JPH06215807A - Light secondary battery - Google Patents

Light secondary battery

Info

Publication number
JPH06215807A
JPH06215807A JP543693A JP543693A JPH06215807A JP H06215807 A JPH06215807 A JP H06215807A JP 543693 A JP543693 A JP 543693A JP 543693 A JP543693 A JP 543693A JP H06215807 A JPH06215807 A JP H06215807A
Authority
JP
Japan
Prior art keywords
negative electrode
light
metal
secondary battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP543693A
Other languages
Japanese (ja)
Inventor
Takaharu Akuto
敬治 阿久戸
Naoki Kato
直樹 加藤
Tsutomu Ogata
努 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP543693A priority Critical patent/JPH06215807A/en
Publication of JPH06215807A publication Critical patent/JPH06215807A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

PURPOSE:To provide a light secondary battery charged by the light energy, requiring no charger, excellent in an energy saving property, and having a high energy density. CONSTITUTION:A light reception section 27a made of a light transmitting material is provided on one face of a square box-like battery case 27, and a wall section 27b is provided on the other face. A negative electrode member 22a constituting a negative electrode 22 is arranged on the light reception section 27a side in the battery case 27, a positive electrode 21 is arranged on the wall section 27b side, a liquid electrolyte 23 is filled between both electrodes 21, 22, and a separator 24 made of a material such as glass fibers through which the electrolyte 23 can pass is provided between both electrodes 21, 22. Light electrodes made of a semiconductor and a photochemical exciting material are not required, and a light secondary battery consisting of a two-electrode system and having a simple structure is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充電と放電の双方が可
能な2次電池に係わり、酸化反応により放電し、光エネ
ルギーにより充電する光2次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery which can be charged and discharged, and more particularly to an optical secondary battery which is discharged by an oxidation reaction and charged by light energy.

【0002】[0002]

【従来の技術】太陽可視光等の光エネルギーで2次電池
を充電する試みは、以前からなされており、この種の電
池としては、アモルファスシリコン太陽電池とニッケル
−カドミウム蓄電池や鉛蓄電池等の2次電池を組合せた
太陽光蓄電池が知られている。
2. Description of the Related Art Attempts have been made to charge a secondary battery with light energy such as visible light from the sun, and examples of this type of battery include an amorphous silicon solar battery, a nickel-cadmium storage battery, a lead storage battery and the like. A solar battery that combines a secondary battery is known.

【0003】この光2次電池を図3ないし図4を参照し
て説明する。図3は従来の光2次電池の斜視図であり、
図4は図3の光2次電池の等価回路図である。図3、図
4に示す光2次電池は、太陽電池1と、この太陽電池1
で得られた電力を貯蔵する蓄電池2と、太陽電池1に生
じた電圧を調整する電圧調整回路3と、蓄電池2から太
陽電池1に電流が流れるのを防止する逆流防止ダイオー
ド4とから構成されている。光2次電池は、太陽電池1
で発電し、この太陽電池1で得られた電力を蓄電池2に
貯蔵させる二段階型(間接型)方式に構成されている。
This optical secondary battery will be described with reference to FIGS. FIG. 3 is a perspective view of a conventional optical secondary battery,
FIG. 4 is an equivalent circuit diagram of the optical secondary battery of FIG. The optical secondary battery shown in FIGS. 3 and 4 includes a solar cell 1 and the solar cell 1.
The storage battery 2 for storing the electric power obtained in 1., the voltage adjustment circuit 3 for adjusting the voltage generated in the solar cell 1, and the backflow prevention diode 4 for preventing the current from flowing from the storage battery 2 to the solar cell 1. ing. Photovoltaic secondary battery is solar cell 1
It is configured in a two-stage type (indirect type) system in which the electric power generated by the solar cell 1 is stored in the storage battery 2.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の光2次電池にあっては、電圧調整回路3や逆
流防止ダイオード4等の構成部品が必須であるため、光
2次電池の構造が複雑で大きなものとなるという欠点を
有している。
However, in such a conventional optical secondary battery, since the components such as the voltage adjusting circuit 3 and the backflow prevention diode 4 are indispensable, the structure of the optical secondary battery is required. Has the drawback of being complex and large.

【0005】また、従来の光2次電池を適正に機能させ
るには、太陽電池1で発電した電力を蓄電池2へ充電す
るのに適した電圧に調整する必要があり、この調整のた
めに消費されるエネルギー損失が大であるという問題が
あった。また、上記光2次電池は、光→電気→電気化学
の3段階のエネルギー変換ステップを経るため、このエ
ネルギー変換ステップのための構成部品数の増加や、あ
るいはこのエネルギー変換ステップに起因するエネルギ
ーロスの増大といった問題も有している。さらに、太陽
電池1を製造するには、pn接合設備等の比較的高度の
製造設備が必要となるなど、太陽電池1の製造上の困難
性も有している。
Further, in order for the conventional optical secondary battery to function properly, it is necessary to adjust the electric power generated by the solar cell 1 to a voltage suitable for charging the storage battery 2, which is consumed for this adjustment. There was a problem that the energy loss was large. In addition, since the above photo secondary battery undergoes three steps of energy conversion steps of light → electricity → electrochemistry, an increase in the number of components for this energy conversion step or energy loss resulting from this energy conversion step. It also has the problem of increasing Furthermore, there are also difficulties in manufacturing the solar cell 1, such as the manufacturing of the solar cell 1 requires relatively high-level manufacturing equipment such as a pn junction equipment.

【0006】一方、図5は、従来の光蓄電池を示す図で
ある。この光蓄電池は、透明ガラス基板7と、p型半導
体8と、i型半導体9と、集電体10、11と、陰極1
2と、陽極13と、固体電解質14と、パッシベーショ
ン層15と、透明電極16とを具備してなる電池であ
る。この光蓄電池においても、上述の説明と同様、構造
が複雑であり、半導体電極製造の問題やエネルギー密度
が小さいといった欠点がある。
On the other hand, FIG. 5 is a diagram showing a conventional light storage battery. This light storage battery includes a transparent glass substrate 7, a p-type semiconductor 8, an i-type semiconductor 9, current collectors 10 and 11, and a cathode 1.
2 is a battery including an anode 13, a solid electrolyte 14, a passivation layer 15, and a transparent electrode 16. Similar to the above description, this light storage battery also has the drawbacks that the structure is complicated, the problem of semiconductor electrode manufacturing and the energy density are small.

【0007】図6は、従来の光化学2次電池の構成図を
示したものである。図中符号17は電池容器、17aは
電池容器を密閉するための蓋、18はセパレータ、19
はn型半導体よりなる光電極、20aは充電用の電極、
20bは放電用の電極である。図7は、光化学2次電池
の簡単な構成とエネルギー準位図を示したものである。
FIG. 6 is a block diagram of a conventional photochemical secondary battery. In the figure, reference numeral 17 is a battery container, 17a is a lid for sealing the battery container, 18 is a separator, 19
Is a photoelectrode made of an n-type semiconductor, 20a is an electrode for charging,
20b is an electrode for discharge. FIG. 7 shows a simple structure and energy level diagram of a photochemical secondary battery.

【0008】これらの光化学2次電池は、半導体−電解
質界面の電気化学特性を利用したものであり、即ち、半
導体電極を電解質と接触させた時に生じるエネルギーバ
ンドの曲りを利用して光エネルギーを電気化学的に蓄積
するものである。図6に示す光化学2次電池の光変換部
は、半導体電極19を電解質Sに浸漬させるだけで構成
されており、この点、太陽電池等の必要な図3や図4に
示した従来の光2次電池に比べ優れている。
These photochemical secondary batteries utilize the electrochemical characteristics of the semiconductor-electrolyte interface, that is, the light energy is converted into electricity by utilizing the bending of the energy band generated when the semiconductor electrode is brought into contact with the electrolyte. It is chemically accumulated. The photo-conversion part of the photochemical secondary battery shown in FIG. 6 is configured only by immersing the semiconductor electrode 19 in the electrolyte S, and in this respect, the conventional light shown in FIG. 3 and FIG. Superior to secondary batteries.

【0009】しかし、光エネルギーから電気化学エネル
ギーへの変換には比較的高価な半導体材料よりなる光電
極が必要となり、この電極の存在なしには、光充電が行
えず、2次電池として機能しないのは言うまでもないこ
とである。従って、これらの従来電池は、それぞれ、4
電極および3電極で構成されており、正極と負極の他に
1〜2電極必要な多電極型電池とならざるを得ないとい
った問題が有った。また、図7に示すように、放電から
充電に移る(あるいは、その逆)には、スイッチ等を使
用して電極の接続を切り替えなければならないといった
欠点が有った。このように構成部材が多いため、基本的
には大きなエネルギー密度が望めないという欠点が有っ
た。
However, the conversion of light energy into electrochemical energy requires a photoelectrode made of a relatively expensive semiconductor material. Without this electrode, photocharging cannot be performed and the photocell does not function as a secondary battery. Needless to say. Therefore, these conventional batteries each have 4
It is composed of electrodes and 3 electrodes, and there is a problem that it becomes a multi-electrode type battery that requires 1 to 2 electrodes in addition to the positive electrode and the negative electrode. In addition, as shown in FIG. 7, there is a drawback in that switching from discharge to charge (or vice versa) requires switching the electrode connection using a switch or the like. Since there are many constituent members as described above, there is a drawback that a large energy density cannot be basically expected.

【0010】本発明は、上記事情に鑑みなされたもの
で、酸化反応により放電し、光エネルギーにより充電
し、充電器を必要としない省エネルギー性に優れ、高エ
ネルギー密度の光2次電池を得ることにあり、特に、半
導体や光化学励起物質よりなる光電極を必ずしも必要と
せず、2電極系よりなる簡単な構成とした光2次電池を
実現することにある。
The present invention has been made in view of the above circumstances, and provides an optical secondary battery which is discharged by an oxidation reaction and charged by light energy, which is excellent in energy saving and does not require a charger and has a high energy density. In particular, it is to realize a photo secondary battery having a simple structure including a two-electrode system, which does not necessarily require a photo electrode composed of a semiconductor or a photochemically excited substance.

【0011】[0011]

【課題を解決するための手段】請求項1記載の光2次電
池は、正極と、負極と、これら正極と負極とに接触する
電解質と、上記負極と上記正極と上記電解質とが収容さ
れる電池ケースとを有し、該電池ケースには、上記負極
をなす負極部材に光を入射する受光部が設けられ、上記
負極をなす金属製の負極部材の酸化反応により放電さ
れ、該放電により該負極部材に生成した放電生成物に光
エネルギーを作用させることにより、該生成物を還元さ
せて充電されることを特徴とするものである。
A secondary battery according to claim 1 contains a positive electrode, a negative electrode, an electrolyte in contact with the positive electrode and the negative electrode, the negative electrode, the positive electrode, and the electrolyte. A battery case, and a light-receiving portion for injecting light into the negative electrode member forming the negative electrode is provided in the battery case, and the metal negative electrode member forming the negative electrode is discharged by the oxidation reaction. By applying light energy to the discharge product generated in the negative electrode member, the product is reduced and charged.

【0012】請求項2記載の光2次電池は、請求項1記
載の光2次電池であって、上記金属製の負極部材の少な
くとも一部が、該金属の酸化物、又は複数の金属よりな
る複合成分系金属や合金よりなることを特徴とするもの
である。請求項3記載の光2次電池は、請求項1記載の
光2次電池であって、金属製の負極部材に、該負極部材
と空気中の酸素、窒素、二酸化炭素との接触、あるいは
電解質との接触により自然生成した金属酸化物、窒化
物、炭化物、水酸化物等の化合物、あるいはこれらの複
合化合物が含有されていることを特徴とするものであ
る。
A second aspect of the present invention is the optical secondary cell according to the first aspect, wherein at least a part of the metal negative electrode member is made of an oxide of a metal or a plurality of metals. It is characterized in that it is composed of a composite component type metal or alloy. The photo secondary battery according to claim 3 is the photo secondary battery according to claim 1, wherein a negative electrode member made of metal is contacted with oxygen, nitrogen, carbon dioxide in the negative electrode member and air, or an electrolyte. It is characterized in that it contains a compound such as a metal oxide, a nitride, a carbide, a hydroxide or the like which is naturally generated by the contact with the compound, or a composite compound thereof.

【0013】[0013]

【作用】本発明の光2次電池にあっては、以下の作用を
有する。請求項1記載の光2次電池では、負極をなす金
属製の負極部材の酸化反応により放電され、該放電によ
り該負極部材に生成した放電生成物に光エネルギーを作
用させ、該生成物を還元させて充電される構成としたの
で、放電時には、負極をなす金属製の負極部材が酸化さ
れることにより放電され、充電時には、負極をなす負極
部材に受光部から光を入射し、該酸化により負極部材に
生成した生成物に光エネルギーを作用させることにより
上記生成物が還元される。従って、かかる光2次電池
は、電気と光の何れのエネルギー形態でも充電可能であ
り、放電中でも充電反応が進行可能である。
The optical secondary battery of the present invention has the following actions. In the photo secondary battery according to claim 1, light energy is caused to act on the discharge product generated in the negative electrode member by the oxidation reaction of the metal negative electrode member forming the negative electrode, and the product is reduced. Since it is configured to be charged by being discharged, the metal negative electrode member forming the negative electrode is oxidized and discharged during discharge, and at the time of charging, light is incident on the negative electrode member forming the negative electrode from the light receiving portion and is oxidized by the oxidation. The above product is reduced by applying light energy to the product generated on the negative electrode member. Therefore, such a photo secondary battery can be charged in any energy form of electricity and light, and the charging reaction can proceed even during discharging.

【0014】請求項2記載の光2次電池では、請求項1
記載の作用を有するとともに、負極部材の少なくとも一
部をなす該金属の酸化物、又は複数の金属よりなる複合
成分系金属や合金の酸化反応により放電され、前記金属
の酸化物等に光エネルギーを作用させることにより、金
属の酸化物等を還元させて充電される。
According to the second aspect of the present invention, there is provided the optical secondary battery according to the first aspect.
In addition to having the action described above, the metal oxide forming at least a part of the negative electrode member, or discharged by the oxidation reaction of a composite component metal or alloy composed of a plurality of metals, is exposed to light energy to the metal oxide or the like. By causing it to act, the metal oxide or the like is reduced and charged.

【0015】請求項3記載の光2次電池では、請求項1
記載の作用を有するとともに、金属製の負極部材に、該
負極部材と空気中の酸素、窒素、二酸化炭素との接触、
あるいは電解質との接触により自然生成した金属酸化
物、窒化物、炭化物、水酸化物等の化合物、あるいはこ
れらの複合化合物が含有されているから、自然生成した
金属酸化物等の酸化反応により放電され、かかる金属酸
化物等に光エネルギーを作用させることにより、金属酸
化物等を還元させて充電される。
According to the third aspect of the present invention, there is provided the optical secondary battery according to the first aspect.
Along with the action described, the negative electrode member made of metal, the negative electrode member and oxygen in the air, nitrogen, contact with carbon dioxide,
Alternatively, since it contains compounds such as metal oxides, nitrides, carbides, hydroxides, etc. that are naturally generated by contact with the electrolyte, or a complex compound thereof, it is discharged by the oxidation reaction of the naturally generated metal oxides, etc. By applying light energy to the metal oxide or the like, the metal oxide or the like is reduced and charged.

【0016】[0016]

【実施例】図1および図2は、本発明に係る光2次電池
の第1の実施例を示す図で、図中符号21は導電性材料
や触媒よりなる正極、22は負極、22aは負極をなす
金属製の負極部材、23は正極と負極とに接触する電解
質、24はセパレータ、25は正極21に電気的に接続
された正極端子、26は負極部材22aに電気的に接続
された負極端子、27は電池ケースである。
1 and 2 are views showing a first embodiment of an optical secondary battery according to the present invention, in which reference numeral 21 is a positive electrode made of a conductive material or a catalyst, 22 is a negative electrode, and 22a is A metal negative electrode member forming the negative electrode, 23 is an electrolyte that contacts the positive electrode and the negative electrode, 24 is a separator, 25 is a positive electrode terminal electrically connected to the positive electrode 21, and 26 is electrically connected to the negative electrode member 22a. The negative electrode terminal 27 is a battery case.

【0017】上記電池ケース27は、外形角箱状に形成
され、一方の面に光透過材等からなる受光部27aが設
けられ、他方の面の板状の壁部27bが設けられた構成
にされている。この電池ケース27内には、受光部27
aの反対側に位置する壁部27b側に配設された正極2
1と、受光部27a側に配設された負極22と、これら
正極21と負極22との間に充満された液状電解質23
と、この電解質23が通過可能なガラス繊維等の材料か
らなり、上記正極21と負極22との間に設けられてい
るセパレータ24とを備えた構成にされている。なお、
前記電池ケース27を角箱状に形成したが、本願はこれ
に限定するものでなく、円柱状等の形状でもよい。
The battery case 27 is formed in a rectangular box shape and has a light receiving portion 27a made of a light transmitting material or the like on one surface and a plate-like wall portion 27b on the other surface. Has been done. In the battery case 27, the light receiving portion 27
Positive electrode 2 disposed on the side of wall portion 27b located on the opposite side of a
1, the negative electrode 22 disposed on the light receiving portion 27a side, and the liquid electrolyte 23 filled between the positive electrode 21 and the negative electrode 22.
And a separator 24 made of a material such as glass fiber through which the electrolyte 23 can pass and provided between the positive electrode 21 and the negative electrode 22. In addition,
Although the battery case 27 is formed in the shape of a rectangular box, the present invention is not limited to this and may have a cylindrical shape or the like.

【0018】上記正極21は、電解質23中で金属製の
負極部材22aよりも貴な電位を示す導電性材料であれ
ば特に限定されず、カーボンやニッケル、および、これ
らにPtやPdを担持した触媒(Pt−C,Pd−C,
Pt−Ni,Pd−Ni)、さらに、Pt,Pd,I
r,Rh,Os,Ru,Pt−Co,Pt−Au,Pt
−Sn,Pd−Au,Ru−Ta,Pt−Pd−Au,
Pt−酸化物,Au,Ag,Ag−C,Ni−P,Ag
−Ni−P,ラネーニッケル,Ni−Mn,Ni−酸化
コバルト、Cu−Ag,Cu−Au,ラネー銀等の貴金
属および合金,ホウ化ニッケル,ホウ化コバルト,炭化
タングステン,水酸化チタン,リン化タングステン,リ
ン化ニオブ,遷移金属の炭化物,スピネル化合物,酸化
銀,酸化タングステン,遷移金属のペロブスカイト型イ
オン結晶等の無機化合物、および、フタロシアニン,金
属フタロシアニン,活性炭,キノン類等の有機化合物の
いずれかで構成されるのが好ましい。
The positive electrode 21 is not particularly limited as long as it is a conductive material having a higher potential than the negative electrode member 22a made of metal in the electrolyte 23, and carbon, nickel, and Pt or Pd supported on these materials. Catalyst (Pt-C, Pd-C,
Pt-Ni, Pd-Ni), and further Pt, Pd, I
r, Rh, Os, Ru, Pt-Co, Pt-Au, Pt
-Sn, Pd-Au, Ru-Ta, Pt-Pd-Au,
Pt-oxide, Au, Ag, Ag-C, Ni-P, Ag
-Ni-P, Raney nickel, Ni-Mn, Ni-cobalt oxide, Cu-Ag, Cu-Au, precious metals and alloys such as Raney silver, nickel boride, cobalt boride, tungsten carbide, titanium hydroxide, tungsten phosphide , Inorganic compounds such as niobium phosphide, transition metal carbides, spinel compounds, silver oxide, tungsten oxide, perovskite ionic crystals of transition metals, and organic compounds such as phthalocyanines, metal phthalocyanines, activated carbons, and quinones It is preferably constructed.

【0019】また、負極22をなす負極部材22aの材
料としては、Ti,Zn,Fe,Pb,Al,Co,H
f,V,Nb,Ni,Pd,Pt,Cu,Ag,Cd,
In,Ge,Sn,Bi,Th,Ta,Cr,Mo,
W,Pr,Bi,U等、その酸化物が半導体特性を示す
金属、又は該金属の少なくとも一部が該金属の酸化物、
および、これらの複合成分系金属、合金等で構成され
る。なお、これらの金属は、空気中の酸素、窒素、二酸
化炭素、あるいは、電解質との接触により微量の金属酸
化物、窒化物、炭化物、水酸化物、あるいはこれらの複
合化合物をその表面に自然生成するが、半導体特性を示
す生成物は光充電反応を促進するので、これらのような
化合物が負極22中に含まれることは好ましい。
The material of the negative electrode member 22a forming the negative electrode 22 is Ti, Zn, Fe, Pb, Al, Co, H.
f, V, Nb, Ni, Pd, Pt, Cu, Ag, Cd,
In, Ge, Sn, Bi, Th, Ta, Cr, Mo,
A metal, such as W, Pr, Bi, U, whose oxide exhibits semiconductor characteristics, or an oxide of at least a part of the metal,
In addition, it is composed of a metal, alloy or the like of these composite components. It should be noted that these metals naturally generate a trace amount of metal oxides, nitrides, carbides, hydroxides, or composite compounds thereof on the surface by contact with oxygen, nitrogen, carbon dioxide in the air, or an electrolyte. However, it is preferable that compounds such as these are contained in the negative electrode 22 because products having semiconductor characteristics accelerate the photocharge reaction.

【0020】また、本実施例の電解質23として、[F
e(CN)63-/[Fe(CN)64-、I2/I-、F
3+/Fe2+等のレドックスイオン対を含む水溶液や、
水酸化カリウム、水酸化ナトリウム、塩化アンモニウム
等の塩基や、その他弱酸等の液状電解質が用いられる。
また、充電性能は低下するが、硫酸、塩酸等の強酸や塩
を使うこともできる。なお、本実施例においては、上述
したように液状の電解質23を用いているが、電解質2
3は、液状に限定されることなく、この電解質23を介
する正極21と負極22間の電子移動が妨げられないも
のであれば、固体状やペースト状等どのような形態の電
解質でも用いることができる。
Further, as the electrolyte 23 of this embodiment, [F
e (CN) 6] 3- / [Fe (CN) 6] 4-, I 2 / I -, F
an aqueous solution containing a redox ion pair such as e 3+ / Fe 2+ ,
A base such as potassium hydroxide, sodium hydroxide or ammonium chloride, or a liquid electrolyte such as a weak acid is used.
Further, although the charging performance is lowered, a strong acid or salt such as sulfuric acid or hydrochloric acid can be used. In this embodiment, the liquid electrolyte 23 is used as described above, but the electrolyte 2
No. 3 is not limited to a liquid, and any form of electrolyte such as solid or paste may be used as long as it does not hinder the electron transfer between the positive electrode 21 and the negative electrode 22 through the electrolyte 23. it can.

【0021】セパレータ24は、ガラス繊維やポリアミ
ド系繊維不織布、ポリオレフィン系繊維不織布、セルロ
ース、合成樹脂等の電解質に対する耐久性を有するもの
であれば特に限定されない。
The separator 24 is not particularly limited as long as it has durability against electrolytes such as glass fiber, polyamide fiber nonwoven fabric, polyolefin fiber nonwoven fabric, cellulose and synthetic resin.

【0022】電池ケース27は、ABS樹脂やフッ素樹
脂等の電解質23に侵されない材質であれば特に限定さ
れない。ただし、電池ケース27の負極側に位置する受
光部部分27aは、光を透過する(無色あるいは有色
の)部材、例えば、ガラス、石英ガラス、アクリル、ス
チロール等からなる透明板や透明フィルム等で構成され
る。もちろん電池ケース27全体をこれら透明板や透明
フィルム等の部材で構成してもよい。このように受光部
27a部分を光が透過される構成としたのは、光充電反
応を進行させるために、負極22をなす負極部材22a
の表面に照射光を到達させる際、この照射光が電池ケー
ス27によって吸収あるいは反射されて、負極22をな
す負極部材22aの表面に到達する光エネルギーが極端
に低下するのを防止するためである。
The battery case 27 is not particularly limited as long as it is made of a material such as ABS resin or fluororesin that is not attacked by the electrolyte 23. However, the light-receiving portion 27a located on the negative electrode side of the battery case 27 is made of a light-transmissive (colorless or colored) member, for example, a transparent plate or transparent film made of glass, quartz glass, acrylic, styrene, or the like. To be done. Of course, the entire battery case 27 may be made of such a member as a transparent plate or a transparent film. As described above, the light receiving portion 27a is configured to transmit light because the negative electrode member 22a forming the negative electrode 22 is formed in order to promote the photocharge reaction.
This is to prevent the irradiation light from being absorbed or reflected by the battery case 27 and reaching the surface of the negative electrode member 22a forming the negative electrode 22 when the irradiation light reaches the surface thereof. .

【0023】以下、上述した実施例における光2次電池
の充放電時の動作を簡単に説明する。放電時には、負極
22上で、負極22をなす金属製の負極部材22aと電
解質23中の水酸イオンや水分子とが反応して、最終的
に金属酸化物が生成するとともに、負極端子26を通じ
て電子を外部負荷に供給する。一方、正極21上では、
負極22から外部負荷を通して供給(放出)されてきた
電子と電解質23イオンや溶存酸素とが反応して、電解
質23等を還元する。
The operation of charging and discharging the optical secondary battery in the above-described embodiment will be briefly described below. At the time of discharge, the metal negative electrode member 22a forming the negative electrode 22 reacts with the hydroxide ions and water molecules in the electrolyte 23 on the negative electrode 22 to finally generate a metal oxide, and through the negative electrode terminal 26. Supply electrons to an external load. On the other hand, on the positive electrode 21,
The electrons supplied (released) from the negative electrode 22 through an external load react with the ions of the electrolyte 23 and the dissolved oxygen to reduce the electrolyte 23 and the like.

【0024】ところで、一般に光充電を実現するために
は、正極21と負極22の他に光反応を行うための光電
極が必要である。しかし、本実施例の光2次電池は、そ
の構成に光電極が存在しないにもかかわらず光充電を行
うことができる。これは、以下の理由によるものであ
る。
By the way, in general, in order to realize photocharge, in addition to the positive electrode 21 and the negative electrode 22, a photoelectrode for performing a photoreaction is required. However, the photo secondary battery of the present embodiment can be photo-charged even though there is no photo electrode in its configuration. This is due to the following reasons.

【0025】簡単にいえば、本実施例においては上記放
電反応により負極22をなす負極部材22aの表面に形
成された金属酸化物が光電極として機能する結果、光電
極が存在しなくても光充電反応が進行するということで
ある。すなわち、放電生成物である金属酸化物は半導体
特性を示し、電解質23と放電生成物との接触界面にお
いて該放電生成物のエネルギーバンドは、電解質23側
へ向って上方曲りとなる。今、この放電生成物表面へ太
陽や蛍光燈等の光エネルギーが照射されると、伝導帯に
電子を励起し、価電子帯にホールを生む。このホール
は、上記エネルギーバンドの曲りに添って電解質23側
へ運ばれ、負極22をなす負極部材22aの表面で電解
質23イオンを酸化し、電解質23を元の状態に戻す。
Briefly, in the present embodiment, the metal oxide formed on the surface of the negative electrode member 22a forming the negative electrode 22 by the above discharge reaction functions as a photoelectrode, and as a result, even if the photoelectrode does not exist, the light is generated. That is, the charging reaction proceeds. That is, the metal oxide as the discharge product exhibits semiconductor characteristics, and the energy band of the discharge product at the contact interface between the electrolyte 23 and the discharge product bends upward toward the electrolyte 23. When the surface of this discharge product is irradiated with light energy from the sun or a fluorescent lamp, electrons are excited in the conduction band and holes are generated in the valence band. The holes are carried to the electrolyte 23 side along with the bending of the energy band, oxidize the electrolyte 23 ions on the surface of the negative electrode member 22a forming the negative electrode 22, and restore the electrolyte 23 to the original state.

【0026】一方、伝導帯に励起された電子は、バンド
の曲りに添って負極22中のまだ酸化されていない金属
側へと向かって移動し、やがて、金属−金属酸化物−電
解質の界面に達する。そこで電解質23との接触部分で
還元反応が進行するが、未反応の金属部分はこれ以上還
元できないため、金属酸化物である放電生成物を金属や
低次の金属酸化物に還元する。以上の経過を経て、光充
電反応が進行する。
On the other hand, the electrons excited in the conduction band move toward the unoxidized metal side of the negative electrode 22 along with the bending of the band, and eventually to the metal-metal oxide-electrolyte interface. Reach Therefore, the reduction reaction proceeds at the contact portion with the electrolyte 23, but the unreacted metal portion cannot be further reduced, so that the discharge product, which is a metal oxide, is reduced to a metal or a low-order metal oxide. The photocharge reaction proceeds through the above process.

【0027】以上説明したように、前記実施例に示した
構成をとることによって、従来の光2次電池にはない、
光エネルギーによる充電が可能で、充電器を必要としな
い省エネルギー性に優れ、高エネルギー密度の光2次電
池を提供することができる。特に、半導体や光化学励起
物質よりなる光電極の存在しない、2電極系よりなる簡
単な構成で、該電池を実現することができる。また、電
気と光の何れのエネルギー形態でも充電可能で、放電中
でも光充電反応が進行する電池を提供することができ
る。
As described above, by adopting the structure shown in the above embodiment, the conventional optical secondary battery does not have the following structure.
It is possible to provide a photo secondary battery that can be charged by light energy, is excellent in energy saving without requiring a charger, and has a high energy density. In particular, the battery can be realized with a simple configuration of a two-electrode system in which a photoelectrode made of a semiconductor or a photochemically excited substance does not exist. Further, it is possible to provide a battery that can be charged in any energy form of electricity and light and in which a photocharge reaction proceeds even during discharge.

【0028】[0028]

【発明の効果】以上説明したように、本発明の光2次電
池にあっては、以下の効果を奏することができる。請求
項1記載の光2次電池によれば、電池ケースには、負極
をなす負極部材に光を入射する受光部が設けられ、負極
をなす金属製の負極部材の酸化反応により放電され、該
放電により該負極部材に生成した放電生成物に光エネル
ギーを作用させ、該生成物を金属に変化させて充電され
る構成としたので、放電時には、負極をなす負極部材の
表面に形成される放電生成物の光反応性を利用して、光
エネルギーによる充電が実現する。従って、従来の光2
次電池でその構成に必須であった半導体や化学励起物質
によりなる光電極を省略でき、これにより本発明の光2
次電池の構造は簡易なものとなり、さらに製造も容易と
なる。よって、高エネルギー密度で、経済性や省エネル
ギー性に優れたの光2次電池を実現できる。
As described above, the following effects can be achieved in the optical secondary battery of the present invention. According to the second aspect of the present invention, in the battery case, the light receiving part for injecting light into the negative electrode member forming the negative electrode is provided in the battery case, and is discharged by the oxidation reaction of the metal negative electrode member forming the negative electrode. Light energy is applied to the discharge product generated in the negative electrode member by the discharge, and the product is changed to a metal to be charged. Therefore, during discharge, the discharge formed on the surface of the negative electrode member forming the negative electrode. Charging by light energy is realized by utilizing the photoreactivity of the product. Therefore, conventional light 2
In the secondary battery, the photoelectrode made of a semiconductor or a chemically excited substance, which is essential for its construction, can be omitted.
The structure of the secondary battery is simple and the manufacture is easy. Therefore, it is possible to realize an optical secondary battery having a high energy density and excellent in economical efficiency and energy saving.

【0029】請求項2記載の光2次電池によれば、請求
項1記載の効果を奏することができるとともに、上記金
属製の負極部材の少なくとも一部が、該金属の酸化物、
又は複数の金属よりなる複合成分系金属や合金よりなる
構成にしたから、前記金属の酸化物等の酸化還元反応を
利用することにより、充電・放電される。このため、負
極部材の成分を変化させることにより、光2次電池の電
力を調整することができる。
According to the second aspect of the present invention, it is possible to obtain the effect of the first aspect, and at least part of the metal negative electrode member is an oxide of the metal.
Alternatively, since the composite component system metal or alloy composed of a plurality of metals is used, charging / discharging can be performed by utilizing the redox reaction of the oxide of the metal. Therefore, the power of the photo secondary battery can be adjusted by changing the component of the negative electrode member.

【0030】請求項3記載の光2次電池は、請求項1記
載の効果を奏することができるとともに、金属製の負極
部材に、該負極部材と空気中の酸素、窒素、二酸化炭素
との接触、あるいは電解質との接触により自然生成した
金属酸化物、窒化物、炭化物、水酸化物等の化合物、あ
るいはこれらの複合化合物が含有されている構成にした
から、負極部材に金属酸化物等が自然生成した場合にあ
っても、これら金属酸化物等を酸化還元反応させること
により、充電・放電される。このため、自然生成物を利
用することができ、広範囲に光2次電池を利用すること
ができる。
The photo secondary battery according to the third aspect can achieve the effect according to the first aspect, and the negative electrode member made of metal is contacted with oxygen, nitrogen and carbon dioxide in the air. , Or metal oxides, nitrides, carbides, hydroxides, and other compounds that are naturally generated by contact with the electrolyte, or composite compounds of these, are included, so that the negative electrode member is free from metal oxides and the like. Even if it is generated, it is charged and discharged by subjecting these metal oxides and the like to an oxidation-reduction reaction. Therefore, the natural product can be used, and the photo secondary battery can be used in a wide range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光2次電池に係る実施例の外観図を示
した斜視図である。
FIG. 1 is a perspective view showing an external view of an embodiment of a photo secondary battery of the present invention.

【図2】図1に示す実施例の光2次電池のX−X’線に
添う断面図である。
FIG. 2 is a cross-sectional view taken along line XX ′ of the optical secondary battery of the example shown in FIG.

【図3】従来の光2次電池の外観図を示したものであ
る。
FIG. 3 is an external view of a conventional optical secondary battery.

【図4】図3の等価回路を示したものである。FIG. 4 shows an equivalent circuit of FIG.

【図5】従来型光蓄電池の構成図を示したものである。FIG. 5 is a diagram showing a configuration of a conventional light accumulator.

【図6】第1例の従来型光化学2次電池の構成図を示し
たものである。
FIG. 6 is a configuration diagram of a conventional photochemical secondary battery of Example 1.

【図7】第2例の従来型光化学2次電池の簡単な構成と
エネルギー準位図を示したものである。
FIG. 7 shows a simple configuration and energy level diagram of a conventional photochemical secondary battery of Example 2.

【符号の説明】[Explanation of symbols]

21…正極 22…負極 22a…負極部材 23…電解質 24…セパレータ 25…正極端子 26…負極端子 27…電池ケース 27a…受光部 21 ... Positive electrode 22 ... Negative electrode 22a ... Negative electrode member 23 ... Electrolyte 24 ... Separator 25 ... Positive electrode terminal 26 ... Negative electrode terminal 27 ... Battery case 27a ... Light receiving part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極と、負極と、これら正極と負極とに
接触する電解質と、上記負極と上記正極と上記電解質と
が収容される電池ケースとを有し、該電池ケースには、
上記負極をなす負極部材に光を入射する受光部が設けら
れ、上記負極をなす金属製の負極部材の酸化反応により
放電され、該放電により該負極部材に生成した放電生成
物に光エネルギーを作用させることにより、該生成物を
還元させて充電されることを特徴とする光2次電池。
1. A positive electrode, a negative electrode, an electrolyte in contact with the positive electrode and the negative electrode, a battery case accommodating the negative electrode, the positive electrode, and the electrolyte, and the battery case,
A light receiving unit for entering light into the negative electrode member forming the negative electrode is provided, and is discharged by an oxidation reaction of the metal negative electrode member forming the negative electrode, and light energy is applied to a discharge product generated in the negative electrode member by the discharge. A photo-rechargeable battery characterized in that the product is reduced and charged by the operation.
【請求項2】 上記金属製の負極部材の少なくとも一部
が、該金属の酸化物、又は複数の金属よりなる複合成分
系金属や合金よりなることを特徴とする請求項1記載の
光2次電池。
2. The optical secondary according to claim 1, wherein at least a part of the metal negative electrode member is made of an oxide of the metal or a composite component metal or alloy composed of a plurality of metals. battery.
【請求項3】 金属製の負極部材に、該負極部材と空気
中の酸素、窒素、二酸化炭素、あるいは電解質との接触
により自然生成した金属酸化物、窒化物、炭化物、水酸
化物等の化合物、あるいはこれらの複合化合物が含有さ
れていることを特徴とする請求項1又は2記載の光2次
電池。
3. A compound, such as a metal oxide, a nitride, a carbide, or a hydroxide, which is naturally formed on a negative electrode member made of metal by contacting the negative electrode member with oxygen, nitrogen, carbon dioxide in the air, or an electrolyte. Or the composite compound of these is contained, The photo secondary battery of Claim 1 or 2 characterized by the above-mentioned.
JP543693A 1993-01-14 1993-01-14 Light secondary battery Pending JPH06215807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP543693A JPH06215807A (en) 1993-01-14 1993-01-14 Light secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP543693A JPH06215807A (en) 1993-01-14 1993-01-14 Light secondary battery

Publications (1)

Publication Number Publication Date
JPH06215807A true JPH06215807A (en) 1994-08-05

Family

ID=11611151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP543693A Pending JPH06215807A (en) 1993-01-14 1993-01-14 Light secondary battery

Country Status (1)

Country Link
JP (1) JPH06215807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006381A1 (en) * 2002-07-09 2004-01-15 Fujikura Ltd. Solar cell
US7825330B2 (en) 2002-07-09 2010-11-02 Fujikura Ltd. Solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006381A1 (en) * 2002-07-09 2004-01-15 Fujikura Ltd. Solar cell
CN1300894C (en) * 2002-07-09 2007-02-14 株式会社藤仓 Solar cell
US7825330B2 (en) 2002-07-09 2010-11-02 Fujikura Ltd. Solar cell

Similar Documents

Publication Publication Date Title
US7122873B2 (en) Hybrid solid state/electrochemical photoelectrode for hyrodrogen production
US4452867A (en) Storage battery containing voltage reducing means
US5439756A (en) Electrical energy storage device and method of charging and discharging same
US4916035A (en) Photoelectrochemical cells having functions as a solar cell and a secondary cell
US4064326A (en) Photo-electrochemical cell containing chalcogenide redox couple and having storage capability
KR20090061300A (en) Complex lithium secondary battery and electronic device employing the same
JPS6248928A (en) Photocell device
EP0553023B1 (en) Photochargeable air battery
CA1077131A (en) Metal oxide cells having low internal impedance
JP3304006B2 (en) Photochemical secondary battery
JP3346449B2 (en) Photohydrogenated air secondary battery
US4242423A (en) Optical-charging type half-cell, and photochemical battery using the same
JP2998765B2 (en) Light air secondary battery
JP3301454B2 (en) Photochemical secondary battery
JP3194448B2 (en) Light air secondary battery
JPH06215807A (en) Light secondary battery
JP3025798B2 (en) Photochemical secondary battery and method of manufacturing photochemical secondary battery
JP3273477B2 (en) Light air secondary battery
Hada et al. Energy conversion and storage in solid-state photogalvanic cells.
JPH0785895A (en) Photochemical secondary battery
JP3306685B2 (en) Sealed type photo-oxygen secondary battery
JP3196151B2 (en) Light air secondary battery
JP3523506B2 (en) Rechargeable air battery
JP3194449B2 (en) Light air secondary battery
JPH06223889A (en) Light-air secondary battery