied to the n-type semiconductor portion to excite electrons in the conduction band of the n-type semiconductor portion to generate holes in the valence band. Carry this hole to the electrolyte side along the bend of the energy band,
Oxygen and water are generated by reacting with hydroxide ions on the surface of the negative electrode member. On the other hand, the electrons excited in the conduction band are moved to the negative electrode member along the bending of the energy band, and the surface of the negative electrode member reacts with water in the electrolyte to reduce the negative electrode member oxidized by the above discharge. Therefore, the photo-air secondary battery of the present invention can be charged in any energy form of electricity and light.

【0054】また、正極に酸素触媒を用いているので、
空気中の酸素をエネルギー源(活物質)とした放電が可
能である。従って、実質的に正極活物質は空気中から簡
単に充分な量が補給でき、高エネルギー密度で、経済性
や省エネルギー性に優れた光空気2次電池を実現でき
る。さらに、負極は金属製の負極部材とn型半導体部と
を有する構成にしたから、2電極系の構成になり、電池
構造を簡易化することができる。
Since an oxygen catalyst is used for the positive electrode,
Discharge using oxygen in the air as an energy source (active material) is possible. Therefore, it is possible to substantially replenish the positive electrode active material from the air in a sufficient amount, and it is possible to realize a photo-air secondary battery having a high energy density and being excellent in economical efficiency and energy saving. Furthermore, since the negative electrode is configured to have the metal negative electrode member and the n-type semiconductor portion, it has a two-electrode system configuration, and the battery structure can be simplified.

【0055】請求項2記載の光空気2次電池によれば、
請求項1記載の効果を奏することができるとともに、上
記金属製の負極部材の少なくとも一部が、該金属の酸化
物、又は複数の金属よりなる複合成分系金属や合金より
なる構成にしたから、負極部材の金属の酸化物等が半導
体特性を示し、この負極部材が光充電反応を促進する。
このため、負極部材の金属の酸化物等とn型半導体部と
で光充電することができ、光充電可能な面積を大きくす
ることができ、光充電時間を短縮することができる。
According to the optical air secondary battery of claim 2,
While being able to exert the effect of claim 1, at least a part of the metal negative electrode member is composed of an oxide of the metal or a composite component metal or alloy composed of a plurality of metals, The metal oxide or the like of the negative electrode member exhibits semiconductor characteristics, and this negative electrode member accelerates the photocharge reaction.
Therefore, the metal oxide or the like of the negative electrode member and the n-type semiconductor portion can be photocharged, the photochargeable area can be increased, and the photocharge time can be shortened.

【0056】請求項3記載の光空気2次電池によれば、
請求項1または2記載の効果を奏することができるとと
もに、電池ケースには、該正極に外部の空気を接触させ
る空気孔が正極近傍に配設されている構成にしたから、
空気孔から外部の空気を正極に充分に補給でき、光空気
2次電池のエネルギー密度を高めることができる。
According to the photo-air secondary battery of claim 3,
In addition to being able to achieve the effect of claim 1 or 2, the battery case has a structure in which an air hole for contacting external air to the positive electrode is provided in the vicinity of the positive electrode.
External air can be sufficiently supplied to the positive electrode from the air holes, and the energy density of the photo-air secondary battery can be increased.

【0057】請求項4記載の光空気2次電池によれば、
請求項1または2記載の効果を奏することができるとと
もに、電池ケースの正極近傍部分が、酸素透過性部材よ
りなる構成にしたから、外部の酸素が酸素透過性部材を
通過して正極表面に拡散移動する。このため、正極に充
分な酸素を補給でき、光空気2次電池のエネルギー密度
を高めることができる。
According to the light-air secondary battery of claim 4,
The effect of claim 1 or 2 can be obtained, and since the portion near the positive electrode of the battery case is made of an oxygen permeable member, external oxygen diffuses through the oxygen permeable member to the surface of the positive electrode. Moving. Therefore, sufficient oxygen can be supplied to the positive electrode, and the energy density of the photo-air secondary battery can be increased.

【0058】請求項5記載の光空気2次電池によれば、
請求項3又は4記載の効果を奏することができるととも
に、正極が、酸素触媒と、電池ケースの空気孔または酸
素透過性部材よりなる部分を通して電池ケース内の電解
質の電池外部への流出と透過とを防止する撥水剤とで構
成したから、正極の酸素触媒で酸素が還元され、正極の
撥水剤で電池ケースの空気孔または酸素透過性部材より
なる部分を通して電池ケース内の電解質の電池外部への
流出と透過とが防止される。このため、電解質を電池ケ
ース内に収容した状態で、酸素触媒の表面に酸素を拡散
移動できる。従って、酸素と電解質と正極とで界面を形
成することができ、酸素の還元に基づく放電反応を円滑
に進行させることができる。
According to the optical-air secondary battery of claim 5,
The effect of claim 3 or 4 can be exerted, and the positive electrode allows the electrolyte in the battery case to flow out and permeate to the outside of the battery through the oxygen catalyst and a portion of the battery case formed of the air hole or the oxygen permeable member. Oxygen is reduced by the oxygen catalyst of the positive electrode, and the water repellent of the positive electrode passes through the air holes of the battery case or the part consisting of the oxygen permeable member to prevent the electrolyte inside the battery case from outside the battery. Outflow and permeation to Therefore, oxygen can diffuse and move to the surface of the oxygen catalyst while the electrolyte is contained in the battery case. Therefore, an interface can be formed between oxygen, the electrolyte, and the positive electrode, and the discharge reaction based on the reduction of oxygen can smoothly proceed.

【0059】請求項6記載の光空気2次電池によれば、
請求項3又は4記載の効果を奏することができるととも
に、正極と電池ケースとの間に、該電池ケースの空気孔
または酸素透過性部材よりなる部分を通して電解質の電
池ケース内から電池外部への流出と透過とを防止する撥
水膜または撥水板が設けられた構成にしたから、酸素と
電解質と正極とで界面を形成することができる。このた
め、酸素の還元に基づく放電反応を円滑に進行させるこ
とができる。
According to the photo-air secondary battery of claim 6,
The effect of claim 3 or 4 can be exerted, and the electrolyte flows out of the battery case to the outside of the battery through the air hole or the oxygen permeable member of the battery case between the positive electrode and the battery case. Since the water repellent film or the water repellent plate for preventing the permeation of the oxygen and the electrolyte is provided, the interface can be formed between oxygen, the electrolyte, and the positive electrode. Therefore, the discharge reaction based on the reduction of oxygen can smoothly proceed.

【0060】請求項7記載の光空気2次電池によれば、
請求項3〜6いずれか記載の効果を奏することができる
とともに、正極と電池ケースとの間に、酸素を正極表面
に一様に拡散せしめる拡散紙が設けられた構成にしたか
ら、酸素を正極表面に移動でき、酸素の還元反応を円滑
に進行させることができる。
According to the photo-air secondary battery of claim 7,
It is possible to obtain the effect according to any one of claims 3 to 6, and since the diffusion paper is provided between the positive electrode and the battery case to uniformly diffuse oxygen on the surface of the positive electrode. It can move to the surface, and the reduction reaction of oxygen can proceed smoothly.

【0061】請求項8記載の光空気2次電池によれば、
請求項6記載の効果を奏することができるとともに、撥
水膜または撥水板と電池ケースとの間に、酸素を正極表
面に一様に拡散せしめる拡散紙が設けられた構成にした
から、酸素を正極表面に移動でき、酸素と電解質と正極
とで形成される界面の増大に寄与させ、酸素の還元反応
を円滑に進行させることができる。
According to the opto-air secondary battery of claim 8,
In addition to the effect of claim 6, a diffusion paper is provided between the water repellent film or water repellent plate and the battery case to uniformly diffuse oxygen on the surface of the positive electrode. Can be transferred to the surface of the positive electrode, contributing to an increase in the interface formed between oxygen, the electrolyte, and the positive electrode, so that the reduction reaction of oxygen can proceed smoothly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光空気2次電池に係る第一の実施例の
外観を示した斜視図である。
FIG. 1 is a perspective view showing an appearance of a first embodiment of a photo-air secondary battery of the present invention.

【図2】図1に示す第一の実施例の光空気2次電池のX
−X’線に添う断面図である。
2 is an X of the photo-air secondary battery of the first embodiment shown in FIG.
It is a sectional view taken along the line -X '.

【図3】本発明の光空気2次電池に係る第二の実施例を
示す断面図である。
FIG. 3 is a cross-sectional view showing a second embodiment of the photo-air secondary battery of the present invention.

【図4】従来の光空気2次電池の外観図を示したもので
ある。
FIG. 4 is an external view of a conventional photo-air secondary battery.

【図5】図4の等価回路を示したものである。5 shows an equivalent circuit of FIG.

【図6】従来型光蓄電池の構成図を示したものである。FIG. 6 is a diagram showing a configuration of a conventional light accumulator.

【図7】第1例の従来型光化学2次電池の構成図を示し
たものである。
FIG. 7 is a configuration diagram of a conventional photochemical secondary battery of Example 1.

【図8】第2例の従来型光化学2次電池の簡単な構成と
エネルギー準位図を示したものである。
FIG. 8 is a diagram showing a simple configuration and energy level diagram of a conventional photochemical secondary battery of a second example.

【符号の説明】[Explanation of symbols]

21…正極 22…負極 22a…負極部材 22b…n型半導体部 23…電解質 24…セパレータ 27…電池ケース 27a…受光部 28…撥水膜(撥水板) 29…空気孔 30…拡散紙 21 ... Positive electrode 22 ... Negative electrode 22a ... Negative electrode member 22b ... N type semiconductor part 23 ... Electrolyte 24 ... Separator 27 ... Battery case 27a ... Light receiving part 28 ... Water repellent film (water repellent plate) 29 ... Air hole 30 ... Diffusion paper

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 正極と、負極と、これら正極と負極とに
接触する電解質と、上記正極と上記負極と上記電解質と
が収容される電池ケースとを有し、上記正極は酸素触媒
を有する構成にされ、上記負極は、金属製の負極部材
と、該負極部材に電気的に接続されたn型半導体部とを
有する構成にされ、上記電池ケースには、上記負極のn
型半導体部に光を入射する受光部が設けられ、上記負極
部材の酸化反応と酸素の還元反応により放電され、上記
n型半導体部に光エネルギーを作用させて、放電により
酸化した負極部材を還元させて充電されることを特徴と
する光空気2次電池。
1. A structure having a positive electrode, a negative electrode, an electrolyte in contact with the positive electrode and the negative electrode, a battery case accommodating the positive electrode, the negative electrode, and the electrolyte, and the positive electrode having an oxygen catalyst. The negative electrode is configured to include a negative electrode member made of metal and an n-type semiconductor portion electrically connected to the negative electrode member.
A light receiving portion for injecting light into the type semiconductor portion is provided, and the negative electrode member is discharged by an oxidation reaction and a reduction reaction of oxygen. Light energy is applied to the n type semiconductor portion to reduce the negative electrode member oxidized by the discharge. A photo-air secondary battery that is charged by being charged.
【請求項2】 上記金属製の負極部材の少なくとも一部
が、該金属の酸化物、又は複数の金属よりなる複合成分
系金属や合金よりなることを特徴とする請求項1記載の
光空気2次電池。
2. The light-air 2 according to claim 1, wherein at least a part of the metal negative electrode member is made of an oxide of the metal or a composite component type metal or alloy composed of a plurality of metals. Next battery.
【請求項3】 電池ケースには、上記正極に外部の空気
を接触させる空気孔が正極近傍に配設されていることを
特徴とする請求項1または2記載の光空気2次電池。
3. The photo-air secondary battery according to claim 1, wherein the battery case is provided with an air hole for bringing external air into contact with the positive electrode in the vicinity of the positive electrode.
【請求項4】 電池ケースの正極近傍部分が、酸素透過
性部材よりなることを特徴とする請求項1または2記載
の光空気2次電池。
4. The photo-air secondary battery according to claim 1, wherein a portion near the positive electrode of the battery case is made of an oxygen permeable member.
【請求項5】 正極が、酸素触媒と、電池ケースの空気
孔または酸素透過性部材よりなる部分を通して電池ケー
ス内の電解質の電池外部への流出と透過とを防止する撥
水剤とで構成されていることを特徴とする請求項3又は
4記載の光空気2次電池。
5. The positive electrode is composed of an oxygen catalyst and a water repellent that prevents the electrolyte in the battery case from flowing out and permeating to the outside of the battery through the air holes or the oxygen permeable member of the battery case. The photo-air secondary battery according to claim 3 or 4, wherein
【請求項6】 正極と電池ケースとの間に、該電池ケー
スの空気孔または酸素透過性部材よりなる部分を通して
電解質の電池ケース内から電池外部への流出と透過とを
防止する撥水膜または撥水板が設けられたことを特徴と
する請求項3又は4記載の光空気2次電池。
6. A water-repellent film for preventing the outflow and permeation of an electrolyte from the inside of the battery case to the outside of the battery by passing an air hole or a portion formed of an oxygen permeable member between the positive electrode and the battery case. The photo-air secondary battery according to claim 3, further comprising a water repellent plate.
【請求項7】 正極と電池ケースとの間に、酸素を正極
表面に一様に拡散せしめる拡散紙が設けられたことを特
徴とする請求項3〜6いずれか記載の光空気2次電池。
7. The photo-air secondary battery according to claim 3, further comprising a diffusion paper provided between the positive electrode and the battery case for uniformly diffusing oxygen on the surface of the positive electrode.
【請求項8】 撥水膜または撥水板と電池ケースとの間
に、酸素を正極表面に一様に拡散せしめる拡散紙が設け
られたことを特徴とする請求項6記載の光空気2次電
池。
8. The light-air secondary according to claim 6, wherein a diffusion paper is provided between the water-repellent film or water-repellent plate and the battery case to uniformly diffuse oxygen to the surface of the positive electrode. battery.
JP864693A 1993-01-21 1993-01-21 Light-air secondary battery Pending JPH06223889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP864693A JPH06223889A (en) 1993-01-21 1993-01-21 Light-air secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP864693A JPH06223889A (en) 1993-01-21 1993-01-21 Light-air secondary battery

Publications (1)

Publication Number Publication Date
JPH06223889A true JPH06223889A (en) 1994-08-12

Family

ID=11698715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP864693A Pending JPH06223889A (en) 1993-01-21 1993-01-21 Light-air secondary battery

Country Status (1)

Country Link
JP (1) JPH06223889A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148515B1 (en) 2006-01-07 2006-12-12 Tyntek Corp. Light emitting device having integrated rectifier circuit in substrate
DE10235243B4 (en) * 2001-08-08 2009-07-30 Honda Giken Kogyo K.K. Exhaust system for a motorcycle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10235243B4 (en) * 2001-08-08 2009-07-30 Honda Giken Kogyo K.K. Exhaust system for a motorcycle
US7148515B1 (en) 2006-01-07 2006-12-12 Tyntek Corp. Light emitting device having integrated rectifier circuit in substrate

Similar Documents

Publication Publication Date Title
US4452867A (en) Storage battery containing voltage reducing means
US7122873B2 (en) Hybrid solid state/electrochemical photoelectrode for hyrodrogen production
US4643817A (en) Photocell device for evolving hydrogen and oxygen from water
EP1175938A1 (en) Photocatalytic film of iron oxide, electrode with such a photocatalytic film, method of producing such films, photoelectrochemical cell with the electrode and photoelectrochemical system with the cell, for the cleavage of water into hydrogen and oxygen
US5346785A (en) Photochargeable air battery
US4064326A (en) Photo-electrochemical cell containing chalcogenide redox couple and having storage capability
Lokhande et al. Electrochemical photovoltaic cells for solar energy conversion
JP2998765B2 (en) Light air secondary battery
JP2006040722A (en) Secondary battery
JP3304006B2 (en) Photochemical secondary battery
JP3346449B2 (en) Photohydrogenated air secondary battery
JPH06223889A (en) Light-air secondary battery
JP3194449B2 (en) Light air secondary battery
US4242423A (en) Optical-charging type half-cell, and photochemical battery using the same
JP3025798B2 (en) Photochemical secondary battery and method of manufacturing photochemical secondary battery
JP2002237611A (en) Photoelectric conversion element
JP3194448B2 (en) Light air secondary battery
JP3273477B2 (en) Light air secondary battery
JP3196151B2 (en) Light air secondary battery
US4409301A (en) Bifunctional gas diffusion electrode
JP3306685B2 (en) Sealed type photo-oxygen secondary battery
JPH07130407A (en) Photochemical secondary battery
JPH06215807A (en) Light secondary battery
JPH0785895A (en) Photochemical secondary battery
Li et al. Fabrication and characterization of miniaturized photo-electro-chemical solar cells